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Abstract: Propensity of skin diseases to manifest in a variety of forms, lack and maldistribution
of qualified dermatologists, and exigency of timely and accurate diagnosis call for automated
Computer-Aided Diagnosis (CAD). This study aims at extending previous works on CAD for
dermatology by exploring the potential of Deep Learning to classify hundreds of skin diseases,
improving classification performance, and utilizing disease taxonomy. We trained state-of-the-art
Deep Neural Networks on two of the largest publicly available skin image datasets, namely DermNet
and ISIC Archive, and also leveraged disease taxonomy, where available, to improve classification
performance of these models. On DermNet we establish new state-of-the-art with 80% accuracy
and 98% Area Under the Curve (AUC) for classification of 23 diseases. We also set precedence for
classifying all 622 unique sub-classes in this dataset and achieved 67% accuracy and 98% AUC.
On ISIC Archive we classified all 7 diseases with 93% average accuracy and 99% AUC. This study
shows that Deep Learning has great potential to classify a vast array of skin diseases with near-human
accuracy and far better reproducibility. It can have a promising role in practical real-time skin disease
diagnosis by assisting physicians in large-scale screening using clinical or dermoscopic images.

Keywords: artificial intelligence in dermatology; automated skin disease diagnosis; computer-aided
diagnosis; medical image analysis

1. Introduction

Deep Learning (DL) [1] is a branch of Artificial Intelligence (AI) in which a computer algorithm
analyses raw data and automatically learns discriminatory features needed for recognizing hidden
patterns in them. Over the last decade, this field has witnessed striking advances in the ability of
DL-based algorithms to analyse various types of data, especially images [2] and natural language [3].
The most common DL models are trained using supervised learning, in which datasets are composed of
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inputs (e.g., dermoscopic images of skin diseases) and corresponding target output labels (e.g., diagnoses
or skin disease classes such as ‘benign’ or ‘malignant’). Healthcare and medicine can greatly benefit from
recent advances in image classification and object detection [4], particularly those medical disciplines
in which diagnoses are primarily based on detection of morphologic changes such as pathology,
radiology, ophthalmology and dermatology etc. In such medical domains, digital images are captured
and provided to DL algorithms for Computer-Aided Diagnosis (CAD). These advance algorithms have
already made their mark on automated detection of tuberculosis [5], breast malignancy [6], glaucoma [7],
diabetic retinopathy [8] and serious brain findings such as stroke, haemorrhage, and mass effects [9].

Large scale manual screening for diseases is exhaustively laborious, extremely protracted, and
severely susceptible to human predisposition and fatigue. Since manual diagnosis may also be affected
by physicians’ level of experience and different dermoscopic algorithms in which they are formally
trained, multiple experts might disagree on their diagnosis for a certain condition [10,11]. Additionally,
due to physicians’ subjective judgements, manual diagnosis is hardly reproducible [12]. On the
other hand, CAD can provide swift, reliable and standardized diagnosis of various diseases with
consistency and accuracy. CAD can also afford the opportunity of efficient and cost-effective screening
and prevention of advanced tumour diseases to people living in rural or remote areas where expert
dermatologists are not readily available.

Most of publicly available datasets for clinical or dermoscopic images like Interactive Atlas of
Dermoscopy [13], Dermofit Image Library [14], Global Skin Atlas, MED-NODE [15] and PH2 [16] etc.
contain only a few hundreds to a couple of thousand images. Ali et al. [17] reported that around 78%
of the studies they surveyed used datasets smaller than 1000 images and the study using the largest
dataset had 2430 images. Therefore, most of existing works on CAD of skin diseases use either private or
very small publicly available datasets. Additionally, these studies usually render overwhelming focus
on only binary or ternary classification of skin diseases and not much attention is paid to multi-class
classification to explore the full potential of DL. Therefore, such studies act merely as a proof-of-concept
for the efficacy of AI in dermatology.

