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Abstract: Noise energetic indicators, like Lden, show good correlations with long term annoyance,
but should be supplemented by other parameters describing the sound fluctuations, which are very
common in urban areas and negatively impact noise annoyance. Thus, in this paper, the hourly values
of continuous equivalent level LAeqh and the intermittency ratio (IR) were both considered to describe
the urban road traffic noise, monitored in 90 sites in the city of Milan and covering different types of
road, from motorways to local roads. The noise data have been processed by clustering methods to
detect similarities and to figure out a criterion to classify the urban sites taking into account both
equivalent noise levels and road traffic noise events. Two clusters were obtained and, considering the
cluster membership of each site, the decimal logarithm of the day-time (06:00–22:00) traffic flow was
used to associate each new road with the clusters. In particular, roads with average day-time hourly
traffic flow ≥1900 vehicles/hour were associated with the cluster with high traffic flow. The described
methodology could be fruitfully applied on road traffic noise data in other cities.

Keywords: urban road traffic noise; noise events; road classification

1. Introduction

According to the data provided by the European Environment Agency (EAA), “more than
41 million people are reported to be exposed above 55 dB Lden due to road traffic noise inside urban
areas”, and nearly 90 million are estimated in Europe [1]. Road traffic noise is the most diffuse
noise source in urban areas, wide spreading in space and time, despite the noise reduction actions
implemented by policies and legislations at international and national level. As a consequence,
the people’s awareness towards the adverse health effects, both direct and indirect, produced by road
traffic noise is increasing. The World Health Organization (WHO) has estimated that “at least one
million healthy life years are lost every year from traffic related noise in the western part of Europe” [2].
There is evidence in the literature that “sleep disturbance and annoyance, mostly related to road traffic
noise, comprise the main burden of environmental noise” [2].

Lden, introduced by the European Directive 2002/49/EC on the assessment and management of
environmental noise [3], is commonly applied by legislation to assess urban sound environments.
However, although energetic indicators show good correlations with long term annoyance, their
deficiency for evaluating perceptively urban sound environments has been pointed out in several
studies [4]. In particular, they fail in evaluating fluctuating sounds, which are very common in urban
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areas and negatively impact noise annoyance. Road traffic noise is typically characterized by the
noise events owing to the single vehicle pass-by, where the temporal structure of sound pressure
level (SPL) varies between local one-lane city roads, showing highly intermittent noise, up to wide
multi-lane motorways, producing a nearly continuous noise with very limited fluctuations. There
is clear evidence in the literature that human hearing is able to adapt to steady noise easier than to
SPL fluctuations, as well as to prominent, salient noise events [5,6]. The higher these fluctuations are,
the more annoying a sound is possibly perceived. To quantify these SPL fluctuations and variations,
common approaches either apply thresholds to detect events exceeding such thresholds and count the
number and the duration of these events, or use SPL statistics, like percentile levels LA1, LA5, and LA10,
namely the A-weighted SPL exceeding for 1%, 5%, and 10% of the measurement time, respectively.
Recently, a new descriptor has been proposed [7], describing the eventfulness (or intermittency) of noise
exposure, taking into account both the number and the magnitude of noise events during a certain time
period. The metric, named the intermittency ratio (IR), accounts for all sound energy contributions
that exceed a given threshold and, by definition, only takes on values between 0% and 100%. It can be
derived either directly from acoustic measurements or calculated from traffic and geometric data for
any transportation noise source and any time period. However, as pointed out in [7,8], IR could be
a supplementary metric accompanying the continuous equivalent level (LAeq), which measures the
energy content of the noise exposure.

The present paper starts from the results obtained in a previous application of IR on the noise data
from road traffic, monitored continuously for 24 h in 90 sites in the city of Milan [8,9]. The database
comprised 251 24-h long time series of 1 s A-weighted SPL, monitored at different types of roads, from
motorways to local roads with very low traffic flow. The hourly values of LAeqh, each referring to
the corresponding day-time LAeqd (06:00–22:00), and IR were computed and processed by clustering
methods to figure out a criterion to classify the urban sites considering road traffic noise features.
Two clusters were determined and a “non-acoustic” parameter “x”, namely the decimal logarithm of
the day-time traffic flow (06:00–22:00), was taken as a binary classifier to associate each site within
a group. The resulting classification was compared with the clusters obtained by k-means and the
percentage of agreement was 71.9%.

