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Abstract: Eigenvector sensitivities are often used in many engineering problems such as structural
vibration control, optimization design, model updating and damage identification. So far, modal
superposition method and Nelson’s method are the two main methods for exactly calculating
eigenvector sensitivities. However, modal superposition method has a great limitation in applications
because it needs all the eigenvectors in its calculation. Although Nelson’s method does not need
to use all the eigenvectors, there is no unified sensitivity calculation formula for each eigenvector.
In this paper, a new exact method for calculating the eigenvector sensitivity is proposed. The explicit
expressions for the first-order and second-order sensitivities of eigenvectors are derived, and strict
proof is given. The developed eigenvector sensitivity formulas are simple and convenient in
programming. The proposed method is as powerful as Nelson’s method, but much more easy to use.
Two numerical examples are used to demonstrate the proposed method and the results show that the
developed eigenvector sensitivity formulas are exact and reliable.
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1. Introduction

In structural vibration modal analysis, the eigenvalue (square of frequency) and eigenvector
(mode shape) are the two important parameters and their sensitivities are often used in many engineering
problems such as structural vibration control [1–6], optimization design [7–9], model updating [10–14]
and damage identification [15–17]. From the current research literature, the calculation formula of
eigenvalue sensitivity is simple, but the calculating formula for eigenvector sensitivity is complicated.
At present, there are two kinds of methods to calculate the sensitivities of eigenvectors: exact methods
and approximate methods. The classical exact methods are modal superposition method [18] and
Nelson’s method [19]. The basic principle of mode superposition method is to express the eigenvector
sensitivity as a linear combination of all modes. Thus modal superposition method has a great limitation
in application because only partial modes are available for large-scale structures. Lim et al. [20] studied
the improved modal superposition method by approximating the eigenvector derivatives using only
the available lower modes. Zhang and Zerva [21,22] proposed an iterated modal superposition method
to further improve numerical accuracy. Their method was only efficient for the case of limited numbers
of design variables. Balmes [23] improved the computational efficiency of modal superposition method
by using fixed basis model reduction technique. The modal superposition method has also been
developed to treat with the damping systems [24,25], and complex-valued systems [26,27] by some
researchers. In general, the calculation formulas of modal superposition method and its improved
methods are complicated, especially for the higher-order sensitivity analysis. Compared with modal
superposition method, Nelson’s method and its extended methods have an obvious advantage that
only the eigenvector of interest is required. Lin et al. [28,29] improved the computational efficiency of
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Nelson’s method by using inverse iteration and model reduction techniques. Adhikari and Friswell [30]
used Nelson’s method to calculate the derivatives of the eigenvalues and eigenvectors for nonviscously
damped systems. Wu et al. [31] presented an improved Nelson’s Method for computing eigenvector
derivatives with distinct and repeated eigenvalues. The improvement of their method is mainly to
reduce the condition number of coefficient matrix. Guedria et al. [32] extended Nelson’s approach to
the computation of the second-order eigenpair derivatives for symmetric and asymmetric damped
systems with distinct eigenvalues. Using generalized inverse, Wang and Dai [33,34] further extended
Nelson’s method to the calculation of eigensensitivities for symmetric and asymmetric damped systems
with repeated eigenvalues. Ruiz et al. [35] studied the computation method of eigenvector sensitivity
in structural and topology optimization problems. They proposed a general framework for computing
eigenvector sensitivity whenever tracking specific mode shapes selected beforehand. Lin and Ng [36]
studied the computation problem of eigenpair sensitivities for fractional vibration systems. Their work
examined how eigenvalue and eigenvector derivatives of fractional systems can be derived when
system matrices become functions of physical design parameters. Although Nelson’s method and the
above extended methods do not need to use all eigenvectors, there is no unified sensitivity calculation
formula for each eigenvector, and the operation steps are slightly cumbersome. In view of this,
this work presents a new exact method for calculating the sensitivities of eigenvectors. The explicit
expressions for the first-order and second-order sensitivities of eigenvectors are derived, and strict
proof is given. These formulas are simple and convenient in programming. The proposed method is
as powerful as Nelson’s method, but much more easy to use. Two numerical examples are used to
demonstrate the proposed method and the results show that the developed eigenvector sensitivity
formulas are exact and reliable.