In this work, we extend previous works by showing that DL model are fairly capable of recognising
hundreds of skin lesions, and therefore should be capitalized to their full extent. We trained many
state-of-the-art DL models for classification of skin diseases using two of the largest publicly available
datasets, namely DermNet and ISIC Archive (2018 version). We also employed non-visual data in the
form of disease taxonomy to improve our classification results and show that DL can process and utilize
multi-model input for better classification performance.

Related Work

Convolutional Neural Networks (CNNs) are computer models inspired by biological visual cortex.
These models have been proven to be very efficient, accurate and reliable in image classification. They
have already achieved near-human performance in many challenging natural image stratification
tasks [18–21] and have also been used to classify diseases from medical images [4].

Towards automated skin disease classification, Kawahara et al. [22] employed CNNs to extract
features and trained a linear classifier on them using 1300 images of Dermofit Image Library to perform
10-ary classification. Similar approach was used by Ge et al. [23] on MoleMap dataset to do 15-ary
classification. Esteva et al. [24] used a pre-trained Inception v3 on around 130,000 images. Although
their results for two binary-classification tasks are merely “on par with all tested experts”, yet this
work was the first credible proof-of-concept based on a large dataset that DL can make a practical
contribution in real-world diagnosis. Following their steps, Haenssle et al. [25] pitched their fine-tuned
Inception v4 model against 58 dermatologist after evaluating binary classification performance of
their model on two test sets of size 100 and 300 only. The sensitivity and specificity of their Deep
Neural Network (DNN) model is certainly higher than that of dermatologists’ mean performance on
two private test sets, however, their performance on publicly available International Symposium on
Biomedical Imaging (ISBI) 2016 Challenge [26] test data is below the performance of first two winning
entries in that challenge.
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To address the scarcity of available data for tracking and detecting skin diseases, Li et al. [27]
developed a domain-specific data augmentation technique by merging individual lesions with full
body images to generate large volume of synthetic data. Li and Shen [28] also used DNN to segment
lesions, extract their dermoscopic features and classify them.

2. Materials and Methods

2.1. Datasets

DermNet is a freely available dataset of around 23,000 images gathered and labelled by Dermnet
Skin Disease Atlas. We were able to download 22,501 images because the links for rest of them
appeared to be inactive. This dataset provides diagnosis for 23 super-classes of diseases which are
taxonomically divided into 642 sub-classes. However, there were some duplicate, empty and irrelevant
sub-classes in the data. After pruning, 21,844 images in 622 sub-classes remained. Distribution of
DermNet dataset used in this work is given in Table 1.

Table 1. Overview of DermNet Dataset and Distribution of Classes.

Class Label Abbreviation Super-Class Name Np. of Images No. of Sub-Classes

0 ACROS Acne and Rosacea 912 21
1 AKBCC Actinic Keratosis, Basal Cell Carcinoma, and other Malignant Lesions 1437 60
2 ATO Atopic Dermatitis 807 11
3 BUL Bullous Diseases 561 12
4 CEL Cellulitis, Impetigo, and other Bacterial Infections 361 25
5 ECZ Eczema Photos 1950 47
6 WXA Exanthems and Drug Eruptions 497 18
7 ALO Alopecia and other Hair Diseases 195 23
8 HER Herpes, Genetal Warts and other STIs 554 15
9 PIG Pigmentation Disorder 711 32

10 LUPUS Lupus and other Connective Tissue diseases 517 20
11 MEL Melanoma and Melanocytic Nevi 635 15
12 NAIL Nail Fungus and other Nail Disease 1541 48
13 POI Poison Ivy and other Contact Dermatitis 373 12
14 PSO Psoriasis Lichen Planus and related diseases 2112 39
15 SCA Scabies Lyme Disease and other Infestations and Bites 611 25
16 SEB Seborrheic Keratoses and other Benign Tumors 2397 50
17 SYS Systemic Disease 816 43
18 TIN Tinea Candidiasis and other Fungal Infections 1871 36
19 URT Urticaria 265 9
20 VASCT Vascular Tumors 603 18
21 VASCP Vasculitis 569 17
22 WARTS Common Warts, Mollusca Contagiosa and other 1549 26

Total 21844 622

The second dataset is an online archive of around 24,000 images divided into seven classes
maintained by The International Skin Imaging Collaboration (ISIC). Their growing archive of high
quality clinical and dermoscopic images is manually labelled. Distribution of images in ISIC Archive-2018
dataset can be found in Table 2.

