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Abstract: One of the growing concerns in the construction industry is energy consumption and
energy efficiency in residential buildings. Moreover, management of non-degradable solid glass
wastes is becoming a critical issue worldwide. Accordingly, incorporation of recycled expanded
glass aggregates (EGA) as a substitution for natural fine aggregate in cement composites would be a
sustainable solution in terms of energy consumption in the buildings and waste management. This
experimental research aims to investigate the effects of EGA on fresh and hardened properties and
thermal insulating performance of cement mortar. To enhance the mechanical properties and water
resistance of the EGA-mortar, nano titanium dioxide (nTiO2) was used as nanofillers. The results
showed an increase in workability and water absorption of the EGA-mortar. In addition, a significant
decrease in bulk density and compressive strength observed by incorporating EGA into the cement
mortar. The EGA-mortar exhibited a low heat transfer rate and excellent thermal insulation property.
Furthermore, inclusion of nTiO2 increased compressive strength and water resistance of EGA-mortar,
however, their heat transfer rate was increased. The results demonstrated that EGA-mortar can be
integrated into the building envelop or non-load bearing elements such as wall partition as a thermal
resistance to reduce the energy consumption in residential buildings.
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1. Introduction

In the last few decades, demand for energy consumption in the residential building has risen and
there is a high intention for reducing energy consumption in the buildings. The energy efficiency of
the buildings has become increasingly critical with the rising costs of energy as well as increasing
awareness on global warming effects [1,2]. Furthermore, waste management has become a critical issue.
In fact, non-degradable wastes such as glass are unable to break down naturally which is developing
environmental problems [3]. In Australia, about 1.1 Mt of glass waste was generated in the year
of 2016–2017 from that 43% was stockpiled. In New South Wales, companies accepting the landfill
levy to dump their glass waste in landfill or arranging to relocate the waste to other states where the
landfill levy does not apply. Thus, use of waste glass in the large scale is a sustainable solution in
terms of reduction of carbon footprint and saving the costs and energy. The construction industry is a
potential sector for utilization of waste glass. In this regard, use of solid wastes for manufacturing the
building materials with high thermal insulation properties is an effective approach toward sustainable
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development and decreasing the energy consumption in buildings [4–6]. It has been reported that the
incorporation of insolation materials in the building can reduce the indoor temperature fluctuation up
to 4 ◦C that would save 10–30% of energy usage [1,2].

Although many investigations have been carried out on utilizing waste glass in the form of
glass powder [7–11] and glass bead [12–15] in concrete products, it has not found its position in the
construction industry yet. Expanded glass aggregates (EGA), is a new commercial product, which are
manufactured from waste and post-consumer glass. The EGA possess a relatively smooth surface with
numerous encapsulated pores can be used as an insulating material [16]. The porous structure and low
thermal conductivity of EGA can effectively reduce the heat transfer rate. The utilization of EGA in
cementitious materials brings two-fold advantages, first, reducing the landfill cost and environment
and secondly can reduce the energy consumption in buildings [16]. Recently, some studies [17–21]
have been conducted to investigate the effect of EGA on mechanical and thermal properties of concrete
and cement mortar, however, the utilization of EGA as an insulating material is at the initial stage. The
great advantage of EGA is the possibility of production in a variety of size. Such a variety of particle
sizes allows the improvement of the homogeneity of mixture and consequently reduces the possibility
of segregation of the mixture [22].

Yu et al. [23] and Spiesz et al. [24] developed a cement-based lightweight composite using five
different size of EGA (range between 0.1 and 2.0 mm) and reported the density of 1280–1490 kg/m3