2. The Classical Exact Methods

In this section, modal superposition method [18] and Nelson’s method [19] are briefly reviewed
for calculating the eigenvector sensitivity. Assuming structural stiffness and mass matrices with n
degrees of freedom (DOFs) are K and M, the eigenvalue and eigenvector of the system can be obtained
by solving the following generalized eigenvalue problem as:

(K − λ jM)φ j = 0 (1)

φT
j Mφ j = 1 (2)

where λ j and φ j are the jth eigenvalue and eigenvector, j = 1, 2, · · · , n. Apparently, K,M,λ j and φ j are
the functions of the design parameters pi such as elastic modulus, cross sectional area and density. By
taking partial derivative of Equation (1) with respect to pi, one has:

(K − λ jM)
∂φ j

∂pi
= (

∂λ j

∂pi
M + λ j

∂M
∂pi
−
∂K
∂pi

)φ j (3)

where
∂λ j
∂pi

is defined as the first-order eigenvalue sensitivity and
∂φ j
∂pi

is defined as the first-order
eigenvector sensitivity. By transposing Equation (1) and using the symmetry of K and M, one has:

φT
j (K − λ jM) = 0 (4)

Multiplying Equation (3) by φT
j and using Equations (2) and (4), one can obtain the calculation

formula of the eigenvalue sensitivity as:

∂λ j

∂pi
= φT

j
∂K
∂pi

φ j − λ jφ
T
j
∂M
∂pi

φ j (5)
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Apparently, Equation (5) is simple and easy to program. Next, it focuses on the calculation method
of eigenvector sensitivity. As mentioned before, the calculation formula of eigenvector sensitivity
is relatively complex. The modal superposition method and Nelson’s method are briefly described
as follows:

2.1. Modal Superposition Method

Fox and Kapoor [18] put forward the modal superposition method for the calculation of eigenvector
sensitivity. The basic idea of the method is to express the eigenvector sensitivity as the linear combination
of all eigenvectors. The calculation formulas are as follows:

∂φ j

∂pi
=

n∑
r=1,r, j

c jrφr − c j jφ j (6)

c jr =
φT

r (
∂K
∂pi
− λ j

∂M
∂pi

)φ j

λ j − λr
, r , j (7)

c j j =
1
2
φT

j
∂M
∂pi

φ j (8)

Obviously, all eigenvectors must be used in Equation (6). In practice, the computation of the
high-order eigenvectors of the large-scale structures is time-consuming and inaccurate. Thus the modal
superposition method has great limitations in application.

2.2. Nelson’s Method

Nelson’s method [19] has the great advantage that only the eigenvector of interest is required.
Its basic idea is to convert the eigenvector sensitivity into the sum of the general solution and the special
solution of Equation (3). Then the general solution and the special solution are solved, respectively.
The specific operation steps are as follows:

Letting

η j = (
∂λ j

∂pi
M + λ j

∂M
∂pi
−
∂K
∂pi

)φ j (9)

Ω = K − λ jM (10)

Then Equation (3) simplifies to:

Ω
∂φ j

∂pi
= η j (11)

Since the matrix Ω in Equation (11) is a singular matrix, it is impossible to directly calculate
∂φ j
∂pi

by using the matrix inverse technique. From Equation (11),
∂φ j
∂pi

can be expressed as the sum of the
general solution and a special solution of Equation (11). According to Equation (1), the general solution
(singular solution) of Equation (11) is φ j. Assuming a special solution of Equation (11) is ζ j, one has

∂φ j

∂pi
= ζ j + δφ j (12)

The next task is to solve the special solution ζ j and the coefficient δ. In order to find the special
solution, Equation (11) can be constrained and rewritten as