2. Materials and Methods

2.1. Acoustic Data Set

Road traffic noise monitoring in Milan has a long-standing tradition, leading to a large database
across the years. From this database, a set of 90 sites was considered to represent the different types of
roads according to the Italian road functional classification, that is, motorway (class “A”), thoroughfare
roads (class “D”), urban district roads (class “E”), and urban local roads (class “F”). The selected roads
sample is representative of the urban road network in Milan and its spatial distribution of road types
in the urban area is given in Figure 1.

The distribution of the sites across road types is given in Table 1, together with the number of 24-h
time series of 1 s A-weighted SPL, monitored continuously by a class 1 sound level meter Larson Davis
831 with the microphone placed at 4 m above the road. In some sites, the unattended monitoring was
performed on more consecutive days, that is, multiple 24 h time series were available and all were
averaged. The monitoring was performed on weekdays only (Monday to Friday), without rain and
with wind speed less than 5 m/s. Noise events not associated with road traffic were visually detected
in the SPL time histories and masked before further data processing. The microphone was placed close
to the road to reduce the influence of noise from sources different from road traffic.

In addition, for each site, the hourly traffic flow was provided by the Municipal Agency of Mobility,
Environment, and Land of Milan (AMAT). The data were calculated by a model of traffic based on
origin–destination matrices and applied to the city road network.
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Figure 1. The spatial distribution of road types in the urban area of Milan.

Table 1. Distribution of the 90 sites considered in the study according to the Italian legislative
classification of roads.

Road Type N. of Sites N. of 24 h Time Series

A (motorway) 2 15

D (thoroughfare roads) 7 18

E (urban district roads) 29 83

F (urban local roads) 52 135

Total 90 251

2.2. Data Processing and Analysis

A script running in “R” environment, version 3.5.1 [10], was written to import each of the 24 h
time series as input in terms of text file (four columns with date, time, SPL dB(A) at 1 s intervals, and
a code to indicate whether the source was road traffic or something different). In order to provide
indicators for the classification, a time window of duration T = 1 hour was chosen to compute LAeq and
IR values This time period was established by the Italian legislation for road traffic noise measurement.
Besides this requirement, the chosen measurement time T was considered a reasonable compromise
between longer time (i.e., 24 hours, day and night periods, and so on) and shorter ones (i.e., 30 min or
even shorter). For the sites where the noise monitoring lasted more days, the median value of IR and
LAeq for each hour was determined, as this parameter is less influenced than the mean by the presence
of outliers.

From the input data, the script was computed for each hour:

• The IR value, according to the definition given in [7] and determined by the following:

IR =
100.1Leq,T,Events

100.1Leq,T,tot
·100 [%] (1)

where Leq,T,Events accounts for all sound energy contributions that exceed a given threshold K, that
is, clearly standing out from background noise; Leq,T,tot is the overall continuous equivalent level
referred to the measurement time T; and the threshold K is given by the following:

K = Leq,T,tot + C [dB] (2)

where C, as stated in [7], can be assumed equal to 3 as a result of the numerical simulations for
different traffic situations;
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• The LAeqh referred to the corresponding day-time LAeqd (06:00–22:00), taken as a reference level,
that is, the difference δ = LAeqh − LAeqd; this computation was necessary because of the different
monitoring set-up at the sites, such as different distances from the road and the characteristics of
the road itself (its geometry, the presence of reflecting surfaces and obstacles in sound propagation,
and types of paving) [11].

As explained in Section 2.1, the microphone was placed close to the road to reduce the influence
of noise from other sources and, therefore, the source–receiver distance was not always the same. This
factor influences the IR values (Figure 4 in [12]).