and compressive strength of 23.3–30.2 MPa. Rumsys et al. [21] prepared cement mortar with two
types of fine expanded aggregates (expanded glass and expanded clay) to compare their compressive
strength and durability properties. In the mixes, they replaced the fine aggregates with expanded glass
and expanded clay by the weight of the sand (8.5, 16.7, 33.3, 66.7, and 100 wt%). The obtained results
revealed that in the mixtures with 100% EGA, the density decreased about 37% and the compressive
strength after 28 days of curing dropped about 60%. The results also confirmed that EGA could be
applied in the cementitious composites without limitation related to the alkali-silica reaction. In the
experiment conducted by Namsone et al. [25], a foamed matrix was prepared using EGA and the
mechanical, thermal and frost resistance properties were examined. They obtained the compressive
of 4.7 and 5.7 MPa at the age of 7 and 28 days and the thermal conductivity of 0.152–0.108 W/m.K.
Moreover, it was observed that reference samples had lower values of weight loss (g/m2) after the
freeze–thaw test comparing to compositions with EGA. They also characterized the microstructure of
the prepared foam matrix using optical microscopy and observed that EGA were distributed uniformly
over the cross-section without any processes of segregation.

Abd Elrahman et al. [16] fabricated EGA-cement mortar and reported crushing resistance of
1.9–2.9 N/mm2 and water absorption of 13.6–15.8 wt% depending on the particle size. The results
showed a compressive strength of about 6 MPa and thermal conductivity less than 0.14 W/m.K. In the
study conducted by [26], the influence of the grain size and percentage of EGA content on physical and
mechanical properties of the cement composite were investigated. They reported an average porosity
of 45–67% and bulk density of 903–1078 kg/m3 in specimens containing 100% EGA with the size of
2–4 mm. Moreover, the compressive strengths of 6.68–12.49 MPa obtained for EGA cement mortar.
In another attempt, [27] investigated the possibility of using artificial neural networks to design the
composition of cement composite containing EGA with the desired properties. They established the
relation between the quantity of EGA and the porosity, bulk density, and compressive strength of a
cement composite. Moreover, previous studies revealed that high glass content (above 50%) could
considerably increase the water absorption of cementitious composites [28,29]. It can be concluded
that incorporation of EGA in cement mortar can significantly reduce the mechanical properties such
as compressive strength and water resistance of cement matrix. Hence, in order to compensate the
reduction in mechanical strength and water absorption of cementitious composites integrated with
EGA, nanofillers such as TiO2 can be used. Previous researches have demonstrated that the addition of
TiO2 nanoparticles effectively enhanced the compressive strength and reduce the water absorption of
cementitious composites [30–35]. Indeed, nTiO2 fills the nanovoids in concrete, which leads to the
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increment of compressive strength up to 40% [34,36]. Moreover, TiO2 accelerates the formation of
C-S-H gel by increasing the amount of crystalline Ca(OH)2 at the early age of hydration [32,37]. Ma
et al. [32] reported 37% and 44% increase in tensile and flexural strength respectively for the samples
containing TiO2. In addition, the results indicated that the addition of TiO2 could significantly refine
the pores and shift them to the harmless pores. In the research conducted by Behfarnia et al. [31],
it was observed that TiO2 nanoparticles decreased the permeability of the cement matrix. In the
research conducted by Khushwaha et al. [34] and Sorathiya et al. [33], the effect of various proportion
of TiO2 was studied. It was concluded that addition of TiO2 up to 1% could significantly enhance the
mechanical properties of concrete.

This research aims to develop a cement mortar with a lower heat transfer rate and insulating
properties using substitution of a natural aggregate (NA) with EGA. In this study, the effect of
incorporation of EGA and TiO2 nanoparticles on workability, bulk density, water penetration,
compressive strength, and heat transfer rate of the cement mortar were investigated. Infrared
thermography (IRT) was used to measure the thermal insulation property of EGA cement mortar.
The IRT technique has been utilized to evaluate the thermal energy storage performance of building
materials in previous studies [38], however it has not been used for measuring the thermal insulating
property of the EGA cement mortar. The conducted research is an additional step toward development
of insulating building material and sustainable application of EGA in the construction industry.

2. Materials and Methods

2.1. Materials

The materials used in the study to fabricate cement mortar composite were ordinary Portland
cement (OPC), natural aggregate (NA), recycled expanded glass aggregate (EGA), superplasticizer
(SP), and nano titanium dioxide (nTiO2). OPC from Boral Australia Co. and in accordance with AS3972
was used as a binder and Sikament NN was used as a superplasticizer (SP) in the mix, which meets all
requirements as per AS1478.1 for high range water reducing admixture. EGA with a particle size of
0.25-4 mm from EGT Co. is shown in Figure 1. The specifications of EGA are compliant with EN and
DIN standards. Figure 2 shows a SEM image of the utilized EGA in this study. Table 1 demonstrates
the physical, mechanical, and thermal properties of the EGA.
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Table 1. Physical, mechanical, and thermal properties of the EGA (Expanded Glass Technologies).