Table 2. Overview of ISIC Archive Dataset and Distribution of Classes.

Class Label Abbreviation Class Np. of Images

0 AKIEC Bowen Disease 334
1 BCC Basal Cell Carcinoma 583
2 BKL Benign Keratosis-like Lesions 1674
3 DF Dermatofibroma 122
4 MEL Melanoma 2177
5 NV Melanocytic Nevi 18,618
6 VASC Vascular Lesions 157

Total 23,665
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2.2. Experimental Setup

We used various state-of-the-art DNN architectures developed in the recent years like residual
networks, inception networks, densely connected networks, and frameworks facilitating architecture
search. To cope up with never-ending appetite of deep CNNs for data, we used these models pre-trained
on ImageNet, which is a large dataset of around 1.5 million natural scene images divided into 1000
classes. We fine-tuned these models on dermatology datasets to leverage the benefits of transfer
learning. From various CNN architectures tried for this task, we eventually selected ResNet-152 [29],
DenseNet-161 [30], SE-ResNeXt-101 [31], and NASNet [32] for their better performance. To report the
final results, we combined the potential of all of these biologically inspired neural networks by taking
ensemble of their individual predictions. For ensemble we used average of individual predictions of
four best performing CNNs to output final prediction.

It is important to note here that comparing researches that use different datasets, different subsets
or train/test splits of the same dataset is not scientifically correct. Since neither of the two datasets used
in this work provided instructions on dividing the data into train and test sets, we used stratified k-fold
cross validation (k = 5 in this work) so that any future research can be compared with our work at least.
The k-fold cross validation is a statistical method to ensure that the classifier’s performance is less biased
towards a randomly taken train/test split. The k-fold cross validation is performed by dividing the
whole dataset into k, possibly equal, portions or folds. During a training iteration, one of these folds is
kept aside for validation and rest of k − 1 folds are used for training the model. In next training iteration
a different fold is kept aside for validation and remaining k − 1 are used for training. This way, the train
and test sets in each iteration are completely mutually exclusive. This process is repeated k times such
that each of the k-folds is used for validation exactly once. This cross-validation approach provides
a more realistic generalization approximation. For training, we randomly cropped the images with
scale probability ranging between 0.7 and 1.0 while maintaining the aspect ratio. These cropped images
are then resized to 224 × 224 pixels (for NASNet the input is resized to 331 × 331) before feeding them
to the network. The images are also randomly flipped horizontally with flip probability 0.5. During
testing, an image is cropped into four corners (top left, top right, bottom left, and bottom right) and
one central crop of required size. These cropped images are given to the classifier for inference and
ensemble of five predictions is taken to provide final output. Initial learning rate is set to 10−4 and
is halved every five epochs. The networks are trained for 20 epoch and 10 epochs for DermNet and
ISIC Archive, respectively. The number of training epochs for each dataset and initial learning rate
were determined empirically. To handle class imbalance, we used weighted loss where the weight for a
certain class equals reciprocal of that class’s ratio in the dataset.

3. Results

3.1. Results on DermNet

As DermNet provides the opportunity to leverage taxonomical relationship among various
diseases, therefore, for 23-ary classification we conducted our experiments in two ways. In the first
experiment (Exp-1), we trained our networks on 23 classes and inferred on 23 classes. This is the most
prevalent approach. We achieved 77.53 ± 0.64% Top-1 accuracy and 93.87 ± 0.37% Top-5 accuracy
with 97.60 ± 0.15% Area Under the Curve (AUC) using ensemble of four best models. In second
experiment (Exp-2) we made use of additionally given ontology in the dataset. We trained our network
on 622 classes but inferred on 23 classes only. The use of this disease ontology information translates
into incorporation of expert knowledge into the network. We implemented this by summing the
predictions of all sub-classes to calculate the prediction of respective super-class. This approach gave
us noticeable boost in our classifiers’ performance. We got 79.94 ± 0.45% Top-1 accuracy, 95.02 ± 0.15%
Top-5 accuracy and 98.07 ± 0.07% AUC using ensemble.