Ω
∂φ j

∂pi
= η j (13)
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where Ω is a nonsingular matrix obtained by replacing the elements in Ω of the x row and the x column
with 0, and replacing the (x, x) element with 1. Here the x represents the row number of the largest
element in φ j. η j is obtained by replacing the element in the x row of η j with 0. From Equation (13),
the special solution ζ j can be obtained as

ζ j = Ω
−1
η j (14)

by taking partial derivative of Equation (2) with respect to pi, one has

φT
j M

∂φ j

∂pi
= −

1
2
φT

j
∂M
∂pi

φ j (15)

substituting Equation (12) into Equation (15), the coefficient δ can obtained as

δ = −
1
2
φT

j
∂M
∂pi

φ j −φ
T
j Mζ j (16)

It can be seen from the above processes that Nelson’s method needs several operation steps.
There is no unified formula for calculating the sensitivities of different eigenvectors, since the positions
of the largest elements in different eigenvectors are always changing in the process of finding
specific solutions.

3. The New Exact Method for Eigenvector Sensitivities

In view of the shortcomings of existing methods, the paper proposes a new exact method for
calculating the eigenvector sensitivity. The main formulas are derived as follows.

Firstly, Equation (3) can be rewritten by adding a term of λ jφ jφ
T
j M

∂φ j
∂pi

as

(K − λ jM + λ jφ jφ
T
j M)

∂φ j

∂pi
= (

∂λ j

∂pi
M + λ j

∂M
∂pi
−
∂K
∂pi

)φ j + λ jφ jφ
T
j M

∂φ j

∂pi
(17)

substituting Equation (6) into λ jφ jφ
T
j M

∂φ j
∂pi

yields

λ jφ jφ
T
j M

∂φ j

∂pi
=

n∑
r=1,r, j

c jrλ jφ j(φ
T
j Mφr) − c j jλ jφ j(φ

T
j Mφ j) (18)

according to the orthogonally of eigenvectors, one has

φT
j Mφr = 0, j , r (19)

substituting Equations (2) and (19) into Equation (18), one can obtain

λ jφ jφ
T
j M

∂φ j

∂pi
= −c j jλ jφ j (20)

substituting Equation (20) into Equation (17) yields

Θ ·
∂φ j

∂pi
= Π ·φ j (21)

where
Θ = K − λ jM + λ jφ jφ

T
j M (22)
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Π =
∂λ j

∂pi
M + λ j

∂M
∂pi
−
∂K
∂pi
− c j jλ jI (23)

If the matrix Θ is full rank, the eigenvector sensitivity
∂φ j
∂pi

can be directly computed from
Equation (21) as:

∂φ j

∂pi
= Θ−1Πφ j (24)

The proposition that the matrix Θ is full rank can be proved as follows.

Proof. To prove the above proposition, it is necessary to use for reference the related viewpoints
and proof process of the Cayley–Hamilton theorem. Matrix diagonalization is one of the common
techniques used in the proof of Cayley–Hamilton theorem. Therefore, in the next proof process, matrix
diagonalization is also used as the main tool to simplify the matrix Θ. Letting

Φ = [φ1,φ2, · · · ,φn] (25)

It is clear that the matrix Φ consisting of all the eigenvectors is full rank. Then the original
proposition “Θ is full rank” can be equivalent to the new proposition “ΦTΘΦ is full rank”.
Using Equations (22) and (25), ΦTΘΦ can be expanded as

ΦTΘΦ = ΦTKΦ − λ jΦTMΦ + λ jΦTφ jφ
T
j MΦ (26)

where

ΦTKΦ =


λ1

λ2
. . .

λn

, (27)

λ jΦTMΦ = λ j


1

1
. . .

1

 (28)

λ jΦTφ jφ
T
j MΦ = λ j



0 · · · 0 φT
1φ j 0 · · · 0

0 · · · 0 φT
2φ j 0 · · · 0

...
...

...
...

...
...

...
0 · · · 0 φT

j φ j 0 · · · 0
...