Property
Grain Size

0.25–0.5 0.5–1 1–2 2–4

Loose bulk density (kg/m3) 300 250 220 190
Particle density (kg/m3) 540 450 350 310

Compressive strength (MPa) ≥2.9 ≥2.6 ≥2.4 ≥2.2
Thermal conductivity (W/mK) 0.07 0.07 0.07 0.07
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Figure 2. SEM pictures of the utilized EGA.

Crushed gravel with the maximum size of 4.0 mm and density of 2800 kg/m3 was used as NA.
The NA was subjected to the particle size distribution test to precisely replicate the distribution of
NA for the replacement of EGA by volume in the cement mortar. The size distribution testing was
completed in accordance with AS1012 and the results are found in Figure 3.
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Moreover, the mercury intrusion porosimetry (MIP) test was undertaken to measure the porosity
as well as pore size distribution of the EGA. The MIP test results of the EGA are revealed in Figure 4.

Nanoparticles titanium dioxide (nTiO2) purchased in the powder form from US Research
Nanomaterials, Inc. Table 2 demonstrates the properties of the nTiO2 as indicated by the manufacturer.

Table 2. The properties of the nano-nTiO2 (US Research Nanomaterials, Inc.).

Properties Value

Purity 99.98%
Average Particles Size 30 (nm)
Specific surface area 50 (m2/g)

Bulk Density 0.42 (g/cm3)
True Density 3.9 g/cm3)

PH 5.5–6.5
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Figure 4. Pore size distribution of the EGA.

2.2. Sample Preparation

The mixes had a water to cement ratio of 0.4 and a sand to cement ratio of 3:1. Two set of mixes
were prepared: the first set of mixes were fabricated by partial and full replacement of NA with EGA
without inclusion of nTiO2. The designed mixes with 0%, 50%, and 100% replacement percentage of
EGA implied with CS, E50, and E100, respectively. The second set of mixes was fabricated by partial
and full replacement of NA with EGA and incorporation of 1% nTiO2. The designed mixes with
incorporation of TiO2 and the EGA replacement percentage of 0%, 50%, and 100% defined as CT, E50T,
and E100T, respectively.

To fabricate the mixes, the dry materials (cement and NA/EGA) were placed in the mixer and
mixed on the low speed for 2.0 min. In the case of CT, E50T, and E100T mixes, the nTiO2 were sonicated
for 15 min in the solution of water and superplasticizer (SP) [39]. Then the dispersed nTiO2/SP/water
solution was added slowly to the mix and the materials were mixed for another 5 min. The mixes
cast in 70 × 70 × 70 mm3 cubes and demolded after 24 h. The samples were cured in the fog room
at a constant temperature of 23 ◦C and in accordance with AS1012.8. Table 3 demonstrates the mix
proportion of the samples. The abbreviations for labeling each mix are defined in a way that the letters
C and E representing control sample and mortar sample containing EGA respectively and number
after the letters presents the percentage of NA replacement with EGA into the mixture. The letter T
demonstrates the presence of TiO2 in the mix. For instance, the E50T mixture represents the sample
that contains 50% EGA and TiO2.

Table 3. Mix proportion of the samples (kg/m3) of mortar.

Composite ID NA EGA Cement Water S.P nTiO2

CS 1750 0 525 233 11.7 -
CT 1750 0 525 233 11.7 1%
E50 875 133 525 233 8.8 -

E50T 875 133 525 233 8.8 1%
E100 0 267 525 233 5.8 -

E100T 0 267 525 233 5.8 1%

2.3. Experimental Tests

The flow table test was undertaken on the fresh cement mortar samples in accordance to the
AS2701 to measure the mixtures workability and consistency. Moreover, the density of the mixture
was determined via the density test according to AS2701. To measure the water penetration of the
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specimens, the water absorption test was conducted in accordance with AS1012.21 at the age of 28 days.
The compressive test was undertaken on the cube specimens with the size of 70 mm × 70 mm × 70 mm
and in accordance with AS1012.9 at the age of 7, 14, and 28 days. For each test, three samples were
tested and the average including the error bar were reported.

