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Abstract: Shear-induced adhesion is one of the key properties for the gecko moving safely and
quickly in a three-dimensional environment. The control strategies of such locomotion strongly
relying on adhesion are still not well understood. In this study, we measured foot alignment and
three-dimensional reaction forces of the single toes of the Tokay gecko running on the ground freely
(gravity condition) and running in a situation where the gravity force was counterbalanced (reduced
gravity condition). The forelimb rotated from the outward position to the front-facing position and
the hindlimb rotated from the outward position to the rear-facing position, when running with
balanced force, which indicated that the adhesive system was employed behaviorally through the
modulation of the foot alignment. The toe was compressed and pulled in the gravity condition,
but it was tensed and pulled in the reduced gravity condition. There was an approximately linear
relationship between peak normal forces and the corresponding shear forces in both the reduced
gravity condition (FN = −0.40FS − 0.008) and the gravity condition (FN = 2.70FS − 0.12). The footpad
was compressed and pushed in the gravity condition, whereas it was tensed and pulled in the reduced
gravity condition. There was an approximately linear relationship between peak normal forces and
the corresponding shear forces in both the reduced gravity condition (FN = −0.39FS − 0.001) and in
the gravity condition (FN = −2.80FS − 0.08). The shear-induced adhesion of the gecko footpad is
controlled by the coupling of the normal force and shear forces: that is why in this system adhesion
was shear-sensitive and friction was load-sensitive. Our measurements of single toe reaction forces
also show that geckos control their footpad attachment using ‘toe rolling-in and gripping’ motion in
both gravity and reduced gravity conditions.
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1. Introduction

Geckos are able to run on vertical and even inverted surfaces as fast as other terrestrial animals
can run on normal ground. It is widely believed that the secret of such extraordinary locomotory
ability lies in the adhesive structures found on the toes. [1–3]. One fundamental property of their
adhesive structures that helps to achieve a controlled, energy-efficient adhesion is the directional
dependence of their adhesion. Patterns of ground reaction forces show that geckos can control
attachment and detachment via shear forces, by pulling their legs towards or pushing their legs away
from the body [1,4]. Separate parts of this control system seem to be established at different levels
of the hierarchical organization of this adhesive system [5–13]. For example, the animal can control

Appl. Sci. 2020, 10, 2257; doi:10.3390/app10072257 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0001-5305-9290
https://orcid.org/0000-0001-9712-7953
https://orcid.org/0000-0002-1276-7466
http://dx.doi.org/10.3390/app10072257
http://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/10/7/2257?type=check_update&version=2


Appl. Sci. 2020, 10, 2257 2 of 9

adhesion by shifting the position of the center of gravity, by changing each footfall position (e.g., with
different joint movement), by varying gait characteristics (e.g., velocity, stride length, stride frequency
and duty factor) or by employing specific features of the adhesive system itself (e.g., viscoelasticity of
the underlying layers or hierarchy of setal organization).

Although the basic functional mechanisms of adhesive pads are rather well understood, the control
principles of attachment and detachment are still largely unknown. Control strategies that have been
investigated in terrestrial animals with perturbation suggest that both active (neuro-muscular) control
and passive (mechanical) reactions play important roles in the control of rapid locomotion [14–18].
Patterns of single leg ground reaction forces suggest dynamic stability control in gecko locomotion [4,5,7].
Differences in locomotor performances [4,5,7,19] suggest that a trade-off between successful adhesion
and the ability to respond dynamically to locomotor perturbations may exist.

Multiple toes differing in orientation appear to play an important role during gecko locomotion,
as the animal can avoid detachment by aligning some of their toes opposite to the force vector. It is likely
that employment of the adhesive system is associated with modulation of inter-digital angle and foot
alignment [20,21]. However, much less is known about adhesion force of single toes during locomotion.

In the present study, we aimed to obtain measurements of ground reaction forces generated by the
single toes of geckos running on level substrate. We used helium-filled balloons to counterbalance the
gecko’s body weight and to observe how the adhesive pads were applied to the ground. We addressed
the following questions: what are the single leg and single toe ground reaction forces, and how do
geckos employ their adhesive system in response to the reduced gravity?

2. Materials and Methods

2.1. Study Animals

Six individual Tokay geckos (Gekko gecko; body mass 57.3 ± 7.8 g; snout-vent length 133.5 ±
16.9 cm; mean ± s.d.) were obtained from a supplier in Guangxi Province, China. They were housed in
pairs in separate terraria, provided with fresh water and live insects ad libitum, and were kept on a
natural light cycle at a temperature of 24–27 ◦C and at a relative humidity of 60%–70%.

