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Abstract: The leave-one-out cross validation (LOO-CV), which is a model-independent evaluate
method, cannot always select the best of several models when the sample size is small. We modify
the LOO-CV method by moving a validation point around random normal distributions—rather than
leaving it out—naming it the move-one-away cross validation (MOA-CV), which is a model-dependent
method. The key point of this method is to improve the accuracy rate of model selection that is
unreliable in LOO-CV without enough samples. Errors from LOO-CV and MOA-CV, i.e., LOO-CVerror
and MOA-CVerror, respectively, are employed to select the best one of four typical surrogate models
through four standard mathematical functions and one engineering problem. The coefficient of
determination (R-square, R2) is used to be a calibration of MOA-CVerror and LOO-CVerror. Results
show that: (i) in terms of selecting the best models, MOA-CV and LOO-CV become better as sample
size increases; (ii) MOA-CV has a better performance in selecting best models than LOO-CV; (iii) in
the engineering problem, both the MOA-CV and LOO-CV can choose the worst models, and in most
cases, MOA-CV has a higher probability to select the best model than LOO-CV.

Keywords: cross validation; model selection; surrogate model

1. Introduction

Cross validation (CV) methods were proposed for model selection and performance evaluation
without generating additional testing points and have been widely used in various engineering fields.
Stone [1] applied the cross-validatory choice and assessment to prediction of a multinomial indicator.
Stone [2] emphasized the pragmatic character of cross-validatory statistical methods and concluded
some standards approaches to the assessment of choice of statistical procedures. Cudeck et al. [3]
proposed a cross validation procedure and explored its properties. Picard and Cook [4] used the
CV method to assess the predictive ability of regression models. Dai [5] developed a competitive
ensemble pruning approach based on CV in ensemble system. Arlot et al. [6] applied the CV method
and model selection in noise detection and they proposed a new change-point detection procedures for
the heteroscedastic signal.

The CV methods are mainly divided into two types [7], i.e., leave-one-out CV (LOO-CV) and
bootstrap, in which LOO-CV is the same as k-fold CV (K-CV) and bootstrap is similar to Monte Carlo
CV (MCCV) sometimes. Xu and Liang [8] proposed a Monte Carlo CV (MCCV) method which is an
asymptotically consistent method to select the dimension of calibration model in chemistry. A few
years later, Xu et al. [9] developed the MCCV method, named as a corrected MCCV (CMCCV) which
can assess accurately the prediction performance of the selected model. Although k-fold CV method
has been widely used, k distinct samples have inherent correlations among them. Roberts et al. [10]
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indicated that dependence structures in data persist as dependence structures in model residuals,
violating the assumption of independence. This is one of the reasons for poor performance of CV.
They recommended that block CV (BCV) be used wherever dependence structures exist in a dataset.
Airola et al. [11] considered that it is difficult to estimate the reliability of the classification performance
of inferred predictive models with small data sets, and then they proposed a Leave-pair-out CV
(LPO-CV) to assess the performance in this case. Kale et al. [12] defined a new measure of algorithm
stability to analyze the reduction in variance of the gap between the CV estimate and the true error
rate. For the K-CV method it is unreasonable to choose the number of subsets by empirical methods.
Anguita et al. [13] developed an approach for adjusting the number of subsets in a data-dependent way,
and then they can estimate misclassification probability of the chosen model reliably and rigorously.
Yu and Feng [14] modified the CV method to select the penalty parameter of Lasso penalized linear
regression models in high-dimensional settings. Jung and Hu [15] proposed a new K-CV approach;
the key point of this method is to select a candidate ‘optimal’ model from each hold-out fold and
average the K candidate ‘optimal’ models to obtain the ultimate model. Finally, it is worth noting
that the computational cost of LOO-CV is very high due to multiple times of learner training. For the
calculation efficiency of LOO-CV, Liu et al. [16] developed a fast CV based on the Bouligand influence
function (BIF) for kernel-based algorithms.