In this study, the thermal insulation property and heat transfer rate of cement mortar containing
EGA was evaluated by measuring the surface temperature distribution using infrared thermal imaging
camera. For this purpose, the specimens with the dimension of 70 mm × 70 mm × 30 mm were
prepared and kept at about 27 ◦C for a few hours to allow all samples to achieve the same initial
temperature. Then the samples were exposed to a heat source and the surface temperature distribution
of the other side was captured by an infrared thermal camera for 15 min (Testo 872, Testo Australia).
The thermal test was repeated for three times for each sample. Figure 5 illustrates a schematic diagram
of the thermal test.
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3. Results and Discussion

3.1. Workability

Figure 6 shows the flow table test and the flow table test results are presented in Table 4. The flow
table test values were determined by averaging the diameters of each mixes test. All mixes showed
flow values in the range of 140–215 mm, without segregation or bleeding. The results revealed that
addition of EGA increased the workability of cement mortar up to 26.6% and 41.25% for the E50 and
E100 mixes respectively compared to the control mix (CS). The increment trend in workability despite
the decreasing on the amount of superplasticizer in E50 and E100 mixes is contributed to the smooth
surface and spherical shape of EGA [40–42]. Adding to this, the increase in the flow values can be due
to the increase in the amount of entrapped air voids. Furthermore, the workability of CT, E50T, and
E100T mixes increased by 5.35%, 30.4%, and 53.7% respectively in comparison to the CS, E50, and E100
mixes respectively, which is attributed to the induction of the microbubble in the water solution during
the sonication process and consequently increased in small air voids in the mixes.

Table 4. Flow results of mixes.

Mix ID Average Flow Diameter (mm)

CS 140.0
E50 177.3

E100 201.3
CT 147.5

E50T 182.5
E100T 215.3
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3.2. Density

The density of the samples was measured, and the results are demonstrated in Figure 7. The
measurement revealed the density of 2354, 1769, and 987 kg/m3 for C.S, E50, and E100 respectively.
It shows the density of E50 and E100 decreased 30% and 65% respectively in comparison to the CS,
which is attributed to the very low density of EGA and its porous structure. In addition, the densities
of CT, E50T, and E100T were 2%, 3%, and 6% higher than CS, E50, and E100 respectively. It can be
concluded that the increase in density was attributed to the lower porosity in the cement matrix due to
the incorporation of nTiO2. It is noteworthy that E100 with density of 987 kg/m3 was classified as a
lightweight mortar that can be used for production of lightweight concrete. Figure 8 illustrates the
cross section of CS and E100 samples.Appl. Sci. 2020, 10, x FOR PEER REVIEW 8 of 14 
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3.3. Water Absorption

The water absorption test was completed on all mixes and the results are shown in Figure 7. The
water absorption of 4.19% obtained for control sample (CS) however a higher water absorption rate
was obtained for the mixes containing EGA. The water absorption of E50 and E100 mixes were 7.47%
and 14.74% respectively, which shows a 78% and 252% increase in the permeability of the matrix,
compared to the control sample. The increase in water absorption is due to the high porosity of EGA
in comparison to NA. The results revealed that the water penetration increased by increasing the EGA



Appl. Sci. 2020, 10, 2246 8 of 14

content. The water absorption rate obtained for the E100 (values of approximately 14%) was higher
than the acceptable range (<10%) [43,44]. The addition of nTiO2 reduced the water absorption value
by 28%, 17%, and 2% for samples containing 0%, 50%, and 100% EGA respectively. The decrease in
water absorption upon the inclusion of nTiO2 coincides with previous studies [45] and aligns with
the density results. The reduction in water absorption was attributed to the filling effect of nTiO2 and
reducing the porosity of the cement matrix. It is worthy to note that the sonication process resulted in
tiny bubbles of air uniformly distributed in the mortar. These small bubbles are like entraining air that
improves the workability of the mixes. Indeed, nTiO2 acted as nanofillers in mortar and improved the
resistance to water penetration of the cement composite [46].
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3.4. Compressive Strength