2.2. Force Measurement Set-up

To measure ground reaction forces of both single legs and single toes in all three directions, a force
measurement array (FMA) was used [22]. The FMA consisted of 24 separate, custom-built three
dimensional force sensors, arranged in three rows and eight columns with each sensor having a glass
cover-slip (ca 3 cm × 3 cm × 0.1 cm with ca 0.1 cm clearance gap) on top, resulting in a tiled strip of ca
25 cm × 9 cm measurement area (average roughness Ra = 4.7 ± 2.1 µm, N = 24, mean ± s.d.).

The x-axis is defined as the left-right axis in the plane of the platform. The x-axis points to the
locomotion direction of the animal. The forces along the x-axis are termed as fore-aft forces. The y-axis
is defined as being perpendicular to the x-axis and is situated in the plane of the platform. The y-axis
forces are termed as lateral forces or shear forces. The z-axis is defined as being perpendicular to the
xy-plane and the forces are termed as normal forces.

The sensor was made up of T-shaped aluminium alloy [22] and forces were measured from the
deflection of the cantilever beams by 350 Ω foil strain gauges glued to the beams. The resolution for
each direction was similar (ca 1–2 mN); the fundamental resonance frequency for the x- and y-axes was
lower (ca 252 and ca 125 Hz) than for the z-axis (ca 355 Hz). Signals from each sensor were amplified
and collected by a multiple channel strain signal processing device (National Instruments, Austin, TX,
USA) at a sampling frequency of 500 Hz. Data were filtered using a Butterworth filter at a cut-off

frequency of 100 Hz.
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2.3. Video Recording

Two high speed digital video cameras (Olympus i-SPEED 3, 1280 × 1024 pixels) were synchronized
with the force recordings from top and side views at a sampling frequency of 500 Hz. A mirror was
mounted at an angle of 60◦ next to the FMA, giving the other side view of the gecko. The camera ran
in synchrony with the data acquisition, using a common starting pulse from a manual switch. Multiple
cold light sources (light-emitting diodes) placed above the platform were used to supply adequate
illumination for high speed video recording.

2.4. Force Measurements

To evaluate the influence of balanced force on gecko locomotion, helium-filled balloons were fixed
on a carbon fiber tube (inner diameter: 2 mm, outer diameter: 3 mm, mass: 1 g) which went through
two custom-built vests that wrapped around the front and hind legs, respectively, so that the balloons
were pulling from close to the center of mass of the animal (Figure 1). The gecko’s effective weight was
reduced by counterbalancing the normal force arising from its body weight. The force generated by
the balloons was about 0.6 N. We acquired locomotion with zero balanced force and with about 100%
body weight balanced force.
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Figure 1. Schematic of the set-up used to study single leg and toe reaction forces of the gecko. The gecko
was put on the force platform consisting of 3 × 8 measurement arrays. Helium-filled balloons were
used to balance the animal’s body weight. Note that the balloon and connecting thread are not drawn
to scale.

The animal was placed on one side of the force platform, and the balloons were initially held
by hand. Then, the hand was removed slightly, to gradually let the animal run on the FMA.
Simultaneously, the data acquisition and video recording were initiated by a manual switch. Prior to
each trial, we measured the body mass with balanced force (Figure 1).

We carefully checked the recorded videos, and selected only those recordings which met the
following conditions: (i) the animal ran continuously straight along the FMA and through the field of
view; (ii) no slip of the feet took place over the course of the experiment; (iii) no sudden acceleration or
deceleration occurred during the trial..

2.5. Analysis of Forces and Video Recordings

The forces and video analysis were both performed with custom-built MATLAB scripts (v2015b,
Mathworks Corporation, USA). Joints were carefully digitized using DLT_dv5 [23]. The line between
the mid-points of the shoulder and hips was defined as the body axis. The angle between the digit III
and the body axis was defined as the limb orientation angle, and the angle between the digit I and
digit V was defined as the limb spread angle (Figure 2a).

For the forces analysis, normal forces were divided into load (+) or adhesion (−) components,
fore-aft forces represented propulsive (+) or braking (−) effort, and lateral forces indicated whether a
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limb was pushed away (+) or pulled towards the body (−). For cases where different toes of the same
limb touch multiple sensors, the forces of individual toes and multiple toes were analysed, respectively,
and the force components for each direction were summed up in order to obtain 3 resultant force
vectors of each leg (Figure 2b). For single toe force orientation, we defined the toe orientation as
y-axis and point to 90◦. The x-axis was defined as being perpendicular to the y-axis and point to
0◦. We defined the toe III force orientation as the footpad force orientation. If the angle of ground
reaction force vector ranged from 0◦ to approximately 90◦, we noted the toe/footpad was pulling; if the
angle of ground reaction force vector ranged from 0◦ to approximately −90◦, we noted the toe/footpad
was pushing.
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Figure 2. (a) Top view of the gecko running on the force measurement array (FMA). The front left limb
is contact with three force sensors. (b) Three-dimensional force-time curves of different toes in front
left limbs.