...
...

...
...

...
...

0 · · · 0 φT
n−1φ j 0 · · · 0

0 · · · 0 φT
nφ j 0 · · · 0


(29)

Substituting Equations (27)–(29) into Equation (26) yields

ΦTΘΦ =



λ1 − λ j · · · 0 λ jφ
T
1φ j 0 · · · 0

0
. . . 0 λ jφ

T
2φ j 0 · · · 0

...
... λ j−1 − λ j

...
...

...
...

0 · · · 0 λ jφ
T
j φ j 0 · · · 0

...
...

...
... λ j+1 − λ j

...
...

0 · · · 0 λ jφ
T
n−1φ j

...
. . . 0

0 · · · 0 λ jφ
T
nφ j 0 · · · λn − λ j


(30)
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Now the proposition ΦTΘΦ is full rank can be equivalent to the new proposition “the Equation

ΦTΘΦ ·


δ1
...
δn

 =


0
...
0

 only has zero solution”. Using Equation (30), ΦTΘΦ ·


δ1
...
δn

 =


0
...
0

 can

be simplified as 

δ1(λ1 − λ j) + δ jλ jφ
T
1φ j

...
δ j−1(λ j−1 − λ j) + δ jλ jφ

T
j−1φ j

δ jλ jφ
T
j φ j

δ j+1(λ j+1 − λ j) + δ jλ jφ
T
j+1φ j

...
δn(λn − λ j) + δ jλ jφ

T
nφ j


=



0
...
0
0
0
...
0


(31)

from the jth row of Equation (31), one has
δ j = 0 (32)

substituting Equation (32) into Equation (31), one can obtain

δ1 = δ2 = · · · = δn = 0 (33)

Equation (33) means that the equation ΦTΘΦ ·


δ1
...
δn

 =


0
...
0

 only has zero solution. Thus the

matrix ΦTΘΦ is full rank. It proved that the matrix Θ is full rank.
End (End of the proof). �

It must be pointed out that only systems with distinct eigenvalues are considered in this
paper. If there exists two different eigenvectors with the same eigenvalue, the matrix presented in
Equation (30) is not at full rank and therefore the above thesis will be invalid. The problem is known
and presented in the published literature. The existing methods to address this problem can be found in
references [23,31,33–35]. How to extend the proposed method to the systems with repeated eigenvalues
will be further studied in the future.

Equation (24) is the proposed new formula for calculating the first-order sensitivity of the
eigenvector. Obviously, this formula has the advantage of requiring only the knowledge of the
eigenvector to be differentiated, and there is no need for multi-step operations like Nelson’s method.
The formula is concise and can be applied to any eigenvector.

Another advantage of the proposed method is that it can be easily extended to the calculations of
the second- and higher order sensitivities of eigenvectors. Without loss of generality, the calculation
formulas of the second-order sensitivity are derived as follows. Differentiating Equation (3) a second
time with respect to a (possibly) different parameter ps, one has

(K − λ jM)
∂2φ j

∂pi∂ps
=
∂(λ jM−K)

∂ps

∂φ j

∂pi
+
∂(λ jM−K)

∂pi

∂φ j

∂ps
+
∂2(λ jM−K)

∂pi∂ps
φ j (34)

Multiplying Equation (34) by φT
j and using Equations (2) and (4), the second sensitivity of λ j can

be obtained as:

∂2λ j
∂pi∂ps

= φT
j [

∂2K
∂pi∂ps

− λ j
∂2M
∂pi∂ps

−
∂λ j
∂pi

∂M
∂ps
−
∂λ j
∂ps

∂M
∂pi

]φ j + φT
j
∂(K−λ jM)

∂pi

∂φ j
∂ps

+ φT
j
∂(K−λ jM)

∂ps

∂φ j
∂pi

(35)
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It is clear that Equation (35) only requires the first-order sensitivities of the eigenvalues and
eigenvectors for the calculation of the second-order eigenvalue sensitivity.

