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Abstract: The present paper proposes (as the main contribution) an additional self-tuning mechanism
for an adaptive minimum-variance control system, whose main goal is to extend its functionality for
a large value range of unmeasurable perturbations which disturb the controlled process. Through the
standard design procedure, a minimum variance controller uses by default an internal self-tuning
mechanism based on the process parameter estimates. However, the main parameter which
overwhelmingly influences the control performance is the control penalty factor (ρ). This parameter
weights the term that describes the control variance in a criterion function whose minimization is the
starting point of the control law design. The classical minimum-variance control involves an off-line
tuning of this parameter, its value being set as constant throughout the entire operating regime. Based
on the measurement of the process output error, the contribution of the proposed strategy consists
in a real-time tuning of the control penalty factor, to ensure the stability of the control system, even
under conditions of high disturbances. The proposed tuning mechanism adjusts this parameter by
implementing a bipositional switching strategy based on a sharp hysteresis loop. Therefore, instead of
the standard solution that involves a constant value of the control penalty factor ρ (a priori computed
and set), this paper proposes a dual value for this controller parameter. The main objective is to
allow the controlled process to operate in a stable fashion even in more strongly disturbed regimes
(regimes where the control system becomes unstable and is usually switched off for safety reasons).
To validate the proposed strategy, an induction generator integrated into a wind energy conversion
system was considered as controlled plant. Operating under the action of strong disturbances (wind
gusts, electrical load variations), the extension of safe operating range (thus avoiding the system
disengagement) is an important goal of such a control system.

Keywords: adaptive control; minimum-variance controller; control penalty factor; self-tuning
strategy; induction generator

1. Introduction

The usage of adaptive control systems is suitable for the control of complex systems for which an
accurate mathematical model is not available, with the system being subject to unknown parameter
variations and large disturbances over time [1–6]. Furthermore, if the operating point changes under
the action of external disturbances (taking into account a wide variation range of disturbances) or due
to the variation of internal parameters, the usage of classical control solutions (PI, PID controllers)
becomes infeasible [5,7]. In these cases, a minimum variance control system is a viable solution due
to its adaptive nature, ensured by the self-tuning characteristic of the controller parameters [8–10].
Obviously, with these parameter estimates computed in real-time, a parameter estimator is required
(as a necessary component integrated into the control system) [11–14].
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Based on the minimization of a cost function described as a sum of two quadratic terms, the goals
of the designed control law are the minimization of the controlled output variance, simultaneously
with the minimization of the controller output variance (see relation 1, where E is an expectation
operator) [15–18]:

J = E{[process output variance]2 + ρ[controller output variance]2} (1)

The second mentioned goal (leading to a suboptimal control) is a mandatory condition to ensure
the possibility of practical implementation, imposing a penalty on the control variance, so that the
computed control values to be physically achievable [15–19]. The balance between these two objectives
of the cost function is achieved through a control penalty factor (ρ), which weights the significance of
the second quadratic term in the criterion function. The technical literature states that, theoretically,
the control penalty factor ρ ∈ [0, 1], but in practice it is usually set in the range ρ ∈ [0.0001, 0.1],
ensuring a proper weighting between the minimization of the system output variance and the control
variance [1–3]. A null value of the control penalty factor (ρ = 0) would hypothetically lead to an
optimal control law, only theoretically feasible, its implementation in practice being impossible. A
simple analysis of such an optimal control system shows that huge control values are generated, but
these values are not achievable in practice. Therefore, a non-zero value for the ρ factor is a mandatory
condition to ensure a practical implementation of a minimum variance control system. A smaller
control penalty factor leads to a higher control variance (which can sometime destabilize the system)
and, as a consequence, to more efficient minimization of the controlled output variance (ensuring
good control performance). A higher ρ parameter leads to a smaller control variance and to a weaker
penalization of the system output variance (which can negatively affect the control performance).
However, a too low penalization of the control is the main cause that can destabilize the control system.
A proper value of ρ, neither too small nor too big, could be a compromise solution [12,16,17].

The basic idea of the proposed control strategy is that, instead of a constant value of the control
penalty factor ρ (a priori set), an algorithm can be designed to on-line tune its value in accordance with
the operating conditions of the control system. Even though the self-tuning feature of the minimum
variance controller is implicitly ensured by using real-time estimates as parameters of the control
law, the control penalty factor is the main parameter that decisively influences the performance of
the control system (including the system stability). The main goal of the present paper is to design
an algorithm to real-time tune the control penalty factor, while simultaneously ensuring the system
stability and good control performance (for a large variation range of the unmeasurable perturbations
which can disturb the controlled process).

For a control system having as its main objective the rejection of the disturbance effect, two
situations can be considered, depending on the possibility of measuring the disturbance. For the case
when the disturbance is directly measurable, a strategy for on-line tuning of the control penalty factor
was described by the authors in [17]. For the case when the disturbance is not directly measurable, a
tuning strategy can be designed by considering an indirect measurement of disturbance, more precisely,
by measuring the disturbing effect produced by it (this being the subject of this paper). In order
to validate the proposed control strategy, an induction generator connected to a power system was
considered as a controlled plant. An induction generator is a highly nonlinear plant (described by a
mathematical model of the seventh order) and its operating point is frequently changing under the
action of internal or external disturbances [20–24]. In this case, an electrical load/unload is considered
one of the main disturbances whose effect must be rejected by the system. Such a disturbance cannot
be directly measured. However, its effect on the process output can be measured. For any type
of disturbance, this effect translates into the error of the controlled output. Due to this reason, the
proposed strategy must be tested for any disturbance (measurable or unmeasurable) that produce an
output error. For the case of an induction generator chosen as a controlled process, the mechanical
torque variation and the load/unload regimes are the considered disturbances.
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An extension of the value range of disturbances, whose effect can be rejected, is the major objective
of the new proposed control algorithm, leading to an increase of the control system stability and
robustness. Although the validation of this improved control strategy will be performed on this
particular case (induction generator), its logic is applicable for any minimum variance control of other
complex plant.