The CV method has also been widely used in surrogate techniques for fitting multiple surrogates
and choosing one, based on errors evaluated by LOO-CV method (LOO-CVerror). Song et al. [17] used
the LOO-CV to pick the best surrogate and eliminate worse ones when constructs a hybrid surrogate
model by combining several typical single surrogate models. Xu et al. [18] proposed an adaptive
sampling strategy, named CV-Voronoi method, in which the Voronoi diagram is used to partition the
design space and CV is employed to estimate the error behavior of each partition. Viana et al. [19]
investigated systematically whether and how errors generated by CV helped to obtain the best predictor
among multiple surrogates. They concluded that CV method can filter out inaccurate surrogates well
and may identify the best surrogate if sample points which are used to build surrogate models are
enough. Later Zhang and Yang [20] concluded how CV is applied to consistently choose the best
method and addressed several seemingly common misconceptions on CV, such as better estimation of
prediction error by CV does not mean better model selection.

In previous work, we have proposed a hybrid surrogate model, named the extended hybrid
surrogate model (E-AHF) [17]. In the process of constructing the E-AHF model, the LOO-CV was used
to select the best surrogate model and filter out worse ones. The best surrogate model is considered as
the benchmark model for others; worse ones are removed, finally the rest surrogate models are saved
to build the final surrogate library. In the E-AHF model, the key step is to construct the library of
surrogate models and determine the best surrogate. Therefore, the criterion for modeling rank, i.e., the
LOO-CV, is significant to E-AHF. However, there still exists a problem: the LOO-CV method cannot
always filter out inaccurate models exactly and select accurately the best one without enough sample
points. In the LOO-CV method, the sample points are divided into two parts, i.e., training points and
one validation point. We modified the LOO-CV by moving a validation point around random normal
distributions rather than leaving it out, named move-one-away cross validation (MOA-CV).

In this paper, four surrogate techniques are used to construct models; errors generated by MOA-CV
and LOO-CV methods, i.e., MOA-CVerror and LOO-CVerror, respectively, were used to select the
best model from those four surrogate models through four standard mathematical functions and
one engineering problems. A higher MOA-CVerror/LOO-CVerror indicates worse performance of
surrogate models. However, how can we know exactly which best model is the true best model? Hence,
we used the coefficient of determination (R-square, R2) which is reliable to evaluate the accuracy of
a model to be a calibration of MOA-CV and LOO-CV. Additionally, extra testing points need to be
generated randomly for R2. The accurate rate of selecting the best surrogate model is used to assess
and compare the performance of MOA-CV and LOO-CV. To explain the MOA-CV method clearly,
a 1-dimensional (1D) function was used to demonstrate the operation process first.
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The remaining of this paper is organized as follows. The LOO-CV method is briefly introduced in
Section 2, followed by the introduction of the MOA-CV method in Section 3. Results and discussions
through four standard mathematical functions and one engineering problem are conducted in Section 4.
Conclusions are presented in Section 5.

2. Introduction of LOO-CV

It has been proven that no single surrogate model always performs the best for all engineering
practice [21]. In the model building process of E-AHF, we first construct several single surrogate
models without any prior information about the true model and then use the LOO-CV method to select
the best model and filter out worse ones. For hybrid surrogate model, instead of randomly determining
library of surrogate models, a filtering process, e.g., the LOO-CV method, which is a common modeling
selection approach, could be performed first to eliminate poorly-performing individual surrogates and
select the best one. The basic idea of the LOO-CV method is to take one sample point from the data set
containing n sample points as the validation set, and then use the remaining n − 1 sample points as the
training set to build a model. Obtain the prediction error at the validation point and repeat this process
n times sequentially until all n sample points have been validated once. Finally, n prediction errors
are obtained, and the average value of n prediction errors is taken as the LOO-CVerror of the model
constructed from n sample points. The LOO-CVerror is shown in Equation (1).

LOO−CVerror =
1
n

n∑
j=1

(
y j

(
x j

)
− ŷ j(− j)

(
x j

))2

(1)

where LOO-CVerror means the error generated by LOO-CV, n is the number of training points, y j
(
x j

)
is the true response at x j and ŷ j(− j)

(
x j

)
stands for the prediction at x j, which is calculated using the

n − 1 training points except the jth training point (validation point). In general, the model with the
smallest LOO-CVerror is the most accurate, and vice versa.

However, it may occur some problems when using the LOO-CV method. LOO-CV cannot always
filter out inaccurate models well and select accurately the best one without enough samples in some
cases. We use four common surrogate models, i.e., polynomial regression surface (PRS) [22], radial
basis function with multiquadric kernel function (RBF-MQ) [23], radial basis function with thin plate
spline basis function (RBF-TPS) [23] and kriging (KRG) [24], to fit the true function. Details about
those four surrogate techniques see References [22–24]. In this work, we use MOA-CVerror and
LOO-CVerror to select the most accurate of those four surrogate models. R2 is considered as the
calibration criterion of MOA-CVerror and LOO-CVerror. That is, we assume that the results of R2 is
reliable, then compare the results of MOA-CVerror and LOO-CVerror with R2 to get the accurate rate of
MOA-CV and LOO-CV. A higher R2 means an accurate model. On the contrary, a lower MOA-CVerror
or LOO-CVerror indicates a better model.