Thus, a matrix formed by 48 variables, (IR and δ for each hour) × 90 observations (sites) =

4320 values, was the input of the subsequent cluster analysis, an unsupervised machine-learning
technique, performed to find out similarities in the time patterns. Because the data are measured
by different scales, namely δ is in dB and IR in percentage, they needed to be scaled (mean = 0
and standard deviation = 1) before clustering; in addition, the Euclidean distance, one of the most
used distance metrics, was considered to represent the similarity between pairs of sites. To select
the optimal solution for clustering, that is, the agglomeration algorithm and number of clusters,
the “clValid” R package, version 0.6–6 [13] was applied. All 10 clustering methods available in the
package were considered, that is, hierarchical clustering with the Ward’s method [14], partitioning
around medoids (PAM) [15], k-means [16], DIvisive ANAlysis clustering (DIANA) [15], Clustering
LARge Applications (CLARA) [15], AGglomerative NESting (AGNES) [15], self-organizing map
(SOM) [17], self organizing tree algorithm (SOTA) [18], model-base clustering [19], and fuzzy analysis
clustering [20]. The clustering performance of the methods was ranked according to seven internal
clustering validation measures [21,22], namely, the connectivity [23], silhouette width [24] and Dunn
index (combining measures of compactness and separation of the clusters) [25], average proportion
of non-overlap (APN), average distance (AD), average distance between means (ADM), and figure
of merit (FOM) [26,27]. All of the clustering algorithms were ranked based on their performance as
determined simultaneously by all the validation measures [28].

There is no generally accepted rule on the ratio between the number of clustering variables and
sample size (number of observations, sites in this study). Usually, the latter should be much higher
than the former. In this study, the ratio between sites and variables is low (90/48 = 1.875). Thus,
principal component analysis (PCA) was also performed on the input matrix in order to reduce the
number of variables and account for the largest possible variance of the original variables. The method
generates a new set of variables, called principal components, and each principal component is a linear
combination of the original variables. All the principal components are orthogonal to each other,
so there is no redundant information. Components with larger variance are the most relevant to the
clustering and, therefore, removing features with low variance acts as a filter that results in a distance
metric that provides a more robust clustering. The PCA output for the selected components was taken
as input for a further k-means clustering, and the obtained classification was compared with that
obtained by the earlier k-means applied to all 48 variables.

Furthermore, the hourly values of the 24 h pattern, corresponding to the cluster membership of
the site, were compared with those observed at the site itself and the differences εwere evaluated in
terms of root mean square (RMS) and probability Pε of ε being within a specified interval width.

Supervised machine-learning algorithms can be applied to classify new roads into the clusters
determined by the cluster analysis, but the acoustic data must be known. Unfortunately, very often
they are not available and, therefore, an alternative classifier is needed. For this purpose, the road
traffic flow is a potential candidate as its value, obtained from transport models or measured, is rather
available and linked to the produced noise. In the present study, the decimal logarithm of the day-time
(06:00–22:00) traffic flow rate was considered as an alternative road classifier.
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3. Results

3.1. Determination of Clusters and Patterns of Hourly Values of δ and IR

The clustering algorithms ranking based on their performance as determined by all the validation
measures showed that the best solution was the k-means agglomeration algorithm, a centroid-based
clustering, and a division into two clusters. The obtained partition into two groups corresponds to the
minimal discrimination among the data, and this low discrimination enables an easier association of new
data with the determined clusters. Table 2 reports the distribution of the sites in each road type and cluster,
compared also with the distribution obtained by the DIANA algorithm applied earlier to the hourly IR
values only [8]. The two classifications are rather similar as they overlap for 93.3%, that is, 93.3% of all
sites are classified in the same category by both clustering algorithms and the percentage of disagreement
is 6.7% of pairs. Cluster 2, with the largest number of sites, includes the majority of “F” road types (local
roads with low traffic flow), whereas cluster 1 includes the majority of sites in the remaining roads.

Table 2. Distribution of the 90 sites in the two clusters and type of road; percentage values are between
( ). IR, intermittency ratio.