2. Design of the Minimum Variance Control Law

It is common that the design of the minimum variance control law starts with the assumption
of a linearized model of the controlled plant, which describes its functionality around an operating
point accurately enough [1,3]. The behavior of a nonlinear plant can be described in the vicinity of
an operating point by such a linearized model of a certain order, with parameters computed by a
parameter estimator. A change of the operating point has as consequence a change of the linear model’s
parameters and the real-time tracking of these can be done by such a parameter estimation algorithm
(in this case, the recursive least square estimator-RLS) [12–14]. For the case of an induction generator
connected to a power system, its complete functionality is described by a nonlinear mathematical
model of the seventh order (the d-q model represented by the Park equations) [10,22,23]. The complete
model (and the parameter values) of the considered process has already been presented in extenso
in one of the author’s recent paper [10] and therefore it is not detailed in the present paper (being
mentioned only in an Appendix A at the end of the paper).

The goal of the proposed control system is to maintain constant the voltage at generator terminals
through the excitation voltage control, considering the plant perturbed by various external disturbances
(electrical consumer load/unload, mechanical torque variations).

The technical literature shows that this type of relation between the excitation voltage (considered
as the plant input variable) and the terminal voltage (as plant output variable) can be enough accurately
described by a 4th order linear mathematical with time-varying parameters [12,22,24,25]. This reduced
order (4th) is based on several simplifying assumptions regarding the electrical phenomenology, which
does not affect the accuracy of the model near an operating point [12,15,26]. For maximum accuracy of
the simulation results, the complete 7th order nonlinear model of the controlled process was used to
test the proposed control strategy. It should be noted that this simplified linear model was used only
for the design stage of the control law. Therefore, the starting point of the control law design is a linear
model described by a 4th order discrete difference equation (see Equation (2)):

A
(
q−1

)
yt = q−1B

(
q−1

)
ut (2)

where
A
(
q−1

)
= a4q−4 + a3q−3 + a2q−2 + a1q−1 + 1

B
(
q−1

)
= b3q−3 + b2q−2 + b1q−1 + b0

(3)

and yt is the terminal voltage (controlled output at discrete time t), ut is the excitation voltage (controller
output), q−1 is the shift operator (with one sampling time, therefore yt−1 = q−1yt, and so on), a1, . . . ,4,
b0, . . . ,3 are parameters of polynomials A

(
q−1

)
and B

(
q−1

)
.

This equation is valid around an operating point for a set of parameter values and around another
operating point for other set of parameter values (the tracking of these parameters being performed by
the parameter estimator).

The control law design involves minimizing a cost function described by relation (4) [15–18]:

J = E{[yt+1 −wt]
2 + ρ

[
ut − u∗t

]2
} (4)

where yt+1 is the process output at discrete time t + 1 (next sampling time); ut is the controller output,
u∗t is the steady state controller output; wt is the set point, ρ is the control penalty factor; and E{.} is the
expectation (mean operator).
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Minimizing the criterion function (4) (by solving the equation: dJ
dut

= 0) and taking into account

that, in steady state regime: q−1 = 1, u∗t =
Â(1)
B̂(1)

wt, respectively wt = yt, the following control law
results [17]:

ut =
−q[1− Â

(
q−1

)
]

B̂(q−1) + ρ
yt +

1 + ρ
Â(1)
B̂(1)

B̂(q−1) + ρ
wt (5)

where Â and B̂ are the estimates of A and B polynomials (calculated by the RLS estimator).
The control law described by relation (5) will be used for all performed tests to validate the

proposed control strategy. The adaptive feature of such a controller is highlighted by the presence of
parameter estimates (time-varying) in the control law (5). In case of RLS estimator, these estimates
depend on the forgetting factor λ. However, the influence of this factor over the control system
perturbed by external disturbances is quite low [18,25,27,28]. The influence of this tuning parameter
(λ) is much more significant in the case of process with time-varying internal parameters [10,12,18,29].
Therefore, a constant value (off-line properly set) is used during the entire operating regime of the
process. The plant is considered disturbed by a stochastic noise (with zero mean and variance σ2 = 0.01),
as a mandatory condition for a proper functioning of the RLS estimator (ensuring the numerical
stability) [16,27,30–32]. Also, a constant value λ=0.995 is identified and set for the forgetting factor,
providing the best results.

Instead, the control penalty factor (ρ) is the tuning parameter that has a much greater influence
over the control system performance and stability [12,16,32]. Therefore, the adaptive feature of the
minimum variance controller could be enhanced by implementation of an additional self-tuning
mechanism, which allows a real-time adjustment of this control penalty factor (ρ). In other words,
instead of a constant ρ, the system will operate with a variable ρ. The proposed control strategy is
based on the observations that these extreme values of ρ (very small or very big) each have their own
advantages:

- A high value of ρ ensures a better penalty of the excessive control (and a better system stability),
to the detriment of qualitative output performance;

- A small value of ρ can ensure better qualitative performance of the controlled output, but with
the risk of destabilizing the control system (since the control is much less penalized).

By considering both situations, the main goal of this paper is to find a compromise solution that
can solve the problem, requiring the design of an adequate controller tuning algorithm, which will be
presented in the next paper section.

Regarding the stability of the minimum-variance control system, a complete analysis was carried
out by authors in other papers [10,11,16,17].