Take a 1-dimensional (1D) function as an example to explain the problem occur for LOO-CV as
shown in Figure 1. Five sample points are generated (as black ball shows), and four surrogate models
are built based on five sample points. The true function is shown as the black line. R2 of the four models
are listed in Table 1. We can see that from R2 the most accurate model is RBF-TPS, RBF-MQ performs
the second, KRG performs the third and PRS performs the worst. However, from LOO-CVerror, the
best model is KRG, the second one is PRS, the third one is RBF-MQ and the last one is RBF-TPS. That is,
RBF-TPS is actually the most accurate model, however, in the construction of E-AHF, the step of using
LOO-CV method to filter worse surrogate models means will remove the RBF-TPS model from the
library of surrogate models and remain the PRS model which is the worst one.
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Figure 1. Comparison of different surrogate models.

Table 1. Rank of models by R2 and leave-one-out CV (LOO-CV).

Term PRS RBF-MQ RBF-TPS KRG

R2 0.32 0.83 0.85 0.80
Rank of R2 4 2 1 3

CVerror of LOO-CV 12.3 13.1 14.0 10.9
Rank of CV 2 3 4 1

3. The Proposed MOA-CV Method

3.1. The MOA-CV Method

Regarding the problem above, the move-one-away cross validation (MOA-CV) method is proposed.
The reason why the LOO-CV method cannot always select the best and the worst models may be that each
validation point, which is eliminated calculating the LOO-CVerror, is different in importance to different
surrogate techniques. That is, in some cases, a surrogate model constructed from the entire sample
point has better accuracy than another one, but the results are reversed when uses the LOO-CVerror
to assess the accuracy of models. Therefore, to preserve the information of validation points as
much as possible, rather than eliminating the validation point as the LOO-CV method, MOA-CVerror
of the proposed MOA-CV method are calculated by moving validation points around random
normal distributions of samples. Pick a set of sample points (x, y) =

{
(x1, y1), . . . ,

(
x j, y j

)
, . . . , (xn, yn)

}
,

and use the sample points to construct a surrogate model S0. Select the jth sample (xv, yv) =(
x j, y j

)
as the validation points, and the remaining n − 1 points as training points, i.e., (xtr, ytr) ={

(x1, y1), . . . ,
(
x j−1, y j−1

)
,
(
x j+1, y j+1

)
, . . . , (xn, yn)

}
. Move the validation point around a random normal

distribution with parameter µ = x j and σ = λdmin, where dmin is the minimum distance among
sampling points (x, y) and λ is set by hand, i.e., λ = 0.02. Then generate a virtual training point(
x↔ j, ŷ↔ j

)
, where ŷ↔ j means the prediction of model S0 at x↔ j. Then the training points can

be updated as
(
↔
x tr,

↔
y tr

)
=

{
(x1, y1), . . . ,

(
x j−1, y j−1

)
,
(
x↔ j, ŷ↔ j

)
,
(
x j+1, y j+1

)
, . . . , (xn, yn)

}
, and use the

virtual training set
(
↔
x tr,

↔
y tr

)
to build a surrogate model S1. The validation point is unchanged.

The main form of the MOA-CVerror is as follows:

MOA−CVerror =
1
n

n∑
j=1

(
y j

(
x j

)
− ŷ↔ j

(
x j

))2

(2)

where MOA-CVerror means the error generated by the MOA-CV method, ↔ j means moving the
validation point (xv, yv) =

(
x j, y j

)
to be a virtual training point

(
x↔ j, ŷ↔ j

)
, and ŷ↔ j

(
x j

)
denotes the
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prediction of S1 at x j. Similar to the LOO-CV method, the model with the smallest MOA-CVerror is
the most accurate, and vice versa.

The operation steps of the MOA-CV algorithm are briefly described in Table 2.

Table 2. Operation Steps of LOO-MCV Algorithm.