Top-N accuracy indicates the capability of a classifier to predict correct class in first N attempts.
This metric gives a deeper insight into the classifier’s learning and discriminating ability. Our results,
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of Exp-2 for example, show that the model was able to predict the correct diagnosis out of 23 possible
diseases in first attempt with almost 80% accuracy. However, when allowed to make 5 most probable
predictions about a given image, the classifier achieved more than 95% accuracy. This means that even
when the first prediction of the classifier is wrong, the would-be correct prediction is high on the list
of next four predictions. Table 3 shows detailed performance metrics of 23-ary classification in both
experiments. Accuracies and AUC scores of individual classifiers for Exp-1 and Exp-2 are given in
Table A1 in Appendix A.

Table 3. Performance Metrics for 23-ary Classification of DermNet using Ensemble. Exp-1: Training on
23 classes and testing on 23 classes without using disease ontology. Exp-2: Training on 622 classes and
testing on 23 classes using disease ontology. Refer to Table 1 for full-form of class abbreviations.

Class Precision (%) Sensitivity (%) Specificity (%) F-1 Score (%)

Exp-1 Exp-2 Exp-1 Exp-2 Exp-1 Exp-2 Exp-1 Exp-2

ACROS 81.39 81.66 85.86 87.39 98.90 98.94 83.56 84.43
AKBCC 79.17 81.45 77.24 79.75 98.19 98.43 78.20 80.59

ATO 71.95 75.76 75.34 77.08 98.57 98.83 73.61 76.41
BUL 75.72 74.08 60.61 64.71 99.35 99.26 67.33 69.08
CEL 61.60 64.18 44.88 50.14 99.40 99.42 51.92 56.30
ECZ 75.19 78.41 81.59 83.79 96.69 97.24 78.26 81.01
WXA 62.99 65.17 64.39 67.00 98.88 98.97 63.68 66.07
ALO 76.96 81.19 85.64 84.10 99.70 99.78 81.07 82.62
HER 77.87 77.99 71.12 74.19 99.33 99.32 74.34 76.04
PIG 69.57 73.31 68.50 71.87 98.72 98.91 69.03 72.59

LUPUS 69.61 74.60 59.38 63.64 99.20 99.35 64.09 68.68
MEL 82.85 83.46 80.63 83.46 99.36 99.38 81.72 83.43
NAIL 89.64 89.08 88.71 90.01 99.00 98.95 89.17 89.53
POI 76.81 75.33 56.84 61.39 99.62 99.57 65.33 67.65
PSO 78.39 79.61 78.65 81.91 97.09 97.26 78.52 80.75
SCA 74.51 77.42 62.19 70.70 99.22 99.27 67.80 73.91
SEB 79.14 85.16 86.10 87.15 96.47 97.69 82.48 86.14
SYS 68.61 72.35 72.06 72.79 98.38 98.67 70.29 72.57
TIN 80.97 80.97 83.70 85.73 97.66 97.68 82.31 83.28
URT 75.67 78.21 75.09 75.85 99.62 99.68 78.38 77.01

VASCT 83.30 84.77 72.80 76.62 99.47 99.51 77.70 80.49
VASCP 72.43 77.24 74.34 75.75 99.03 99.26 73.37 76.49
WARTS 77.76 81.97 81.02 82.76 97.76 98.29 79.36 82.36

Weighted Average 71.81 79.82 77.53 79.94 98.14 98.40 77.34 79.80
Standard Deviation 06.46 05.89 11.20 09.83 00.95 00.75 08.42 07.72

Figure 1 shows that many reciprocatory misclassifications in Exp-1, like between Eczema
(Abbreviated as ECZ in Figure 1) and Psoriasis Lichen Planus (PSO) and between Actinic Keratosis
BCC (AKBCC) and Seborrheic Keratosis (SEB), are corrected to a large extent in Exp-2 by utilizing
taxonomical relationship among diseases.