3. The Self-Tuning Algorithm of Control Penalty Factor

Based on the above presented considerations, the self-tuning algorithm of the control penalty
factor (ρ) considers two possible switching values ρ0 and ρ1. The question that needs to be answered
is: what are the conditions to switch ρ from one value to another? Thus, two switching conditions are
required to be set:

- The condition for switching from the low value ρ0 to the high value ρ1;
- The return condition, for switching from the high value ρ1 to the low value ρ0.

Also, related to these two possible values of ρ, another question that requires an answer is: which
of the two values of ρ is chosen as a fixed value for the steady-state regime (undisturbed regime)?
The answer is the lower value ρ0, which provides the best performance for small disturbances, while
stabilizing the control system. Thus, the switch to the high value ρ1 triggers only when a major
disturbance occurs.
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Starting with the assumption that the disturbance is not measurable, the only variable indicating
their random action is the controlled output error. In other words, the activation of this switching
mechanism is triggered based on the output error value. Obviously, a high error indicates a stronger
disturbance and a lower error indicates a weaker disturbance. In this last case, a low value of ρ (ρ0)
can provide both stabilization and good performance of the control system. If the output error exceeds
a certain set threshold, the system stabilization requires a higher value of ρ (ρ1), in order to strongly
penalize the excessive control. However, by keeping this high value (ρ1) set a too long time period can
excessively penalize the control, which becomes too weak to ensure the control system stability [16,17].
Therefore, both a too long-time strong control and a too weak control can destabilize the control
system if it is severely disturbed. The compromise solution is to set a small constant value for ρ (ρ0) in
steady-state regime, respectively, when the error exceeds a certain threshold, to switch to a high value
(ρ1) for a limited time period. This limited time period should last until the output error drops below
another certain set threshold, thus avoiding the destabilization of the control system. Obviously, it
becomes imperative to find and set these switching thresholds of the control penalty factor between
these two imposed values (ρ0, ρ1).

A viable solution requires a sudden (sharp) change of ρ to the maximum level ρ = 0.1 (at the
critical time moment when a high disturbance occurs) for an efficient control penalty and, implicitly, for
a control system stabilization. A logic algorithm based on a sharp hysteresis loop (with two switching
levels) can implement such a tuning strategy (see Figure 1). Such a simple and efficient algorithm
requires finding the appropriate level values ρ0 and ρ1 and, obviously, the error thresholds e1 and e2
where the control penalty factor (ρ) switches between these two levels (ρ0, ρ1). One of the goals of
the case studies presented below is to find these proper parameters values (levels ρ0/ ρ1; thresholds
e1/e2—see Figure 1) in order to implement, test and validate the proposed control strategy, integrating
a tuning algorithm based on a sharp hysteresis loop.
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Taking into consideration such proposed real-time self-tuning mechanism of the control penalty
factor, the general structure of the minimum variance control system is presented in Figure 2. It can be
seen in this figure that the controlled output error (terminal voltage error) is the input of the hysteresis
block, which is the core of the proposed self-tuning algorithm. In this context, the “normal” state of
the system is the stationary regime (when the process is not disturbed or is disturbed only by a low
stochastic noise) or a regime in which the system is weakly disturbed by small external disturbances.
In both cases, the proposed adjustment mechanism for tuning the control penalty factor is not active,
the control penalization being set to lowest value of (ρ = ρ0 = 0.0001).
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Based on simulations results analysis, the calibration procedure that was followed to determine
the two thresholds of the error when the control penalty factor (ρ) switches between the two levels (ρ0,
ρ1), involves the following steps:

1. The minimum variance control system is started (without enabling the proposed self-tuning
switching mechanism), setting a constant maximum penalty of control (ρ = 0.1) and considering
the maximum allowed value of the disturbance for which it remains stable and the control
performance is good;

2. The maximum value of the system output error (the overshoot) is determined to be used as an
initial benchmark for setting the high switching threshold e2;

3. The value of the high switching threshold e2 is set about 10% lower than the maximum value of
the output error previously determined.

4. Also, as an initial benchmark, the value for the low threshold e1 is set with an order of magnitude
larger than the error produced in stationary regime by the stochastic noise that affects the process
(needed to ensure the numerical stability of the parameters estimator).

5. Keeping the same disturbance, the control system is restarted, enabling the proposed self-tuning
switching mechanism, initially calibrated with the values e1 and e2 previously established
(analyzing the control system stability and its performances: the settling time, the transient
regime duration).

6. Small adjustments around these values e1 and e2 can be performed to obtain better results based
on the observations that fine changes of the high switching threshold e2 can affect the control
stability and fine changes in the low switching threshold e1 can affect the control performance
(the settling time or the duration of the transient oscillating regime).

7. Finally, larger perturbations are applied and step 6 is resumed, fine adjustments of these two
thresholds (e1, e2) being carried out successively until the result is considered appropriate (stable
system and good control performance).

8. The procedure stops when, for a very high disturbance, an adequate set (e1, e2) can no longer be
determined to ensure the stability of the system (this disturbance being considered the maximum
limit for the control system operating range).

Comparing the solution described by the authors in [17] with the one presented in this paper,
there are some major differences. Thus, when a high measurable disturbance occurs, the algorithm
presented in [17] involves one single rectangular pulse variation of the control penalty factor, with
a fixed duration (previously well-established) and the method can be applied only for the case of
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measurable disturbances. The presented strategy can involve multiple rectangular pulse changes of the
control penalty factor (with a variable duration based on a logic algorithm using a sharp hysteresis loop)
and (additionally) can be applied also for unmeasurable disturbances (for example, the unpredictable
load/unload regimes), requiring only a measurement of the controlled output. Also, in [10], the authors
describe some classical minimum variance control systems (with a constant penalty control factor),
analyzing the control performance for different orders of the induction generator linearized model
(used only as a starting point to design the control law). A starting procedure of a minimum variance
control system, involving successively different values of the control penalty factor, is presented in [16].
A relatively similar solution, proposing a self-tuning algorithm for controller output singletons of an
adaptive fuzzy PI control system, has been implemented and the results were published by the authors
in [7], noting comparably good performances. The theoretical aspects and the full calculus regarding
the analytical determination of the minimum-variance control law were described in extenso in [11,12].
The performances of these referred control structures are comparable, each of them having its own
functional and applicability particularities.