3. Statistics

All statistical tests were carried out using the statistical toolbox in Matlab (v2015b, Mathworks
Corporation, USA). To evaluate the influence of balanced force on gecko locomotion, the data were
divided into two categories: gravity and reduced gravity. The Mann–Whitney U-test was used to test
between two categories. For the plots, we have indicated a significant difference between two samples
using the ‘*’-symbol, if P < 0.05, ‘**’, if P < 0.01 and ‘***’, if P < 0.001. If a test just failed to reach the
significance level, we stated the computed P-value.

Results were plotted using ‘box-whisker’ plots. The median and the 25 percent and 75 percent
quartiles (‘box’) are indicated. The plotted ‘whiskers’ extend to the most extreme data values that are
not outliers. Points are drawn as outliers, if they are larger than q1-w(q3-q1) or smaller than q1-w(q3-q1),
with w = 1.5 being the whisker length and q1 and q3 the 25th and 75th percentiles, respectively.
All tested data are presented as means ± standard deviation unless otherwise indicated.

4. Results

4.1. Foot Alignment

The spread angle had no significant difference between gravity condition and reduced gravity
condition in both forelimbs (Mann–Whitney U-test: W = 198.5, Z = −0.21, P = 0.84) and hindlimbs
(Mann–Whitney U-test: W = 182, Z = −0.97, P = 0.33). The orientation angle of the forelimb was
significantly lower in the reduced gravity condition than in the gravity condition (Mann–Whitney
U-test: W = 140.5, Z = −4.66, R = 528, P < 0.001): this indicates the rotation of the forelimb from the
outward to the front-facing position. The orientation angle of the hindlimb was significantly higher in
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the reduced gravity condition than in the gravity condition (Mann–Whitney U-test: W = 139, Z = 4.71,
R = 528, P < 0.001): this indicates the increased rotation of the hindlimb from the outward position to
the rear-facing position (Figure 3).Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 9 
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Figure 3. (a) The spread angle of the forelimb and hindlimb in the gravity condition and in the reduced
gravity condition. (b) The orientation angle of the forelimb and hindlimb in the gravity condition and
in the reduced gravity condition.

4.2. Ground Reaction Forces

In both gravity and reduced gravity conditions, gecko toes were pulling. The angle of toe force
orientation shows that the toe approximately aligned with the force vector in the reduced gravity
condition (ranged from 82◦ to 90◦), but deviated from the force vector in the gravity condition (ranged
from 13◦ to 83◦).

The toe was compressed and pulled in the gravity condition, but it was tensed and pulled in
the reduced gravity condition. There was an approximately linear relationship between peak normal
forces and the corresponding shear forces in both the reduced gravity condition (FN = − 0.40FS − 0.008)
and in the gravity condition (FN = 2.70FS − 0.12). The footpad was compressed and pushed in the
gravity condition, whereas it was tensed and pulled in the reduced gravity condition. There was an
approximately linear relationship between peak normal forces and the corresponding shear forces in
both the reduced gravity condition (FN = − 0.39FS − 0.001) and in the gravity condition (FN = − 2.80FS
− 0.08), as shown in Figure 4
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5. Discussion

Our results show that geckos make dynamic use of their attachment foot pads with ‘toe rolling-in
and gripping’ motion. As a toe approaches the surface, a small loading force perpendicular to the
contact surface and a short drag parallel to the contact surface is applied to orient and preload setae as
well as spatulae [1,3,24], and thereby may generate a large contact area of the toes. Then, the toe rolls
in and grips for further attachment enhancement. It has been previously shown for the Gekko gecko
that initial preload and lateral shear are both necessary to generate high adhesion [1,3,24]. However,
the adhesion force turns into a repulsive force when the load is above some critical value [25]. This is
consistent with our result of single toe force, where the force vector shows pulling and tension, while
the toe acts as an adhesive system (reduced gravity condition). However, where the force vector shows
pulling and compression, the toe has a supporting role (gravity condition). This trend can be explained
by a Lennard–Jones potential function [26].

Ez = −EA(z/z0)−n + −ER(z/z0)−m (m > n), (1)

Fvdw = −dEz/dz, (2)

where Ez and Fvdw are the normal potential and the normal force between two surfaces. EA is the
attractive energy and ER is the repulsive energy.