Clustering k-Means
(Accounting for δ and IR)

DIANA [8]
(Accounting for IR)

Cluster 1 2 1 2

N. of sites (%) 40 (44.4) 50 (55.6) 34 (37.8) 56 (62.2)

Road Type

A (motorway) 2 (100) 0 (100) 2 (100) 0 (0)

D (thoroughfare roads) 4 (57.1) 3 (42.9) 4 (57.1) 3 (42.9)

E (urban district roads) 20 (70.0) 9 (30.0) 16 (55.2) 13 (44.8)

F (urban local roads) 14 (26.9) 38 (73.1) 12 (23.1) 40 (76.9)

The multidimensional scaling (MDS) applied to the data provided the bi-dimensional plot given
in Figure 2, where the two clusters obtained by k-means look satisfactorily separated.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 5 of 15 

easier association of new data with the determined clusters. Table 2 reports the distribution of the 168 
sites in each road type and cluster, compared also with the distribution obtained by the DIANA 169 
algorithm applied earlier to the hourly IR values only [8]. The two classifications are rather similar as 170 
they overlap for 93.3%, that is, 93.3% of all sites are classified in the same category by both clustering 171 
algorithms and the percentage of disagreement is 6.7% of pairs. Cluster 2, with the largest number of 172 
sites, includes the majority of “F” road types (local roads with low traffic flow), whereas cluster 1 173 
includes the majority of sites in the remaining roads. 174 

The multidimensional scaling (MDS) applied to the data provided the bi-dimensional plot given 175 
in Figure 2, where the two clusters obtained by k-means look satisfactorily separated. 176 

Table 2. Distribution of the 90 sites in the two clusters and type of road; percentage values are between 177 
( ). IR, intermittency ratio. 178 

Clustering k-means 
(accounting for δ and IR) 

DIANA [8] 
(accounting for IR) 

Cluster 1 2 1 2 
N. of sites (%) 40 (44.4) 50 (55.6) 34 (37.8) 56 (62.2) 

Road Type 

A (motorway) 2 (100) 0 (100) 2 (100) 0 (0) 
D (thoroughfare roads) 4 (57.1) 3 (42.9) 4 (57.1) 3 (42.9) 
E (urban district roads) 20 (70.0) 9 (30.0) 16 (55.2) 13 (44.8) 

F (urban local roads) 14 (26.9) 38 (73.1) 12 (23.1) 40 (76.9) 
Figure 3 reports, for each cluster, the 24-hour pattern of the hourly median values (thick lines) ± 179 

the median absolute deviation (MAD, grey area) for both δ and IR, as well as the observed time 180 
pattern (thin lines) for each of the sites included in the cluster. The patterns show that, in the night 181 
period (22:00–06:00), the IR values are the highest for both clusters because of the presence of noise 182 
events clearly emerging above the background noise, which is lower than that observed during the 183 
day-time. The hourly IR values for cluster 2 are higher than those for cluster 1 because the traffic flow 184 
for the sites belonging to cluster 2 is lower (mainly local roads) than that for the sites belonging to 185 
cluster 1. Figure 4 shows the straight comparison between the time patterns for the two clusters. The 186 
largest differences between the two clusters are observed during the night-time for δ and between 187 
10:00 and 16:00 for IR. Thus, these periods are the most suitable to discriminate between the two 188 
clusters. 189 

 190 

Figure 2. Bi-dimensional plot of the two clusters obtained by k-means. Dimension 1 and 2 explain 191 
37.8% and 13.7% of the variance, respectively. The rectangular frames highlight the two sites with the 192 
greatest distance (dissimilarity) between them in the bi-dimensional plot. 193 

Figure 2. Bi-dimensional plot of the two clusters obtained by k-means. Dimension 1 and 2 explain
37.8% and 13.7% of the variance, respectively. The rectangular frames highlight the two sites with the
greatest distance (dissimilarity) between them in the bi-dimensional plot.