4. Case Studies to Validate the Self-Tuning Algorithm

For the considered process, an induction generator integrated into a wind energy conversion
system, high variations of the wind speed (produced by wind gusts), over a certain limit, may require
the disengagement of the energy conversion system to protect it (for example, by furling the wind
turbine). Also, a strong disturbance produced by a high electrical load/unload can activate the
protections that disengage the system. Any solution that can increase the allowed value range of
disturbances extends the functionality domain of the controlled process. Therefore, maintaining the
functional capabilities of the control system (energy production, energy supply to consumers), even
under harsher conditions caused by highly disturbances, is the main goal of the proposed strategy.

Any disturbance that acts on the system causes a process output error (this being the main
indicator that signals a disturbance). For this reason, the next tests will target both the load/unload
regime (when the disturbance is not directly measurable) and the case of a mechanical torque variation
(although this could be also directly measured, but an output error occurs anyway). The mechanical
torque variation is an effect of wind speed variation, considering the generator integrated into a wind
energy conversion system. The load/unload regime means a variation of the electrical admittance at
generator terminal, as effect of consumers connecting/disconnecting.

The mechanical torque Tm (its variation being seen as a disturbance) is a parameter referred in
the equation describing the mechanical motion within the induction generator mathematical model.
Also, the connection between the induction generator and the power system includes a local electrical
consumer connected at generator terminals, so the equations describing the terminal voltage projections
of the stator load winding d-q axis integrates the consumer electrical admittance, also considered as an
internal parameter whose variation disturbs the system. The complete model of the dual fed induction
generator (DFIG) connected to a power system (PS) through a long transmission line is presented in the
Appendix A [10]. For different values of the control penalty factor (ρ), the control system performance
and the stability will be analyzed in order to find the maximum allowed perturbation for which the
process can still operate.

The first study case takes into consideration a mechanical torque variation as an external
perturbation produced by wind gusts.

(a) Mechanical torque variation (∆Tm)
For several tuning values of ρ, Table 1 concisely shows the results of performed tests, highlighting

the control performance.
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Table 1. The case studies—results for maximum allowed values of mechanical torque variation (∆Tm).

ρ ∆Tm Control Performance

ρ = 0.0001 (constant) ∆Tm ≤ 16% Stable system and very good control performances
(settling time: 0.2 s)

ρ = 0.001 (constant) ∆Tm ≤ 16% Stable system and good control performances
(settling time: 0.5 s)

ρ = 0.01 (constant) ∆Tm ≤ 16% Stable system and satisfactory control performances
(settling time: over 1 s)

ρ = 0.1 (constant) ∆Tm ≤ 18% Stable system but poor control performances
(settling time: over 5 s)

ρ ∈ {0.0001, 0.1} (variable) ∆Tm ≤ 24% Stable system and very good control performances
(settling time: under 0.5 s)

For a set of smaller values of the control penalty factor (ρ = 0.0001, ρ = 0.001, ρ = 0.01), the
controlled output is depicted in Figure 3a–c. For all these three values of the control penalty factor, the
maximum disturbance for which the control system remains stable is ∆Tm = 16%. A higher variation
of the mechanical torque, over this threshold (∆Tm > 16%), leads to an unstable system due to the
huge values of a weakly penalized control. Also, a degradation of the control performance can be
noticed with the increase of the control penalty. Thus, the settling time successively increases and
the transient regime is longer (see Table 1). The best performance is obtained for ρ = 0.0001 (settling
time = 0.2 s, overshoot approx. 4 V), while for ρ = 0.001, the settling time is over 0.5 s, respectively,
and for ρ = 0.01, it is over 1 sec.
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voltage)—constant ρ = 0.01 (∆Tm = 16%); (d) Controlled output (terminal voltage)—constant ρ = 0.1
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The results are changed by considering an increase by an order of the control penalty factor
(ρ = 0.1, see Figure 3d–f). For the same maximum allowed disturbance as in the previous cases
(∆Tm = 16%), the control performance is weaker, but the system remains stable (see Figure 3d).
Although a significant attenuation of the oscillations can be noticed, the settling time exceeds 2 s,
and therefore the control system responds slower. However, in this case, for higher disturbances
(∆Tm = 18%, ∆Tm = 19%), the major change consists in the fact that the system remains stable (see
Figure 3e,f). This stabilization was not possible for the previous lower values of the control penalty.
For ∆Tm = 18%, the settling time increases over 5 seconds and the control system response could
still be considered acceptable (Figure 3e). For ∆Tm = 19% the control system remains stable, but an
unacceptably long transient regime (over 6 s) and a too long settling time (over 10 s) can be noticed
(Figure 3f). Similar results are obtained for a disturbance over this value. The conclusion is that a
high value of ρ can stabilize the control system, even when it is highly disturbed, but the control
performance is far too weak to be considered acceptable (too long settling time and oscillating regime).
It should be noted that in all performed tests, the overshoot is relatively constant (slightly over 4
volts) due to the constraint imposed by the connection to a power system (which tries to maintain the
generator terminal voltage at the constant value of power system).