No. Process

Step 1
Generate original sampling points (x, y), and based on (x, y), build a
surrogate model S0

Step 2

Split (x, y) into two sets, i.e., training set
(xtr, ytr) =

{
(x1, y1), . . . ,

(
x j−1, y j−1

)
,
(
x j+1, y j+1

)
, . . . , (xn, yn)

}
and

validation set (xv, yv) =
(
x j, y j

)
Step 3 Calculate the minimum distance dmin among (x, y)

Step 4
Determine the mean and the variance of a random normal distribution
at each validation point (xv, yv) =

(
x j, y j

)
, µ = y j and σ = 0.02dmin,

Step 5 Obtain a virtual training point, i.e.,
(
x↔ j, ŷ↔ j

)
on the model S0

Step 6
Generate a new training set

(
↔
x tr,

↔
y tr

)
and build a surrogate model S1

based on
(
↔
x tr,

↔
y tr

)
, get the prediction ŷ↔ j

(
x j

)
of S1 at x j

Step 7 Calculate the MOA-CVerror

3.2. Demonstration of MOA-CV Method

First, a 1D mathematical function as shown in Equation (3) is taken as an example to demonstrate
the operation processes of the MOA-CV method.

y = 6−
1

(x− 0.3)2 + 0.01
−

1

(x− 9)2 + 0.04
(3)

Five sample points are generated randomly and a KRG surrogate model is built, as shown in
Figure 2. Five corresponding virtual sample points is generated by the MOA-CV method based on
the KRG surrogate model. Figure 2a shows that the each validation point is moved around a normal
distribution, as the origin line shows. Figure 2b–f depicts the process of obtaining the MOA-CVerror
over five iterations. Five errors for five iterations are obtained, and finally, the MOA-CVerror is
calculated by averaging the five errors.

To compare the model selecting performance of MOA-CV and LOO-CV, four surrogate models
are constructed based on five sample points, as shown in Figure 3. The prediction accuracy R2 is listed
in Table 3. It is obvious that the four surrogate models have different prediction accuracy. From the
results of R2 in Table 3 we can know that the real accuracy order of those four models is KRG, RBF-MQ,
RBF-TPS and PRS. The right order of surrogates is in italic bold. Although the magnitudes of MOA-CV
and LOO-CV are different, we can still compare their performance according to the accurate rate of
model selection. MOA-CVerrors of the four surrogate models are highly consistent with R2 and can
accurately select the best and worst surrogate model. However, LOO-CVerrors are extremely distinct
from R2. The best surrogate model selected by the LOO-CV method is the PRS model, which happens
to be the worst one among the four surrogate models in actual situation. The reason may be that
unlike the LOO-CV method which is model-independent, the MOA-CV method is a model-dependent
method that can learn information from constructed surrogate models. That is, the MOA-CVerror are
largely positively correlated with the accuracy of the built surrogate model itself.
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Figure 2. Demonstration of the move-one-away cross validation (MOA-CV) method. (a) virtual training
points; (b) 1st iteration; (c) 2nd iteration; (d) 3rd iteration; (e) 4th iteration; (f) 5th iteration.
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Figure 3. Comparison of four surrogate models.

Table 3. Ranking results of surrogate models by MOA-CV and LOO-CV methods.

Term PRS RBF-MQ RBF-TPS KRG

R2 0.18 0.66 0.53 0.69
Order by R2 4 2 3 1

LOO-CVerror 44.262 64.356 473.491 44.263
Order by LOO-CV 1 3 4 2

MOA-CVerrorr 22.948 3.438 4.293 3.127
Order by MOA-CV 4 2 3 1
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3.3. Effect of Variance of the Random Normal Distribution

In the demonstration of the MOA-CV method, the variance σ of the random normal distribution
is fixed at 0.02dmin. In this section, ten different values of variance σ are set to explore the effect on the
accurate rates of ranking surrogate models. The 1D function as shown in Equation (3) is still used, and
the training samples are the same to those in Section 3.2. Since the key point of the MOA-CV method is
to move the validation point, the virtual validation point can not be too far away form the original one.
That is, σ cannot be too large. Set σ is equal to k ∗ dmin, in which k is set to be 0.01, 0.02, 0.03, 0.04, 0.05,
0.06, 0.07, 0.08, 0.09 and 0.1. The ranking results of surrogate models by MOA-CV with different σ are
listed in Table 4; the corrected orders are in italic bold. From Table 4, it is observed that the MOA-CV
method with k = 0.02 has the highest accurate rate and as the k increases from 0.03 to 0.09, the corrected
rate of ranking is likely to decreases. Overall, in this work, the variance σ is set to be 0.02dmin.