Figure 3 reports, for each cluster, the 24-h pattern of the hourly median values (thick lines) ± the
median absolute deviation (MAD, grey area) for both δ and IR, as well as the observed time pattern
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(thin lines) for each of the sites included in the cluster. The patterns show that, in the night period
(22:00–06:00), the IR values are the highest for both clusters because of the presence of noise events
clearly emerging above the background noise, which is lower than that observed during the day-time.
The hourly IR values for cluster 2 are higher than those for cluster 1 because the traffic flow for the
sites belonging to cluster 2 is lower (mainly local roads) than that for the sites belonging to cluster 1.
Figure 4 shows the straight comparison between the time patterns for the two clusters. The largest
differences between the two clusters are observed during the night-time for δ and between 10:00 and
16:00 for IR. Thus, these periods are the most suitable to discriminate between the two clusters.Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 15 
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Figure 3. Time patterns of δ and intermittency ratio (IR) parameters for the two clusters obtained by
k-means (median values represented by thick lines and grey areas corresponding to ±median absolute
deviation (MAD)) and actual values at each site (thin lines).
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Figure 4. Comparison of the time patterns of δ and IR parameters for the two clusters obtained by
k-means. Thick lines represent hourly median values and shaded areas correspond to ±MAD.
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3.2. Principal Component Analysis (PCA) Outcome

As explained in Section 2.2, PCA was performed in order to reduce the number of clustering
variables. The scree plot, reported in Figure 5a for the first 12 components, shows that 10 components
have eigenvalues ≥1, a value commonly used as a cutoff point at which principal components are
retained. The cumulative percentage of variance explained by these 10 principal components is 86.7%
(Figure 5b).
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Thus, a matrix of 90 observations (the sites) and 10 variables, that is, the retained principal
components (90/10 = 9), was the input for the k-means cluster analysis, setting the number of clusters
to two. The obtained classification was completely in accordance with that already determined by
k-means applied to the 48 variables. This result confirms the robustness of the partition obtained by
k-means accounting for the 48 variables.

3.3. Comparison between Clustering Patterns of δ and IR Median Hourly Values and Measured Data

The rationale of determining the 24 h patterns of δ and IR for each cluster, shown in Figure 4, is to
assign these patterns to the sites according to their cluster membership. This assignment, of course,
introduces an uncertainty that should be evaluated (Figure 3). For this purpose, at each ith hour,
the difference εi between the pattern cluster value (PCi) and the measured value (Mi) was determined:

εδi = δPCi − δMi [dB], (3)

εIRi = IRPCi − IRMi [%], (4)

This error ε can be expressed in different ways, either as relative error εr,

εrδ = 10log
[
10(δPi−δMi)/10/10δMi/10

]
, (5)

εrIR = (IRPi − IRMi)/IRMi, (6)

or as the root mean square of the error ε (RMSE),

RMSE =

√∑n
k=1(εδk)

2

n
[dB], RMSE =

√∑n
k=1(εIRk)

2

n
[%], (7)

where n is the number of observations (sites) in each cluster. Indeed, the patterns have their own
uncertainties (grey areas in Figure 3), but, for sake of simplicity, only their median values are considered
in the following.

For practical application, the RMSE error in dB was considered for the δ parameter because it
is more representative (Figure 6a), whereas for IR, measured in %, the relative error εr was chosen
and is reported in Figure 6b. For all the sites belonging to the same cluster, the εi absolute values for
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each ith hour were determined and grouped (in %) in an interval bin width from 0.5 to 3 dB with steps
of 0.5 dB. The median values of these percentages for each interval width were determined for the
day (06:00–22:00) and night (22:00–06:00) periods and are plotted in Figure 6c,d, together with fitting
curves. No large differences between clusters are observed for the error εδ determined for δ; the largest
values of RMSE error (Figure 6a) and the lowest values of the percentage of εδ (Figure 6c) are observed
for the period 00:00–05:00 (median error εδ > 2.0 dB), which, on the other hand, is the most suitable to
discriminate between the two clusters. The relative error εrIR for IR is greater for cluster 1 during the
day-time (06:00–22:00) (Figure 6b, median error εrIR = 0.63).
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Figure 6. Differences between the hourly values of the cluster patterns and the measured values in
terms of root mean square (RMSE) (a,b) and percentage of error ε of being within an interval width (c,d).