Therefore, a comparative analysis of the extreme cases of control penalty setting (ρ = 0.0001 and
ρ = 0.1) leads to the following conclusions (which are the starting point for the design of the proposed
self-tuning algorithm):

- A small value of ρ ensures a very good performance, but only for small disturbances;
- A high value of ρ ensures a system stabilization even for higher disturbances, but with the cost of

an unacceptable control performance degradation.

Taking into consideration the previous results, the proposed tuning strategy uses the following
rules by implementing an algorithm based on a sharp hysteresis curve (Figure 1):

- In the stationary regime, when the output error is under a certain threshold e2, the control penalty
factor ρ is set to a low value (ρ0 = 0.0001) that ensures the best control performance.

- When a high disturbance occurs and, as a consequence, the output error passes over the threshold
e2 (see Figure 1), the control penalty factor is set to a high value ρ1 = 0.1, in order to stabilize the
system through a strong penalty of control. Such a high value of ρ can ensure the stability of the
control system, even when it is highly disturbed.
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- When the output error falls below another fixed threshold e1 (so, after a limited time period), the
control penalty factor returns to the low value ρ0 = 0.0001, decreasing the control penalty and
allowing good control performances, especially a small settling time. Therefore, this constant low
value of ρ is considered as a stationary regime value, being increased only temporarily when a
high disturbance acts on the system and, as a consequence, whenever the controlled output error
exceeds a certain threshold.

Based on the previous consideration, the next case study will test the proposed tuning strategy
implementing the previous rules by using a bipositional switch with hysteresis (see Figures 1 and 2).
The following parameters must be set: the error values for the switching thresholds (e1 and e2) and
the switching levels of the control penalty factor (ρ0 and ρ1). In this case, the values of these tuning
parameters (determined by multiple tests and ensuring the best results) are: e1 = 0.5, e2 = 3.5,
ρ0 = 0.0001 and ρ1 = 0.1.

The first test considers a higher variation of the mechanical torque ∆Tm = 17%, for which none of
the constant values of ρ (see previous cases) can ensure the stability of the control system. The control
system response (the terminal voltage) is shown in Figure 4a. Very good performance can be noticed
(comparable to those obtained for ρ0 = 0.0001—see Figure 3a): small settling time (under 0.5 s), short
oscillating transient regime (0.2 s.). Also, the control variance is sufficiently penalized (the control
values being feasible—see Figure 4b) and the estimates are numerically stable (Figure 4d). For such
a higher disturbance (∆Tm = 17%), the proposed tuning mechanism is automatically triggered (the
output error exceeding the threshold e2—see Figure 1). As a consequence, an adequate adjustment of
the control penalty factor (ρ) is performed (Figure 4c). At first (for a high output error), a high value
ρ2 = 0.1 is set, with the goal to strongly penalize the control (Figure 4b), thus avoiding the system
destabilization. When the output error falls below the certain threshold (e1—see Figure 1), the control
penalty factor returns to the small stationary value ρ1, allowing a reasonable increase of the control
to ensure a reduced settling time, a short oscillating transient regime and, thus, the control system
performances are very good (Figure 4a).
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The maximum value of the disturbance for which the enhanced control system operates stable is
∆Tm = 24% (see Figure 5a). The controlled output has a very good settling time and a short transient
regime (under 0.5 s). Also, the tuning mechanism of the control penalty factor is activated for a longer
period of time, as in the previous case (Figure 5b). Over this disturbance value (∆Tm ≥ 25%), the
control system becomes unstable.Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 21 
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Figure 5. (a) Controlled output (terminal voltage)—constant ρ ∈ {0.0001, 0.1} (∆Tm = 24%); (b) Variable
setting of control penalty factor.

In conclusion, the proposed control strategy allows an extension of the values’ range of disturbance
(mechanical torque) up to 50%, from ∆Tm = 16% (the maximum allowable disturbance for which a
small constant ρ = 0.0001 still provides good control performance and system stability—see Figure 3a)
up to ∆Tm = 24% (the maximum allowable disturbance for which, only by using the proposed tuning
mechanism with a variable control penalty factor ρ ∈ {0.0001, 0.1}, the control system remains stable
and has good control performances– see Figure 5a).

Following this, a similar suite of tests is carried out for the second type of disturbance (the variation
of the electrical resistance at the generator terminals, caused by an electrical load/unload).

(b) Electrical load (electrical resistance variation ∆Tm)
As in the previous case (mechanical torque variation), the next performed tests consider the same

four values of the control penalty factor. Figure 6a–d present the obtained results for each test and the
control performances are concisely shown in Table 2.

Table 2. The case studies—results for maximum allowed values of electrical load variation (∆R).

ρ ∆R Control Performance

ρ = 0.0001 (constant) ∆R ≤ 7% Stable system and very good control performances
(settling time: 0.2 s.)

ρ = 0.001 (constant) ∆R ≤ 7% Stable system and very good control performances
(settling time: 0.2 s.)

ρ = 0.01 (constant) ∆R ≤ 7% Stable system and very good control performances
(settling time: 0.2.)

ρ = 0.1 (constant) ∆R ≤ 8% Stable system but poor control performances
(settling time: under 2 s.)

ρ ∈ {0.0001, 0.1} (variable) ∆R ≤ 11% Stable system and very good control performances
(settling time: 0.5 s.)
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Also, for this disturbance (electrical load) and for small control penalizations (ρ ∈

{0.0001, 0.001, 0.01}), it can be noticed that the maximum allowed disturbance (electrical resistive
variation for which the system still remains stable) is the same in all three cases: ∆R = 7% (Figure 6a–c).
The best control performance is obtained for a small control penalization (ρ = 0.0001 —see Figure 6a).
Similar good results are also provided by setting ρ = 0.001 or ρ = 0.001 (Figure 6b,c). For a higher
value ρ = 0.1 and for a slightly increased disturbance ∆R = 8% (Figure 6d), the system slowly
stabilizes but the control performances are poor (long oscillating regime, long settling time—5 s).
Although the system is at last stabilized, the control performance is too weak to be acceptable. Over
this value of the disturbance (∆R > 8%), the system becomes unstable due to the excessive control (too
weakly penalized).