The second-order sensitivity of eigenvector can be directly computed from Equation (21).
Differentiating Equation (21) a second time with respect to ps gives

Θ ·
∂2φ j

∂pi∂ps
=
∂(Πφ j)

∂ps
−
∂Θ
∂ps

∂φ j

∂pi
(36)

Then the second-order eigenvector sensitivity
∂2φ j
∂pi∂ps

can be computed from Equation (36) as:

∂2φ j

∂pi∂ps
= Θ−1

· [
∂Π
∂ps

φ j + Π
∂φ j

∂ps
−
∂Θ
∂ps

∂φ j

∂pi
] (37)

where

∂Θ
∂ps

=
∂K
∂ps
−
∂λ j

∂ps
M− λ j

∂M
∂ps

+
∂λ j

∂ps
φ jφ

T
j M + λ j(

∂φ j

∂ps
φT

j M + φ j

∂φT
j

∂ps
M + φ jφ

T
j
∂M
∂ps

) (38)

∂Π
∂ps

=
∂2λ j

∂pi∂ps
M +

∂λ j

∂pi

∂M
∂ps

+
∂λ j

∂ps

∂M
∂pi

+ λ j
∂2M
∂pi∂ps

−
∂2K
∂pi∂ps

−
∂c j j

∂ps
λ jI − c j j

∂λ j

∂ps
I (39)

From Equation (8),
∂c j j
∂ps

in Equation (39) can be computed by

∂c j j

∂ps
= φT

j
∂M
∂pi

∂φ j

∂ps
+

1
2
φT

j
∂2M
∂pi∂ps

φ j (40)

4. Numerical Examples

4.1. A Truss Structure

A truss structure as shown in Figure 1 is used to demonstrate the proposed method and the
calculation results are compared with those obtained by the modal superposition method. The structure
consists of 58 bar elements with a total of 51 DOFs. The basic physical parameters are: modulus of
elasticity E = 200 GPa, density ρ = 7800 kg/m3, cross-sectional area A = 3.14 × 10−4 m2. According to
the finite element model theory, structural global stiffness matrix K can be expressed as the sum of all
elemental stiffness matrices, that is

K =
58∑

i=1

piKi (41)

where Ki and pi are the ith elemental stiffness matrix and design parameter. Next, the proposed method

(Equation (24)) is employed to calculate the eigenvector sensitivity
∂φ j
∂pi

. Without loss of generality,

Tables 1 and 2 present some results (the data corresponding to the first 20 DOFs) of ∂φ1
∂p1

, ∂φ1
∂p2

, ∂φ1
∂p3

, ∂φ1
∂p4

,
∂φ2
∂p1

, ∂φ2
∂p2

, ∂φ2
∂p3

and ∂φ2
∂p4

. For convenience of comparison, the results obtained by the modal superposition
method (Equation (6)) are also given in Tables 1 and 2. One can see from Tables 1 and 2 that the
proposed method can obtain the same calculation results as those of the modal superposition method.
It has been shown that the proposed method is an exact method and easier to operate.
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Table 1. Comparison of the calculation results for the first eigenvector sensitivity (×10−3). 
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1
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∂φ

 

(Modal 
Superposition 

Method) 
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1
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∂φ

 

(The 
Proposed 
Method) 

3

1
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∂φ

 

(Modal 
Superposition 

Method) 

4

1

p∂
∂φ

 

(The 
Proposed 
Method) 

4

1

p∂
∂φ

 