Table 4. Ranking results of surrogate models by MOA-CV with different σ.

Orders PRS RBF-MQ RBF-TPS KRG Corrected Rate

R2 (corrected orders) 4 2 3 1 −

k = 0.01 4 3 2 1 50%
k = 0.02 4 2 3 1 100%
k = 0.03 4 3 1 2 25%
k = 0.04 4 2 1 3 50%
k = 0.05 4 1 3 2 50%
k = 0.06 4 2 1 3 50%
k = 0.07 2 4 3 1 50%
k = 0.08 1 4 3 2 25%
k = 0.09 2 3 4 1 25%
k = 0.1 4 2 1 3 50%

4. Results and Discussions

4.1. Test Problems

In order to test and compare the model selection performance of the MOA-CV method and the
LOO-CV method, two 2-dimensional (2D) and two 10-dimensional (10D) numerical functions are used
in this work [24,25] as shown in Table 5. In addition, one engineering problem is also employed in
this section.

Table 5. Test functions.

No. D. Test Functions D.S.

1 2
y =

(
x2 −

5.1x2
1

4π2 + 5x1
π − 6

)2
+

10
(
1− 1

8π

)
cos(x1) + 10

[−5, 0; 10, 15]

2 2
y =

(
4− 2.1x2

1 +
1
3 x4

1

)
x2

1 +

x1x2 +
(
−4 + 4x2

2

)
x2

2

[−2, −1; 2, 1]

3 10 y =
9∑
i

[(
x2

i+1 − xi
)2
+ (xi − 1)2

]
[−3, 3]D

4 10
y =

10∑
i

expxi

ci + xi − log

10∑
j

x j

 [−5, 5]D

Notes: D. and D.S. are the dimension and design space of test functions, respectively.
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4.2. Design of Experiments

The first process of constructing models is generating sample points, also called design of
experiments (DoEs) which is the computational strategy to produce sample points for computer
simulations and surrogate modeling. In this section, Latin hypercube sampling (LHS) with better
space-filling and projective properties are used to generate sample points. In this work, we use the
built-in Matlab function lhsdesign. Three samples sizes, i.e., 5n, 8n and 10n (where n is the dimension of
a function), respectively, are chosen to investigate the effect of different sample sizes on the performance
of MOA-CV and LOO-CV. For each function and each sample size, ten random sets of DoEs are
generated. The abovementioned surrogate models are used to build models; MOA-CVerror and
LOO-CVerror are used to rank models based on the calibrated criterion R2.

Table 6 lists the percentages of choosing the best surrogate models for the four functions, with
a higher value in italic bold. Almost for any function, the accurate rates of best model selection of
MOA-CV and LOO-CV rise with the increase in samples sizes from 5n to 10n. MOA-CV performs
much better than LOO-CV in selecting best models, especially when the sample size is larger. In terms
of HD functions, when the sample size is 5n, MOA-CV and LOO-CV perform quite poor. That is,
with small samples neither the MOA-CV nor the LOO-CV method can find the best model. When the
sample size increases to 10n, MOA-CV is more likely than LOO-CV to find the best model. The average
result over four functions also shows that it is a little easier for the MOA-CV method to discover the
best model than the LOO-CV method.

Table 6. Accurate rate of selecting best models.

Size of Samples 5n 8n 10n

Functions MOA-CV LOO-CV MOA-CV LOO-CV MOA-CV LOO-CV

LD
functions

1 40% 10% 40% 10% 20% 20%
2 10% 20% 50% 10% 60% 30%

HD
functions

3 0% 0% 50% 0% 80% 0%
4 0% 0% 30% 0% 90% 30%

Average for all functions 12.5% 7.5% 42.5% 5% 62.5% 20%

Table 7 lists the accurate rate of finding the worst surrogate models for the four functions, also
with a higher value in italic bold. MOA-CV has the best accurate rate when the sample size is 8n.
When the sample sizes are 5n and 10n, LOO-CV performs better than MOA-CV in terms of removing
worst models. Similar to selecting the best models, MOA-CV and LOO-CV also perform quite poor
with 5n sample points in cases of HD functions. From the average result over four functions, it is seen
that the MOA-CV method performs slightly worse than the LOO-CV method in finding worst models.