Therefore, also for this disturbance (load variation), the conclusion is similar to the one reached
for the case of a mechanical torque variation:

- A small ρ ensures very good performances, but cannot stabilize a highly disturbed system;
- A high ρ ensures the system stabilization for a higher disturbance, but with the price of

an unacceptable degradation of control performance (long oscillating transient regime, long
settling time).

Using the proposed tuning mechanism, similar tests were performed for load regimes (generated
by connecting/disconnecting an electrical consumer at generator terminals). Thus, taking into
consideration a higher electrical load (∆R = 11%), the results are depicted in Figure 7a–d. It is
highlighted that for a constant smaller ρ, the maximum value of the disturbance which allowed
stabilization of the control system was ∆R = 7%.
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Figure 7. (a) Controlled output (terminal voltage)—electrical load (∆R = 11%)—ρ ∈ {0.0001, 0.1};
(b) Controller output (excitation voltage)—(∆R = 11%), ρ ∈ {0.0001, 0.1}); (c) Variable setting of control
penalty factor—ρ ∈ {0.0001, 0.1} (∆R = 11%); (d) Parameter estimates.

For this maximum resistive load ∆R = 11%, the proposed control strategy is still efficient,
stabilizing the control system (Figure 7a). A short oscillating regime and a good settling time (0.5 s) can
be noticed for the controlled output (Figure 7a), the tuning mechanism being triggered for a limited
time (Figure 7c) in order to penalize the control (Figure 7b) and thus to stabilize the system.

Therefore, for a load regime, the new control strategy covers an extended value range of
disturbance (electrical resistance variation) up to 50%, from ∆R = 7% (the maximum allowable
load/unload for which a small constant ρ = 0.0001 still provides good control performance and system
stabilization—see Figure 6a) up to ∆R = 11% (the maximum load for which the proposed tuning
mechanism ρ ∈ {0.0001, 0.1} can ensure good performance and can stabilize the system—see Figure 7a).

By analyzing the results of both performed cases (mechanical torque variation and electrical
resistive load), it can be concluded that ρ = 0.0001 is the single constant value of the control
penalty factor that simultaneously ensures the best control performance and the control system
stability. Unfortunately, for such a constant set value, the maximum variations of the two considered
disturbances (for which the system can still be stabilized) are ∆Tm = 16% and ∆R = 7%. These two
values are considered as benchmarks for assessing the effectiveness of the proposed control strategy,
(in terms of system stabilization for a wider value range of disturbances). For larger disturbances, the
system can operate stably only using the proposed solution.

Overall, the final conclusion for both types of disturbance (mechanical torque variation and
electrical load/unload) is that the proposed control strategy extends the variation range of disturbances
by over 50%. For a mechanical torque variation (which can be measured), the solution proposed in [17]
offers a better result, allowing a maximum variation of mechanical torque up to 33%, compared with
24% in this case. As mentioned, without any tuning strategy of the control penalty (so for a constant
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penalty), the maximum allowed variation is only 16%. However, the main advantage of the solution
proposed in this paper is that it can also treat the case of unmeasurable perturbation (such as electrical
load/unload).

Two additionally case studies are conducted to analyze the performances of the proposed control
strategy under action of strong random disturbances, in order to prove the stability and robustness of
such a control system.

In the first case (Figure 8), a long sequence of random variations of mechanical torque is considered
acting on the system. The controlled output (terminal voltage (Figure 8a)) is stable, proving the control
system robustness and good performances of the proposed strategy. Both small and large disturbance
can be noticed in Figure 8b, and Figure 8c shows the activation cycle of the tuning mechanism that sets
the control penalty factor.
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Similarly, for the second case (Figure 9), a long sequence of random electrical load/unload is
considered as acting on the controlled process (Figure 9b). A stable system output can be noticed
in Figure 9a under control of the proposed tuning mechanism which adjusts the penalty factor ρ
(Figure 9c). Again, the performed test proves the stability and robustness of the control system, also for
this type of disturbance. Thus, even under stress conditions produced by various random disturbances,
the performed case studies demonstrate the validity of the proposed self-tuning mechanism of control
penalty factor, improving the performances of such a minimum-variance controller by significantly
extending the value range of disturbances (acting on the controlled process) for which the control
system remains stable and operational.
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A comparative study between the proposed self-tuning control strategy (involving a variable
control penalty), a classical PID controller (tuned for a fixed operating point), an adaptive PID control
system and, of course, the classical minimum-variance control law (with a constant control penalty)
was conducted in the following.

First, we consider a classical PID controller. As already mentioned in Chapter 1, an induction
generator (integrated into a wind energy conversion system) is a nonlinear process, described by a
seventh order nonlinear model (Park’s equations) [20–24]. The control of a nonlinear plants using a
linear controller is a difficult task (and a classical PID controller is a linear controller). Although a PID
controller certainly has advantages for linear systems, this controller is not suitable for high-order
nonlinear systems [17,33,34]. Also, the mechanical torque variation (∆Tm) is a measurable external
disturbance, which does not directly act on the controlled output (terminal voltage), but rather as
an internal perturbation caused by a variation of a process model parameter (Tm-see Appendix A).
Therefore, the variation of the mechanical torque (considered as a Park’s model parameter) leads to a
change of the operating point along the nonlinear characteristic of the process. For linear plants, there
are many tuning methods for a PID controller (Kessler, Zigler-Nichols, Cohen-Coon, etc.) described by
the technical literature [35]. However, an accurate tuning of a PID controller becomes very difficult for
a highly nonlinear system. For this case, the tuning was performed through empirical attempts.