(Modal 
Superposition 

Method) 
1 0.3 0.3 −0.5 −0.5 −0.1 −0.1 0.1 0.1 
2 0.1 0.1 1.1 1.1 0.4 0.4 0.5 0.5 
3 −0.0 −0.0 3 3 −0.1 −0.1 0.1 0.1 
4 0.1 0.1 0.8 0.8 0.3 0.3 0.6 0.6 
5 −0.0 −0.0 0.3 0.3 −0.1 −0.1 0.1 0.1 
6 0.1 0.1 2.9 2.9 0.3 0.3 0.5 0.5 
7 −0.0 −0.0 2.4 2.4 −0.1 −0.1 0.1 0.1 
8 0.1 0.1 2.9 2.9 0.3 0.3 0.5 0.5 
9 −0.0 −0.0 0.9 0.9 −0.1 −0.1 0.1 0.1 
10 0.1 0.1 3.8 3.8 0.3 0.3 0.4 0.4 
11 −0.0 −0.0 1.9 1.9 −0.1 −0.1 0.1 0.1 
12 0.1 0.1 3.7 3.7 0.3 0.3 0.4 0.4 
13 −0.0 −0.0 1.4 1.4 −0.1 −0.1 0.1 0.1 
14 0.1 0.1 3.7 3.7 0.2 0.2 0.3 0.3 
15 −0.0 −0.0 1.6 1.6 −0.1 −0.1 0.1 0.1 
16 0.1 0.1 3.7 3.7 0.2 0.2 0.3 0.3 
17 −0.0 −0.0 1.8 1.8 −0.0 −0.0 0.1 0.1 
18 0.1 0.1 3.0 3.0 0.2 0.2 0.2 0.2 

Figure 1. A truss structure.

Table 1. Comparison of the calculation results for the first eigenvector sensitivity (×10−3).

DOF
Number

∂φ1

∂p1
(The

Proposed
Method)

∂φ1

∂p1
(Modal

Superposition
Method)

∂φ1

∂p2
(The

Proposed
Method)

∂φ1

∂p2
(Modal

Superposition
Method)

∂φ1

∂p3
(The

Proposed
Method)

∂φ1

∂p3
(Modal

Superposition
Method)

∂φ1

∂p4
(The

Proposed
Method)

∂φ1

∂p4
(Modal

Superposition
Method)

1 0.3 0.3 −0.5 −0.5 −0.1 −0.1 0.1 0.1
2 0.1 0.1 1.1 1.1 0.4 0.4 0.5 0.5
3 −0.0 −0.0 3 3 −0.1 −0.1 0.1 0.1
4 0.1 0.1 0.8 0.8 0.3 0.3 0.6 0.6
5 −0.0 −0.0 0.3 0.3 −0.1 −0.1 0.1 0.1
6 0.1 0.1 2.9 2.9 0.3 0.3 0.5 0.5
7 −0.0 −0.0 2.4 2.4 −0.1 −0.1 0.1 0.1
8 0.1 0.1 2.9 2.9 0.3 0.3 0.5 0.5
9 −0.0 −0.0 0.9 0.9 −0.1 −0.1 0.1 0.1
10 0.1 0.1 3.8 3.8 0.3 0.3 0.4 0.4
11 −0.0 −0.0 1.9 1.9 −0.1 −0.1 0.1 0.1
12 0.1 0.1 3.7 3.7 0.3 0.3 0.4 0.4
13 −0.0 −0.0 1.4 1.4 −0.1 −0.1 0.1 0.1
14 0.1 0.1 3.7 3.7 0.2 0.2 0.3 0.3
15 −0.0 −0.0 1.6 1.6 −0.1 −0.1 0.1 0.1
16 0.1 0.1 3.7 3.7 0.2 0.2 0.3 0.3
17 −0.0 −0.0 1.8 1.8 −0.0 −0.0 0.1 0.1
18 0.1 0.1 3.0 3.0 0.2 0.2 0.2 0.2
19 −0.0 −0.0 1.3 1.3 −0.1 −0.1 0.0 0.0
20 0.1 0.1 3.0 3.0 0.2 0.2 0.2 0.2
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Table 2. Comparison of the calculation results for the second eigenvector sensitivity (×10−3).