Table 7. Accurate rate of removing worst models.

Size of Samples 5n 8n 10n

Functions MOA-CV LOO-CV MOA-CV LOO-CV MOA-CV LOO-CV

LD functions
1 40% 70% 90% 60% 60% 40%
2 40% 20% 60% 30% 40% 70%

HD functions
3 0% 0% 20% 20% 0% 0%
4 0% 0% 30% 30% 20% 20%

Average of ratefor all functions 20% 22.5% 50% 35% 30% 32.5%

As described above, for each function and each sample size, 10 sets of DoEs are generated
randomly. Here, we compare the averaged results of selecting best and worst models over these 10
sampling plans.

Figures 4–6 show the model ranks by using R2, LOO-CVerror and MOA-CVerror under 5n, 8n and
10n sample points. Tables 8 and 9 summarize the average accurate rates of selecting best and worst
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models for four tests functions over 10 groups of DoEs, and the higher values are in italic bold. In order
to intuitively describe accurate rates of MOA-CV and LOO-CV, the MOA-CVerror and LOO-CVerror
are regularized between 0 to 1. Hence, the worst model has the largest MOA-CVerror/LOO-CVerror of
1, while the best model has the smallest MOA-CVerror/LOO-CVerror of 0. It is concluded that both the
MOA-CV and LOO-CV methods have a 50% probability of selecting the best model. With increase in
sample sizes, the MOA-CV model may become better in selecting best and worst models.Appl. Sci. 2020, 10, x FOR PEER REVIEW 10 of 15 
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Figure 4. Model ranks by mean of (a) R2, (b) LOO-CVerror and (c) MOA-CVerror with 5n sample points.
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Figure 5. Model ranks by mean of (a) R2, (b) LOO-CVerror and (c) MOA-CVerror with 8n sample points.
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Figure 6. Model ranks by mean of (a) R2, (b) LOO-CVerror and (c) MOA-CVerror with 10n sample points.
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Table 8. Accurate rate of selecting best models by mean of LOO-CVerror and MOA-CVerror.

Methods 5n 8n 10n

LOO-CV 50% 50% 50%
MOA-CV 50% 25% 50%

Table 9. Accurate rate of removing worst models by mean of LOO-CVerror and MOA-CVerror.

Methods 5n 8n 10n

LOO-CV 50% 75% 75%
MOA-CV 50% 75% 100%

4.3. Engineering Problems

In addition to numerical problems, one engineering problem, i.e., the prediction of the thrust (TH)
on the whole rotor of a small aerial vehicle (UAV), is also employed to investigate and compare the
model selection performance of MOA-CV and LOO-CV methods.

The rotor blade and airfoil of a small (UAV) are shown in Figure 7. The whole rotor consists
of three blades. In this problem, we focus on the thrust (TH) on the whole rotor. The airfoil (as
shown in Figure 7b) is generated by using the class shape function transformation (CST) [26] which
is a parametric modeling method. The airfoil has 16 parametric modeling variables. Six structural
variables are presented in Figure 7a. Hence, the rotor blade of the UAV totally has 22 variables listed in
Table 10. For the 16 parametric modeling variables, please see Reference [26]. Two sections are shown
in Figure 7, i.e., blade tip and maximum-chord sections. ltip and ϕtip are chord length and mounting
angle of the blade tip section, respectively. lmax and ϕmax are chord length and mounting angle of the
maximum-chord section, respectively. The position of maximum-chord section is represented by dmt. ε
is the forward sweep.
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Table 10. Variables of rotor blade.

No. Variables Terms Design Space

1 Atip
U0

Parametric modeling variables
For blade tip

[−0.167, −0.059]

2 Atip
U1

[−0.112, 0.225]

3 Atip
U2

[−0.228, 0.140]

4 Atip
U3

[−0.081, 0.579]

5 Atip
L0

[0.123, 0.281]

6 Atip
L1

[0.212, 0.527]

7 Atip
L2

[−0.035, 0.421]