The next test scenario considers two study cases for a mechanical torque variation: the case
of a small perturbation ∆Tm = 10% (Figure 10a,b) and the case of a high perturbation ∆Tm = 24%
(Figure 11a–d), as the maximum disturbance allowed only by using the proposed self-tuning strategy
of control penalty factor (ρ).
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Figure 10. (a) Controlled output—minimum variance controller ((ρ = 0.1, ∆Tm = 10%), small
disturbance); (b) Controlled output—classical PID controller ((∆Tm = 10%), small disturbance).

For a small perturbation, by comparing the results obtained by using a self-tuning minimum
variance controller with constant control penalty (Figure 10a) and a classical PID controller (Figure 10b),
there can be noticed relatively comparable performances. The overshoot is smaller for the PID control
system, while the settling time is smaller for the classical minimum variance control. It is mentioned
that the same response (see Figure 10a) is obtained also by using the new proposed self-tuning
mechanism, which does not activate an increase of the control penalty factor for a small disturbance,
so ρ = 0.0001. Therefore, for small disturbances, the control performances are comparable for all these
analyzed control systems.
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Figure 11. (a) Controlled output—classical minimum variance controller ((ρ = 0.1, ∆Tm = 24%), high
disturbance)—unstable system; (b) Controlled output—the proposed minimum variance controller
(ρ ∈ {0.0001, 0.1, ∆Tm = 24% —high disturbance); (c) Controlled output—classical PID controller
(∆Tm = 24% - high disturbance); (d) Controlled output—adaptive PID controller retuned (∆Tm = 24% -
high disturbance).

By considering a high disturbance, as we already mentioned, even for a high control penalty factor
(ρ = 0.1), the classical minimum variance control system (with constant control penalty) stabilizes the
system only for a maximum disturbance ∆Tm = 19% (see Figure 3f) and cannot stabilize the system for
a higher disturbance Tm = 24% (Figure 11a). Thus, for this situation, the proposed self-tuning control
penalty strategy must be taken into consideration (Figure 11b). In this case, for the same already tuned
parameters of the PID controller, the change of the operating point leads to poor performances of
the PID control (see comparatively the settling times and the overshoots in Figure 11b,c). Therefore,
a retuning of the PID controller is required (and this task is not easy at all) and a new set of PID
parameters were tuned corresponding to this new functioning point. The result depicted in Figure 11d
proves that a proper retuning can considerably improve the PID control performance. Although the
control system response presented in Figure 11d is relatively good, by comparison with the one from
Figure 11b, it can be noticed that the settling time is much reduced for the case of the proposed solution.
As a conclusion, it can be stated that the performance of a classical PID controller is lower than that of
the proposed self-tuning minimum variance controller (with variable control penalty factor), due to the
nonlinearity of the controlled process. However, a self-adapting PID controller can be an alternative
solution. Even so, a self-tuning minimum variance controller has the advantage of using a reliable and
well-known parameter estimation method (Recursive Least Squares) that can automatically solve the
issue of self-tuning and can adapt the solution to any other process. Similar tests were performed also
for the case of a load/unload disturbance with the same conclusion.

The conclusion is that the proposed adaptive minimum-variance control system (with variable
control penalty factor) ensures good performances, comparable to those of other adaptive control
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systems and far superior to a non-adaptive control system (tuned for a fixed operating point). The
proposed solution can improve the classical minimum-variance control strategy, allowing the extension
of the stability and operability range of a highly disturbed process (in this case due to mechanical
torque variation, load/unload), while ensuring good performances, comparable to other adaptive
nonlinear control systems. The main advantage of the proposed solution consists in its flexibility and
easy adaptation to other considered process. As a future work, a practical validation of the proposed
control strategy is taken into consideration and the obtained experimental results can be the subject of
a new paper.

5. Conclusions

An improved structure of a minimum-variance controller is proposed in this paper, by designing
a self-tuning mechanism of the control penalty factor (as a contribution), in order to extend the allowed
value range of disturbances, and therefore, implicitly to extend the operating range of the control
system. The value of this parameter (ρ) decisively influences the minimum variance control system
performance. As a novelty, unlike the classic minimum-variance control, which involves a constant
value of ρ, the proposed solution supposes a real-time tuning of this controller parameter, based
on system output error measurement. The tuning mechanism implements a bipositional switching
strategy that considers a sharp hysteresis loop to adjust ρ. Therefore, when the system output error
exceeds a certain threshold, ρ is set to a higher value, improving the system robustness against
disturbances. However, because the best control performances are obtained for a small value of ρ,
this high-level penalty of control is maintained only at the beginning of the transient regime that
occurs due to external disturbances. When the output error drops below a certain threshold, the
proposed mechanism resets the control penalty factor to the previous small value (constant in the
steady state regime), which ensures the best control system performance. Such a tuning strategy is
an efficient solution to stabilize a highly disturbed system, while ensuring good control performance.
The performed studies proved that a constant value of ρ (small or high) allows a limited operating
range, the control system being destabilized by disturbances that exceed certain levels. By using this
strategy (involving a variable control penalty factor), the process operating range can be extended and
the control system can withstand higher disturbances in stable operating conditions.