3.4. Application of the δ and IR Cluster Patterns to New Data

To classify new roads according to the already determined clusters, it is necessary to find which
cluster centroid is the closest to the new acoustic data. As an alternative, supervised machine-learning
algorithms can be used and, among them, the k-nearest neighbors (k-NN) is the most common. Let us
consider a road not included in the dataset used for determining the clusters (original data), with
known δ and IR hourly values (new data). The k-NN algorithm searches for the k-nearest original
data, in Euclidean distance, closer to the new data, and the classification is decided by majority vote.
If there are ties for the kth nearest vector, all candidates are included in the vote.

Unfortunately, this procedure most often cannot be applied because the acoustic data for the road
are unknown. Thus, it is necessary to look for an alternative classifier, hopefully linked to a specific
feature of the road and/or to the corresponding traffic flow.
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In noise monitoring surveys, to save time and reduce costs, stratified samplings of urban road
traffic noise based on some attributes (i.e., road categorization) are commonly used. Their features and
performances have been already analyzed, for instance, in [29,30]. Traffic flow (q), that is, the number
of vehicles passing a point per unit of time (24 h, 1 h, and so on), can be a potential parameter for
such a linkage because it represents information (observed or estimated by transport models) usually
available for urban roads and used for their categorization in noise studies [31].

In a previous paper [32], the decimal logarithm of the day-time (06:00–22:00) total traffic flow,
hereinafter “x”, has been proposed as a “non-acoustic” parameter to be applied to assign cluster
membership. This choice was preferred to the 24-h traffic flow because of the observed large uncertainty
of the night flow calculated by the traffic model [32]. Indeed, further investigations [33,34] have shown
that there are significant differences between the traffic flow data provided by the model and those
measured. This points to the need for more accurate data and, on this issue, there is an increasing
interest to obtain real traffic flow data, for instance, through methodologies based on video processing
and object detection tools [35], or on travel time data obtained by Google Application Programming
Interface (API) and Big Data treatment [36].

Figure 7a shows the histograms of the data (bin width of x = 0.1) according to their cluster
membership. It can be seen that, for 12 out of 26 bins (46.2%), there is an overlap between the
two distributions. In order to figure out a threshold value to discriminate the cluster membership,
the procedure to determine an analytical representation of the distribution functions in each cluster,
as described in [37,38], was applied. The probability distributions for the two clusters P(x) can
be obtained from the analytical fit of the cumulative distribution I(x) according to the following
relationship:

P(x) = ln(10)·f′(x)·I(x) (8)

where f(x) is a 3rd order polynomial, f’(x) is the derivative of f(x), and I(x) is the cumulative distributions
of x. The fit functions f1 and f2 for P(x) obtained for the two clusters are as follows:

f1(x) = 0.129− 1.931x + 0.664x2
− 0.057x3 (9)

f2(x) = −1.0499− 0.835x + 0.444x2
− 0.046x3 (10)
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Figure 7. Distributions of the data (bin width of x = 0.1) according to their cluster membership (a) and
corresponding estimated probability distribution functions (b).

They are plotted in Figure 7b for the two distributions and show the “probability” that a road
with a given “x” belongs to clusters 1 (blue curve) and 2 (red curve), respectively. It can be seen that,
for x < 4.48 (intersection of the two curves), membership to cluster 2 can be roughly assumed, whereas
for x ≥ 4.48, membership to cluster 1 seems to be more appropriate. The classification of sites based on
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this threshold value (roughly corresponding to an average hourly traffic flow of 1900 vehicles/hour) is
in accordance with the original cluster memberships for 71.9% of the sites, a satisfactory value for the
performance of the binary classifier “x”. In particular, on the basis of this threshold, the number of sites
included in cluster 1 (high traffic flow) decreases from 40 (clustering partition) to 23 (classification by
“x”) and, conversely, those included in cluster 2 (medium-low traffic flow) increase from 50 (clustering
partition) to 67 (classification by “x”).