The experimental test for compressive strength was carried out at different curing ages of 7, 14,
and 28 days. Figure 9 shows the impact of EGA and TiO2 inclusion on the compressive strength of
the mortar composites at different ages. It is observed that the inclusion of the EGA significantly
decreased the compressive strength of cement mortar. The results of 28-day compressive strength
demonstrated that 50% replacement of NA with EGA reduced the strength about 65.8% in compare to
the control sample (C.S). In addition, it was observed that as the EGA content increased from 50% to
100%, the compressive strength dropped dramatically from 26.25 to 8.20 MPa at the age of 28 days.
It is noteworthy that the compressive strength was still in the acceptable range and similar or higher
than reported results in the literature [21,25]. Namsone et al. [25] reported the 28-day compressive of
5.7 MPa for a foamed matrix using EGA and obtained the compressive strengths of 6.68-12.49 MPa for
the EGA cement mortar. Indeed, the samples containing 100% EGA without nTiO2 had the lowest
compressive strength out of all the mixes.

Furthermore, the results indicated a normal increasing trend for the compressive strength for CS,
E50, and E100 mixes as the curing process progresses. However, the mixes containing nTiO2 revealed a
relatively different strength development tend. It was revealed that CT, E50T, and E100T mixes reached
to 84.6%, 87.2%, and 77.2% of maximum strength within 7 days of curing while for samples without
nTiO2 (CS, E50, and E100 mixes) it happened at 14 days of curing. This behavior was attributed to the
addition of nTiO2 into the cementitious materials, which resulted in an accelerated rate of hydration
process. A similar attribute has been reported in previous studies that when nTiO2 is uniformly
distributed throughout the matrix, the hydration process and formation of C-S-H gel is accelerated,
which results in early strength [32,47,48]. In the other set of mixes, the effect of nTiO2 inclusion on the
compressive strength of mixes was investigated after a different curing time. The compressive strength
results of E50T and E100T mixes at 28 days showed the similar trend. It was observed that the addition
of EGA significantly decreased the compressive strength and the strength significantly dropped as
the EGA content increased however, inclusion of nTiO2 compensated some part of the compressive
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strength. The average compressive strength at 28 days of CT, E50T, and E100T mixes were 76.72, 29.70,
and 11.4 MPa respectively, which shows 1.7%, 13.1%, and 39.0% enhancement in comparison to CS,
E50, and E100 mixes respectively. It can be concluded that nTiO2 acts as nanofillers in specimens and
recovers their pore structure by decreasing voids and pores in the composite matrix [46].
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In summary it can be concluded that the compressive strength and water absorption of concrete are
highly influenced by the density of the mix. The results revealed an interrelationship between density
and compressive strength. It was observed that the compressive strength dropped by decrement of the
sample’s density (CS, E50, and E100 mixes). Similarly, an increase in density for CT, E50T, and E100T
mixes resulted in an increase in compressive strength compared to CS, E50, and E100 mixes respectively.
Moreover, the results demonstrated an inverse relation between density and water absorption. It was
found that water absorption increased by decreasing the density of the mixes in case of CS, E50, and
E100. However, the water absorption decreased by integration of TiO2 into the mixes (CT, E50T, and
E100T) and increment of density due to a lower porosity of the matrix.