We not only performed classification for 23 super-classes but also took a step forward and tried to
classify all 622 unique sub-classes as well. We obtained 66.74± 0.64% Top-1 accuracy and 86.26± 0.54%
Top-5 accuracy with 98.34 ± 0.09% AUC. Small values of standard deviation in all of these results
signify the stability and consistency of our classifier’s performance.

Previous works on DermNet have generally opted for a subset of 23 super-classes for classification.
However, Haofu Liao [33] chose to classify all 23 classes and reported best Top-1 accuracy of 73.1%
and Top-5 accuracy of 91% on 1000 randomly chosen test images. Cícero et al. [34] reported Top-1
accuracy of 60% on 24 classes (they split “Melanoma and Melanocytic Nevi” into malignant and benign
classes). They picked only 100 examples of each class for their test set. To the best of our knowledge,
previously the classification task with highest number of classes using DermNet has been performed
by Prabhu et al. [35]. They performed 200-ary classification and obtained highest Mean Class Accuracy
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(MCA) around 51%. Classification accuracy and AUC of individual models for 622-ary classification
are given in Table A2 in Appendix A.

(a) Confusion Matrix for Exp-1 on DermNet (b) Confusion Matrix for Exp-2 on DermNet
Figure 1. Accumulated confusion matrix of 23-ary classification of DermNet dataset.

3.2. Results on ISIC Archive-2018

ISIC Archive consists of high resolution clinical and dermoscopic images. It does not provide any
ontology information about the diseases. Therefore, the approach used in Exp-2 for DermNet cannot
be applied here. We achieved Top-1 accuracy of 93.06% ± 0.31% and Top-2 accuracy of 98.18% ± 0.06%
with 99.23% ± 0.02% AUC using ensemble approach. Since this dataset has only seven classes, we
restricted ourselves to Top-2 accuracy. Table 4 shows that the ensemble of four classifiers was able to
achieve high precision of over 80% for all classes except Vascular Lesions that can be justified by small
number of images (157 only) in this class. Confusion matrix showing number of correctly classified and
misclassified images per class in this dataset is shown in Figure 2. Table A3 in Appendix A presents
accuracy and AUC scores of individual classifiers.

Table 4. Performance Metrics of ISIC Archive-2018 using Ensemble.

Class Precision (%) Sensitivity (%) Specificity (%) F1-Score (%)

Bowen Disease (AKIEC) 80.43 78.74 99.71 79.58
Basal Cell Carcinoma (BCC) 91.85 86.96 99.79 89.34
Benign Keratosis-like Lesions (BKL) 85.55 77.48 98.95 81.32
Dermatofibroma (DF) 91.67 81.15 99.96 86.09
Melanoma (MEL) 84.64 66.05 98.75 74.20
Melanocytic Nevi (NV) 94.90 98.30 79.09 96.57
Vascular Lesions (VASC) 66.10 74.52 99.73 70.06
Weighted Average 85.02 80.46 96.57 82.45
Standard Deviation 09.10 09.38 07.15 08.38

The ISIC Challenges of 2016 [26] and 2017 [36] have focused on binary classification of skin lesions
whereas ISIC Challenge 2018 [37] included seven classes. However, as shown in our experiments, DL
has enormous capacity to discern far many diseases with high sensitivity and specificity if given enough
data. While reliable and accurate detection of melanoma is of utmost importance because of its lethality,
it might also be of interest for dermatologists to use CAD to detect other non-lethal skin diseases.

Figure 3 shows some examples of correct and misclassified images. We observed that some
of these misclassified images had very high correlation with other classes. For example, there is
significantly small inter-class variance between Figure 3a and Figure 3e and between Figure 3d and
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Figure 3h. Therefore, CAD had really hard time classifying those classes. ROC AUC curves for all
experiments are depicted in Figure A1 in Appendix A.

Figure 2. Confusion Matrix showing number of correctly classified and misclassified images per class
in ISIC Archive-2018.