Table 3 reports the median values of RMSE relative error εr (Equation (7)) for δ and IR determined
for the day and night periods and the two classifications based on clustering and the “non-acoustic”
parameter x. The values in bold-italics point out the situations (4 out of 16) where the classification
based on the binary classifier “x” is more accurate than that based on clustering. For the opposite
situations, it has to be addressed that the classification based on “x” makes possible the association of
new roads to the clusters also when acoustic data of them are unknown and only the day-time traffic
flow is available.

Table 3. Root mean square error (RMSE) median values of relative error εr for δ and IR determined
for the day and night periods and the two classifications based on clustering and the “non-acoustic”
parameter x.

Time Period Day (06:00–22:00) Night (22:00–06:00)

εrδ

Cluster 1 1.67 7.61
x ≥ 4.48 1.23 6.64

Cluster 2 1.79 8.66
x < 4.48 1.98 8.30

εrIR

Cluster 1 0.63 0.33
x ≥ 4.48 0.84 0.20

Cluster 2 0.17 0.30
x < 4.48 0.42 0.39

4. Discussion

Road categorization is often applied to stratified samplings of urban road traffic noise based on
some road attributes. This sampling, aimed to get data variability within each stratum less than that
between the strata, can be fruitfully applied not only to optimize the resources and time involved in
noise monitoring [37], but also to be integrated in the noise mapping process [39]. Unfortunately, among
the possible road attributes to be selected for categorization, the Italian road functional classification
appears to not be appropriate because, as clearly shown in Table 2, the partitions determined by
k-means cluster analysis include different road types. The k-means cluster analysis was also performed
selecting site partitions into four groups to be numerically consistent with the four functional road
categories. The comparison reported in Table 4 shows a large mismatch between the two approaches,
namely 58.9% of the sites were differently grouped. This is most likely because of the inadequacy of
functional road classification to represent the actual use and noise emission of roads.

The data partition obtained by clustering (see Table 2) is satisfactory as the two clusters have
similar size (40 and 50 sites) and are fairly separated. Cluster 1 includes sites with medium-high traffic
flow, whereas cluster 2 is formed by sites with low-medium traffic flow (median value of the average
day-time hourly traffic flow equal to 1760 and 470 vehicles/hour, respectively). As shown in Table 2,
the obtained classification taking into account δ and IR is rather similar to that considering hourly IR
values only, as they overlap for 93.3%. The misclassifications are observed only for road types “E”
(four sites) and “F” (two sites).

It is interesting to point out that the major differences between the two clusters for both δ and IR
are observed during the night period (22:00–06:00), as clearly shown in Figure 8. Thus, in the view of
reducing the number of variables to be taken into account in the clustering process, those included in
the night-time might represent potential candidates (16 variables instead of 48).
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Table 4. Distribution of the 90 sites across type of road and four partitions obtained by k-means cluster
analysis; percentage values are between ( ).

k-Means Cluster 1 2 3 4

N. of sites (%) 27 (30.0) 4 (4.4) 37 (19.3) 22 (24.3)

Road Type

A (motorway) 2 2 (100) 0 (0) 0 (0) 0 (0)

D (thoroughfare roads) 7 4 (57.1) 0 (0) 2 (28.6) 1 (14.3)

E (urban district roads) 29 13 (44.8) 0 (0) 15 (51.7) 1 (3.5)

F (urban local roads) 52 8 (15.3) 4 (7.7) 20 (38.5) 20 (38.5)Appl. Sci. 2020, 10, x FOR PEER REVIEW 11 of 15 
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Figure 8. Differences of the median value patterns of δ and IR between the two clusters (CL1 = cluster
1, CL2 = cluster 2).