3.5. Infrared Thermography

In order to evaluate the thermal insulating properties of the cement composites, the infrared
thermography (IRT) experiment was carried out on all the samples: CS, E50, E100, CST, E50T, and E100T.
Figure 10 illustrates the thermal images of surface temperature distribution of the samples captured by the
IRT camera at different heating times. According to the relationship between the color and temperature
value, it can be suggested that the heat-transferring rate and thermal conductivity of cement composites
were significantly decreased with the inclusion of EGA. The thermal images clearly demonstrate a
different temperature distribution in the control sample (CS mix) and the samples containing EGA (E50
and E100 mixes). The results show that the temperature increased rapidly in the CS however, a noticeable
slower heat transfer rate observed for samples incorporated with EGA (E50 and E100). The data also
revealed a drop in the heat transfer rate as the EGA content increased. For instance, after 15 min the
average surface temperature in the CS sample reached 55 ◦C while the average surface temperature in
the E50 and E100 samples reached 52.7 and 48.7 ◦C respectively, which shows a temperature difference of
2.3 ◦C and 6.0 ◦C for E50 and E100 respectively. Moreover, the results demonstrated the heat transfer
rate of 1.75, 1.60, and 1.35 ◦C/min for CS, E50, and E100 respectively that shows a lower rate for samples
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containing EGA (E50 and E100) in comparison to the control sample (CS). This observation was attributed
to a high porosity and low thermal conductivity of EGA. Indeed, by incorporation of EGA the air void is
replaced with sand, which has a high thermal conductivity. EGA has a thermal conductivity of 0.07 W/mK
that is much less than that of sand (Expanded Glass Technologies). Consequently, by replacing the NA
with EGA the heat transfer of the cement composite was reduced.
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Table 5 demonstrates the average temperature differences for each mix. The thermal charging
results for the samples inclusion nTiO2 showed a different trend to the first set of mixes (mixes without
nTiO2). It was observed that incorporation nTiO2 increased the heat transfer rate, which is undesired in
terms of thermal insulation properties. The thermal images demonstrated that inclusion of nTiO2 into
the composite increased the heat transfer rate compared to the samples without nTiO2. For example,
after 15 min the average surface temperature in CS, E50, and E100 samples reached to 55 ◦C, 52.7 ◦C,
and 48.7 ◦C respectively. While average surface temperature in the CT, E50T, and E100T samples
reached to 56.8 ◦C, 55 ◦C, and 49.1 ◦C respectively that shows an increase in the temperature difference
of 1.6 ◦C, 2.3 ◦C, and 1.4 ◦C respectively. Furthermore, the results demonstrated the heat transfer rate
of 1.87, 1.76, and 1.38 ◦C/min for CT, E50T, and E100T respectively that indicates higher rate than the
samples without nTiO2. It can be concluded that nTiO2 acts as a filler and changes the pore structures
of the cement composite and consequently the thermal charging performance of the matrix. Therefore,
in terms of thermal properties, NA substitution with EGA improves the thermal insulation properties
of cement composites. This positive effect is attributed to lower thermally conductive and higher
porosity of EGA compared to NA.

Table 5. The average temperature differences for each mix.

Mix
∆ (Tave.) Heat Transfer Rate (◦C/min)

5 min 10 min 15 min 5 min 10 min 15 min

CS 4.40 12.30 26.30 1.58 2.80 1.75
CT 4.10 16.40 28.10 2.46 2.34 1.87
E50 3.40 14.00 24.00 2.12 2.00 1.60

E50T 4.30 15.60 26.40 2.26 2.16 1.76
E100 2.50 11.80 20.30 1.86 1.70 1.35

E100T 6.20 15.60 20.70 1.88 1.02 1.38

4. Conclusions

This experimental work investigated the physical properties as well as the thermal insulation
property of cement mortar containing EGA and TiO2. The findings revealed that incorporating
EGA into the mortar composite causing a significant decrease in density and compressive strength,
which was attributed to the porous nature and low compressive strength of EGA. The results also
demonstrated that as the EGA content increased, the workability and water absorption of cement
composite increased. It is found that the increase in water absorption was due to the high porosity
of EGA in comparison to NA. However, the beneficial effect of the EGA was the decrease in the
heat-transferring rate of the cement composite, which indicates the feasibility of a potential reduction
in energy consumption in buildings. Moreover, the results demonstrated that inclusion of TiO2 into
the cement composite partially compensated the water absorption and loss in compressive strength.
However, it was revealed that addition of nTiO2 into EGA-cement composites increased the heat
transfer rate of the cement matrix and insulation properties as nTiO2 acts as nanofillers and changes the
pores structure in the cement matrix. It can be concluded that in terms of thermal behavior, substitution
of NA with EGA decreases the heat transfer rate and consequently improves the thermal insulation
properties of the cement mortar.
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