(a) (b) (c) (d)

(e) (f) (g) (h)
Figure 3. Examples of correctly and incorrectly classifies diseases. (a) Correctly classified ACROS
in DermNet (b) Correctly Classified NAIL in DermNet (c) Correctly Classified SEB in DermNet
(d) Correctly Classified VASC in ISIC (e) CEL Misclassified as ACROS in DermNet (f) Correctly
Classified AKIEC in ISIC (g) BKL Miscalssified as MEL in ISIC (h) NV Misclassified as VASC in ISIC.
All Images are resized to fit in square windows.

4. Discussion

Automated diagnosis of skin diseases has enjoyed much attention from researchers for quite
some time now. However, most of these researches confine themselves to only binary or ternary
classification [38–43] even when large number of classes are available [44]. The importance of early
detection of melanoma is understandable given the growing risk it poses to the patient’s survival with
every passing day. However, there are thousands of other skin diseases [24] that might not be as fatal
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as melanoma but have an enormous impact on a patient’s quality of life. DL is extremely competent
to take on hundreds of classes simultaneously, as evident by our results. We believe that this is right
time to harvest the potential of DL to its full extent and start conducting real impactful research that
can actually translate into industry standard solution for automated skin disease diagnosis on a larger
scale. These solutions can have a far-reaching social impact by not only helping dermatologist with
their diagnosis in a clinical setup but also providing an economical and efficient initial screening for
underprivileged people in both developed and developing countries.

Another consideration in terms of application of DL in dermatology is that many researchers either
use private datasets or public datasets with their own choice of train/test splits (although randomly
taken) and number of classes. For this reason, there is little common ground, and often times no
ground at all, to compare various classification methods—as also noted by Brinker et al. [45]. This
issue of non-comparability can be resolved by collecting and maintaining a standardized publicly
available large dataset with explicitly specified train/test splits and standard performance metrics for
benchmarking. Notwithstanding that some public datasets, like ISIC Challenges datasets, do provide
this beforehand train/test split but their size is normally small and task is usually restricted to binary or
ternary classification. Any research on such small datasets cannot be reliably generalized and although
the results are publishable, they cannot be used as stepping stone for practical applications of AI in
real-world diagnosis. On the other hand, large public datasets normally have a lot of noise, images
with disgracefully low resolution or are watermarked. Significant useful information required for
fine-grained classification of seemingly similar diseases is lost in such low resolution or watermarked
images. Additionally, non-visual metadata, like medical history, is not usually available with medical
image datasets. However, this additional information could be pivotal for confident and accurate
diagnosis. We were able to utilize disease taxonomy for DermNet dataset and improve our results
by 2.5% (refer to Table A1). If multi-model datasets are curated and provided publicly, AI can surely
leverage additional information to improve its classification performance.

While understanding and interpreting results of any AI-based classifier it is important to realize
that accuracy, or even sensitivity and specificity, might not portray the complete picture of a model’s
performance. That is why Area Under Receive Operating Characteristic (ROC) Curve (AUC) is also
reported along with other performance metrics. From AI point of view, we might argue that achieving
around 80% average sensitivity with 1.6% average false positive rate (Table 3, Exp-2) for 23-ary
classification task using highly unbalanced datasets of low-resolution and watermarked images is
a reasonable achievement. Nevertheless, the actual performance of any AI-based classifier can be
significantly different in practical clinical setup as noted by Navarrete-Dechent et al. [46]. They found
that the classifier developed by Han et al. [47] did not generalize well when presented with data from an
archive of different demography than the one which was used to train the classifier. For a dermatologist
it is certainly a cause of concern. However, Han et al. advocated in their response [48] that a classifier
should not be judged merely on the bases of sensitivity and specificity. The ROC curves indicate the
true ability of a classifier to perform under a wide range of operating points or thresholds while making
a diagnosis prediction for a given image. Varying this threshold from 0 to 1 on model’s output can
change the trade-off between sensitivity and specificity and yield different accuracy. Therefore, higher
AUC values ensure that the model has the ability to correctly predict a certain disease, for examples
melanoma, with minimum chance of classifying any other disease as that particular disorder.