When Ez reaches its minimum value, the normal force Fvdw is zero with a surface gap distance D0.
When the setae and the surface are pressed together by a loading force with D > D0, the force Fvdw is
attractive, reaching its maximum value of Dmax

vdw max at a certain surface gap distance. When the setae
and the surface are pressed together by a loading force with D < D0, the force Fvdw is repulsive.

The synergy between normal force and shear force, known as shear-induced adhesion, is one
of the most important mechanical properties of the gecko seta. When the setal arrays are dragged
against the gripping direction, the shear force is proportional to the normal force with a coefficient of
0.31 [2]. When the toe is dragged along the griping direction with a small loading force, the shearing
behavior is totally different and could not be described in terms of the Amontons’ law like the friction
coefficient. Surprisingly, although forces are not equally shared among different individual toes, the
shear force is proportional to the normal force with a friction coefficient of 0.37, when the toe is dragged
along the griping direction in the gravity condition. This value is in the same order of magnitude
as the value of 0.36 found for the setal arrays of Gekko gecko [25]. Our findings here show that the
shear-induced adhesion is controlled by the coupling of the normal force and shear force. It means that
in this system, the adhesion is shear-sensitive and the friction is load-sensitive. It has been reported
that positive normal force (preload) is necessary for adhesion generation. However, it is still unclear
how the normal force affects adhesion in detail. Adhesion force increases linearly with the shear force
and approaches steady-state values only after the setal tip begins to slide and reorient in the drag
step [1,2,27]. Such a slide contact is achieved by a combined normal and shear force [28–30]. The body
weight, which contributes to an increase in the normal force, and the shear force, which depends on
the toe orientation, may induce a transition from tip to slide contact. According to the Lennard–Jones
potential function [26,31], the normal force turns into a repulsive force depending on the contact state
of the setal tip. Previous studies have shown that adhesion force was influenced by the manner how
the setae and spatula contact the substrate [27,32,33]. We thus conclude that adhesion is not solely
controlled by direction-dependence and morphological anisotropy, but also can be switched on and
off by applying the load in a different manner. Interestingly, the force vector shows that the footpad
pushes away from the body and the toe grips in (pull toward) during level running. The heel, without
any adhesive structures, may play an important role in the footpad pushing away from the body.

The performance of the adhesive pads does not solely depend on the adhesive setae layer itself,
but also on the way it is used for locomotion at the toe, footpad and whole animal level. Geckos
alter foot orientation to facilitate adhesion in response to changes in habitat structure [20,21]. Here,
we provide evidence that the adhesive system is engaged and disengaged behaviorally through the
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modulation of the foot alignment. Movements of joints show that geckos are likely to alter proximal
joints to provide extra work, rather than altering distal joints that could affect the success of their
adhesive capabilities [20]. Such an adjustment in joints leads to the minimization of torques [34].
Electromyography analysis in geckos shows that there are few significant changes in muscle activity
patterns in response to the degree of incline [35]. This in turn suggests that the motion to engage and
disengage the adhesive/gripping system is very stereotyped by using a passive “toe-gripping” actuation,
which has been previously studied in insects [36,37]. Geckos may use the “toe-gripping” actuation
as a control strategy and a safety mechanism for unpredictable and fast perturbations, preventing
detachment from the substrate. The passive control of toe use represents a striking example of a
mechanical system that is not only capable of stabilizing locomotion against rapid perturbations [17,38],
but also to react to an environmental condition by adopting an “adaptive” state without any neuronal
feedback. Controlling attachment using smart, mechanical constructions instead of additional muscles
has a series of advantages [39–41]. First, a passive control is always faster than an active one, as a
sensor-input system requires extra time for muscle contraction. Second, less musculature involved in
control is a cost-effective way which can conserve metabolic energy.

Separate use of friction and adhesion appears to be wide-spread in natural organisms. It has
been reported that arthropods have different pads on the same foot for fundamentally different
functions; load-sensitive “heel” pads for friction and shear-sensitive “toe” pads for adhesion, such as in
cockroaches [42], stick insects [43,44], spiders [45] and weaver ants [46]. Furthermore, the modulation
of foot orientation is also an important biological principle that promises to be very useful for technical
application [33]. The characteristic structure of the pes and manus of the gecko, allowing the feet to
rotate freely and the digits to be spread widely [47], leads to the animal’s ability to adhere in the head
up and head down orientation as well as on vertical surfaces [48]. Observation in tree frogs showed
that they are unable to adhere to smooth surfaces in the head-down orientation [49], probably due to
the constraint in digit spread and foot alignment. The sophisticated mechanical systems involved in
gecko locomotion are particularly promising as inspiration for new robot designs.
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