The proposed strategy was validated for the case of an induction generator integrated into a wind
energy conversion system and disturbed by two major external perturbations: mechanical torque
variations and terminal electrical load/unload. Operating under the action of strong disturbances
(wind gusts, electrical load variations), the extension of safe operating range (thus avoiding the system
disengagement) is an important goal of such an energy conversion system. The results of the performed
tests are relevant, proving the possibility of a stable system operating regime, even under the action of
higher disturbances with over 50% above the limit values allowed if ρ would be constant. Although
the tuning strategy was validated for the particular case of an induction generator, the control solution
could be used for other highly disturbed processes, especially when the perturbations are difficult (or
even impossible) to measure.
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Appendix A

Model of the dual fed induction generator (DFIG) connected to a power system (PS) through a
long transmission line [10]

R1id1 + Ld1
d
dt
(id1) + Ld21

d
dt
(id2) + L1h

d
dt
(id3) −ω1

(
Lq1iq1 + Lq21iq2 + L1hiq3

)
− uex = 0 (A1)

R1iq1 + Lq1
d
dt

(
iq1

)
+ Lq21

d
dt

(
iq2

)
+ L1h

d
dt
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iq3

)
+ω1(Ld1id1 + Ld21id2 + L1hid3) = 0 (A2)
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d
dt
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d
dt
(id2) − L1h

d
dt
(id3) +ω1

(
Lq12iq1 + Lq2iq2 + L1hiq3

)
= 0 (A3)
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dt
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dt

(
iq2

)
− L1h

d
dt
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−ω1(Ld12id1 + Ld2id2 + L1hid3) = 0 (A4)

R3id3 + L1h
d
dt
(id1) + L1h

d
dt
(id2) + Ld3

d
dt
(id3) − (ω1 −ω)

(
L1hiq1 + L1hiq2 + Lq3iq3

)
= 0 (A5)

R3iq3 + L1h
d
dt

(
iq1

)
+ L1h

d
dt

(
iq2

)
+ Lq3

d
dt

(
iq3

)
+ (ω1 −ω)(L1hid1 + L1hid2 + Ld3id3) = 0 (A6)

dω
dt

=
(
p · L1h ·

(
iq1 · id3 + id3 · iq2 − id1 · iq3 − iq3 · id2

)
+ Tm

)
· p/J (A7)

id = G1Vd − B1Vq −G2Vb sin(δ) + B2Vb cos(δ) (A8)

iq = G1Vq + B1Vd −G2Vb cos(δ) − B2Vb sin(δ) (A9)

id = id2 and iq = iq2 (A10)

Vd =
1

B2
1 + G2

1

[
idG1 + iqB1 + (G1G2 + B1B2)Vb sin(δ) + (B1G2 − B2G1)Vb cos(δ)

]
(A11)
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[
iqG1 − idB1 + (B1G2 − B2G1)Vb sin(δ) + (G1G2 + B1B2)Vb cos(δ)

]
(A12)
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G2 =
RL

R2
L + X2

L

= constant (A16)

B2 =
XL

R2
L + X2

L

= constant (A17)

The following notations were used in equations: ω is the rotation speed; ω1 is the synchronous
speed; Tm is the mechanical torque; id1, id2, id3, iq1, iq2, iq3 are the currents projections on d-q axis, for
each of the three windings: stator excitation, stator load and rotor; J is the inertia moment; uex is the
excitation voltage; R1 is the stator excitation winding resistance; R2 is the stator load winding resistance;
R3 is the rotor winding resistance; Ld1, Lq1, are the d-q axis inductance projections of the stator excitation
winding; Ld2, Lq2 are the d-q axis inductance projections of the stator load winding; Ld3, Lq3 are the
d-q axis inductance projections of the rotor winding; Ld12, Ld21, Lq12, Lq21, L1h are the leakage/mutual
inductances; p is the number of pole pairs; Y1 = G1 + jB1 = YL +YC is the transmission line admittance
seen at the generator terminals (G1, B1, -conductance, susceptance)—see Figure A1; Y2 = G2 + jB2 is the
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transfer admittance between the generator and the power grid (G2, B2- conductance, susceptance)—see
Figure A1; RL,RC are the line and consumer resistances; XL, XC are the line and consumer reactances; id
and iq are the terminals current on d-q axis; Vd and Vq are voltage projections of stator load winding on

d-q axis (and also projections of Vt generator terminals voltage on d-q axis); Vt =
√

V2
d + V2

q is the the
generator terminal voltage (effective value).
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Figure A1. Induction generator with local electrical load (connected to a power system).

There is considered an experimental double fed induction machine (a prototype) with the following
main parameters (index N denoting rated values): PN = 1.5 [kW], UN = 230/400 [V], IN = 2.06/3.57 [A],
n0 = 1500 [rpm], cos φN = 0.776, sN = 5.79 %, p = 2 (number of pair poles), Ld21 = Ld12 = Lq21 = Lq12 =

0.333 [H], L1h = 0.318 [H], Lq1 = 0.334 [H], Lq2 = 0.334 [H], Lq1 = 0.331 [H], Ld1 = 0.334 [H], Ld2 = 0.334
[H], Ld3 = 0.334 [H], R1 =16 [Ω], R2 = 16 [Ω], R3 = 4 [Ω], J = 0.00415 [kg·m2]. The stator windings w1

and w3 are placed in the same stator cuts; the w2 winding is spatially lagged with 90 electrical degrees
in relation with the w1 winding.

The Equations (1)–(17) (practically, a seventh order nonlinear model) completely describe the
behavior of interconnected systems (induction generator, long transmission line, local electrical
consumer and power system). The model input is the excitation voltage uex and the generator terminals
voltage Vt is the process output. The disturbances acting on the controlled process are the mechanical
torque Tm (active power load) and the electrical consumer resistance Rc, affecting the admittance
seen at the generator terminals and allowing simulation of load/unload regimes by connecting or
disconnecting local consumers.
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