8 Atip
L3

[0.048, 0.761]
9 Amax

U0

Parametric modeling variables
For the maximum-chord section

[−0.167, −0.059]
10 Amax

U1 [−0.112, 0.225]
11 Amax

U2 [−0.228, 0.140]
12 Amax

U3 [−0.081, 0.579]
13 Amax

L0 [0.123, 0.281]
14 Amax

L1 [0.212, 0.527]
15 Amax

L2 [−0.035, 0.421]
16 Amax

L3 [0.048, 0.761]
17 ϕtip (◦) Mounting angle of blade tip [5, 20]
18 ltip(mm) Chord length of blade tip [5, 12]
19 ϕmax (◦) Mounting angle of maximum-chord section [15, 30]
20 lmax(mm) Chord length of maximum-chord section [12, 30]
21 dmt(mm) Position of maximum-chord section [10, 15]
22 ε(mm) Forward sweep [0, 0.65]

We use the LHS approach built-in MATLAB to randomly generate 220 samples and get the
corresponding TH. Then we choose 110, 176 and 220 (i.e., 5n, 8n and 10n, where n is the number of
variables) samples to construct PRS, RBF-MQ, RBF-TPS and KRG, respectively. The MOA-CV and
LOO-CV methods are employed to select the most accurate and the worst accurate models. Then other
50 samples are generated for the calibrated criterion, i.e., R2.

The results of R2, MOA-CVerror and LOO-CVerror are shown in Tables 11–13, respectively.
The best model presented by each criterion are in bold; the worst model are shown in italic. From the
result of R2 we can see that RBF-MQ has the best accuracy and PRS has the worst accuracy. Results of
MOA-CVerror indicate RBF-MQ is the most accurate when the sample sizes are 5n and 10n, which is
consistent with those of R2, while results of LOO-CVerror show KRG is the most accurate, which is
different from the results of R2. However, when the sample size is 8n, MOA-CV cannot select the best
model, while LOO-CV can choose the best one. Both the MOA-CVerror and the LOO-CVerror indicate
that the PRS is the worst model regardless of sample size. Overall, in this case, both the MOA-CV and
the LOO-CV can choose the worst models, and in most cases, MOA-CV is likely to find the best model
than LOO-CV.

Table 11. Results of R2 of four surrogate models.

R2 5n 8n 10n

PRS 0 0 0
RBF-MQ 0.824 0.826 0.806
RBF-TPS 0.102 0.042 0.319

KRG 0.817 0.835 0.798
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Table 12. Results of MOA-CVerror of four surrogate models.

MOA-CVerror 5n 8n 10n

PRS 0.0662 0.263 0.250
RBF-MQ 1.86 × 10−4 1.48 × 10−4 1.55 × 10−4

RBF-TPS 0.00646 0.0430 0.00139
KRG 4.78 × 10−4 4.59 × 10−4 4.91 × 10−4

Table 13. Results of LOO-CVerror of four surrogate models.

LOO-CVerror 5n 8n 10n

PRS 0.0469 0.0570 0.0251
RBF-MQ 3.69 × 10−4 3.59 × 10−4 4.02 × 10−4

RBF-TPS 7.71 × 10−4 6.64 × 10−4 9.89 × 10−4

KRG 3.47 × 10−4 3.50 × 10−4 3.75 × 10−4

5. Conclusions

In order to improve the E-AHF model which has been proposed in previous work, we modified the
LOO-CV method, which is used to build the surrogate library in E-AHF. By moving a validation point
around random normal distributions rather than leaving it out, the move-one-away cross validation
(MOA-CV) is proposed. Four surrogate techniques are used to construct models; errors generated
by MOA-CV and LOO-CV methods, i.e., MOA-CVerror and LOO-CVerror, respectively, were used to
select the best model from those four surrogate models through 20 standard mathematical functions
and one engineering problem. We used the R2 which is reliable to evaluate the accuracy of a model to
be a calibration of MOA-CV and LOO-CV. The accurate rate of selecting the best and worst surrogate
was used to assess and compare the performance of MOA-CV and LOO-CV.

Results show that with the increase in sample sizes, MOA-CV and LOO-CV are more likely
to select the best models. MOA-CV performs much better than LOO-CV in selecting best models,
especially when the sample size is larger. For HD functions, with small samples, neither the MOA-CV
nor the LOO-CV method can find the best model. Similar to selecting the best models, MOA-CV and
LOO-CV also perform quite poor with smaller samples for HD functions.

From the average accurate rates over ten sets of DoEs, it is concluded that with increase in sample
sizes, the MOA-CV model may become better in selecting best and worst models. In the engineering
problem, both the MOA-CV and LOO-CV can choose the worst models, and in most cases, MOA-CV
has a higher probability to select the best model than LOO-CV.
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