5. Conclusions

In this paper we have build on previous works on CAD for dermatology and exhibited that
DNNs are fairly competent to identify hundreds of skin lesions, and therefore, should be exploited to
their full potential instead of employing them to classify only a handful of diseases. We have also set
new state-of-the-art result for 23-ary classification on DermNet. Non-visual metadata is not normally
available with most of medical image datasets. However, if such additional information is available,
DNNs are capable of utilizing it and improving their classification performance as is evident from our
experiment with using disease taxonomy to noticeably improve our classification accuracy.
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DL Deep Learning
AI Artificial Intelligence
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CNN Convolutional Neural Network
DNN Deep Neural Network
ISBI International Symposium on Biomedical Imaging
ISIC International Skin Imaging Collaboration
AUC Area Under the Curve
MCA Mean Class Accuracy
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Appendix A

This section presents classification accuracy and AUC for individual classifiers and their ensembles
for both DermNet and ISIC Archive-2018 datasets.

Table A1. Detailed results of 23-ary classification for individual classifiers and their ensemble on
DermNet.

Model Top-1 Accuracy (%) Top-5 Accuracy (%) AUC (%)

Exp-1 Exp-2 Exp-1 Exp-2 Exp-1 Exp-2

Resnet-152 70.13 ± 0.89 75.09 ± 0.40 91.17 ± 0.61 93.12 ± 0.31 96.15 ± 0.27 97.31 ± 0.11
Densenet-161 73.34 ± 0.68 77.21 ± 0.40 92.16 ± 0.36 93.91 ± 0.35 96.61 ± 0.15 97.66 ± 0.06
SE_ResNeXt-101 74.46 ± 0.29 77.28 ± 0.60 92.59 ± 0.95 94.07 ± 0.25 96.84 ± 0.22 97.56 ± 0.05
NASNet 72.78 ± 0.73 77.21 ± 0.48 91.68 ± 0.58 92.57 ± 0.32 96.19 ± 0.34 96.79 ± 0.15
Ensemble 77.53 ± 0.64 79.94 ± 0.45 93.87 ± 0.37 95.02 ± 0.15 97.60 ± 0.15 98.11 ± 0.07

Table A2. Detailed results of 622-ary classification for individual classifiers and their ensemble on
DermNet.

Model Top-1 Accuracy (%) Top-5 Accuracy (%) AUC (%)

Resnet-152 60.82 ± 0.51 82.16 ± 0.43 98.50 ± 0.10
Densenet-161 63.51 ± 0.68 84.46 ± 0.46 98.49 ± 0.06
SE_ResNeXt-101 64.03 ± 0.77 84.26 ± 0.66 98.48 ± 0.08
NASNet 60.69 ± 0.72 81.09 ± 0.61 97.90 ± 0.03
Ensemble 66.74 ± 0.64 86.26 ± 0.54 98.77 ± 0.07
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Table A3. Detailed results of 7-ary classification for individual classifiers and their ensemble on ISIC
Archive-2018.

Model Top-1 Accuracy (%) Top-2 Accuracy (%) AUC (%)

Resnet-152 89.79 ± 0.29 97.30 ± 0.24 98.97 ± 0.02
Densenet-161 91.27 ± 0.35 97.46 ± 0.21 99.04 ± 0.03
SE_ResNeXt-101 91.63 ± 0.17 97.77 ± 0.21 99.07 ± 0.03
NASNet 91.52 ± 0.38 97.57 ± 0.28 98.97 ± 0.05
Ensemble 93.06 ± 0.31 98.18 ± 0.06 99.23 ± 0.02

Figure A1 shows ROC curves and Area under these ROC curves for all experiments conducted
and reported above.

(a) (b)

(c) (d)
Figure A1. Receiver Operating Characteristics (ROC) curves for DermNet and ISIC Archive-2018
datasets. (a) ROC curve for 23-ary classification of DermNet without using ontology. (b) ROC curve
for 23-ary classification of DermNet with using ontology (c) ROC curve for 622-ary classification of
DermNet. (d) ROC curve for 622-ary classification of ISIC Archive.
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