To gain deeper insights of the differences between the two clusters, the farthest two sites in the
cluster bi-plot in Figure 2 were selected (highlighted by rectangular frames in Figure 2), and each of the
parameters reported in Table 5 and Figure 9 were examined. Table 5 reports, for each site, the hourly
interval when the maximum value of the parameter was observed, whereas Figure 9 shows the density
plots of the hourly values distribution. For the four parameters examined, their maximum values
are observed within the period of 00:00–09:00. In particular, for LAeqh, the density distributions have
a similar shape, whereas for IR, the maximum values are observed between the interval 02:00–04:00;
the local road (cluster 2) shows a slightly higher number of events than the motorway (cluster 1). For
the sound exposure level (SEL), the density distributions show similar modes, but that for cluster 1 is
right-skewed and that for cluster 2 is left-skewed.

Table 5. Maximum values of the parameters examined and corresponding hourly interval.

Cluster 1 2

Site TanOvest (Motorway) Semeria (Local Road)

x = log [qd] 5.20 3.62
LAeqh max[dB(A)] 72.7 69.7

Hourly interval 06:00–07:00 08:00–09:00
IR max[%] 56.2 93.3

Hourly interval 02:00–03:00 03:00–04:00
N. events max 248 272

Hourly interval 05:00–06:00 08:00–09:00
Sound exposure level (SEL) max[dB(A)] 76.4 80.4

Hourly interval 06:00–07:00 00:00–01:00
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Figure 9. Density plots of 24 hourly values of acoustic parameters LAeqh (a), IR (b), number of events
(c), and sound exposure level (SEL) (d) for two sites belonging to different clusters (blue = cluster 1, red
= cluster 2) and far away from each other in the cluster bi-plot (see Figure 2). Dotted lines show the
mode of the density distributions.

Regarding the output of PCA, the correlation plot, showing the contributions of the variables in
accounting for the variability in the two first principal components, is reported in Figure 10. It can
be seen that dimension 1 can be interpreted as describing the eventfulness of the noise as the most
contribution comes from the IR metric, whereas dimension 2 is linked to the noise energy, with LAeqh

being the most contributing variables.
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Figure 10. Correlation plot of the principal component analysis (PCA). Component 1, describing 37.8%
of the data variability, can be associated with the eventfulness of the noise (IR), whereas component 2,
describing 13.7% of the data variability, can be associated with the noise energy (LAeq). L## stands for
LAeqh and IR## for IRh.
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To give an example of application of the above data classifications, let us consider three new roads
for which the hourly values of δ and IR, dotted lines in Figure 11, as well as the non-acoustic parameter
x, are known. According to the categorization based on x, because for all the three roads, the x value is
less than 4.48, they should be classified into cluster 2, the centroid of which is also given in Figure 11,
together with that of cluster 1. Running the k-NN algorithm with k = 1, all three roads are recognized
to belong to cluster 2 as well. Thus, for these data, both classification criteria, based on clustering and
the parameter x, agree in the cluster membership assignment.
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Figure 11. Comparison of the new data roads, δ (a) and IR (b), with the centroids of the two clusters.

5. Conclusions

Cluster analysis was performed on a data sample of urban road traffic noise monitored in the city
of Milan, formed by the hourly values of A-weighted continuous equivalent level LAeqh, describing the
sound energy, and the intermittency ratio (IR), quantifying the noise events owing to vehicle pass-by.

The obtained two clusters can be fruitfully applied to stratify road sampling by choosing
a representative road sample in each cluster and, therefore, to optimize noise monitoring resources [31].
The approach of road traffic noise clustering can be integrated in the noise mapping process too,
as already applied in the DYNAMAP project [40,41], where a 24 h pattern representative of each cluster
is assigned to non-monitored roads belonging to the cluster itself.

The assignment of new roads to the clusters can be obtained by supervised algorithms, like k-NN,
when the acoustic data are known and, much more often, by a classifier linked to the road noise,
herewith the logarithm of day-time (06:00–22:00) traffic flow. The two data partitions obtained by
k-means clustering and by the threshold x = 4.48, corresponding to an average day-time hourly traffic
flow of 1900 vehicles/hour, are in a satisfactory accordance (classification matching 71.9%).

Of course, the results are strongly dependent on the local situation and could not be generalized to
other contexts. However, besides the above limitations, the described methodology could be fruitfully
applied on road traffic noise data in other cities, allowing to compare different noise contexts.
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