DOF
Number

∂φ2

∂p1
(The

Proposed
Method)

∂φ2

∂p1
(Modal

Superposition
Method)

∂φ2

∂p2
(The

Proposed
Method)

∂φ2

∂p2
(Modal

Superposition
Method)

∂φ2

∂p3
(The

Proposed
Method)

∂φ2

∂p3
(Modal

Superposition
Method)

∂φ2

∂p4
(The

Proposed
Method)

∂φ2

∂p3
(Modal

Superposition
Method)

1 1.5 1.5 −1.1 −1.1 −0.5 −0.5 0.8 0.8
2 0.8 0.8 1.3 1.3 2.3 2.3 3.6 3.6
3 −0.2 −0.2 5.5 5.5 −0.6 −0.6 0.6 0.6
4 0.7 0.7 0.5 0.5 1.8 1.8 4.4 4.4
5 −0.2 −0.2 1.2 1.2 −0.4 −0.4 1.1 1.1
6 0.6 0.6 3.0 3.0 1.7 1.7 3.3 3.3
7 −0.2 −0.2 4.1 4.1 −0.7 −0.7 0.3 0.3
8 0.6 0.6 3.1 3.1 1.8 1.8 3.2 3.2
9 −0.1 −0.1 2.9 2.9 −0.3 −0.3 1.1 1.1
10 0.4 0.4 2.5 2.5 1.3 1.3 2.2 2.2
11 −0.3 −0.3 3.1 3.1 −0.8 −0.8 0.2 0.2
12 0.5 0.5 2.5 2.5 1.3 1.3 2.2 2.2
13 −0.1 −0.1 3.9 3.9 −0.3 −0.3 1.2 1.2
14 0.2 0.2 0.4 0.4 0.7 0.7 1.0 1.0
15 −0.3 −0.3 2.5 2.5 −0.8 −0.8 0.2 0.2
16 0.3 0.3 0.4 0.4 0.7 0.7 1.0 1.0
17 −0.1 −0.1 4.5 4.5 −0.3 −0.3 1.2 1.2
18 0.0 0.0 −2.4 −2.4 0.1 0.1 −0.1 −0.1
19 −0.3 −0.3 2.4 2.4 −0.8 −0.8 0.3 0.3
20 0.1 0.1 −2.3 −2.3 0.2 0.2 −0.0 −0.0

4.2. A Spring-Mass System

The second example is the spring-mass system (shown in Figure 2) used by Friswell [37], which is
employed to further verify the proposed second-order sensitivity formula of eigenvector. The nominal
model of the system has the parameters k1 = k4 = 2, k2 = k3 = 1 and m1 = m2 = m3 = 1.
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Two parameters will be allowed to vary, namely m1 (equivalent to p1) and k2 (equivalent to p2).
The mass and stiffness matrices and their nonzero derivatives are

M =


1 0 0
0 1 0
0 0 1

, K =


3 −1 0
−1 2 −1
0 −1 3

 (42)

∂M
∂p1

=


1 0 0
0 0 0
0 0 0

, ∂K
∂p2

=


1 −1 0
−1 1 0
0 0 0

 (43)

The first eigenvalue and eigenvector can be computed as

λ1 = 1, φ1 = (0.4082, 0.8165, 0.4082)T (44)

Using Equation (24), ∂φ1
∂p1

and ∂φ1
∂p2

can be calculated as

∂φ1

∂p1
= (0.1134, −0.1134, −0.0907)T (45)

∂φ1

∂p2
= (0.1928, −0.0907, −0.0113)T (46)
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Using Equation (35), the second-order sensitivities of eigenvalue can be obtained as

∂2λ1

∂p2
1

= −0.0648,
∂2λ1

∂p2
2

= −0.2315,
∂2λ1

∂p1∂p2
= −0.1852 (47)

Using Equation (37), the second-order sensitivities of eigenvector can be obtained as

∂2φ1

∂p2
1

= (−0.0410,−0.1084,−0.0523)T (48)

∂2φ1

∂p2
2

= (0.2593,−0.0788, 0.0098)T (49)

∂2φ1

∂p1∂p2
= (0.0611, 0.0674, 0.0781)T (50)

The above results are the same as those obtained by Friswell in reference [37]. It has been shown
that the proposed method is exact and reliable.

4.3. A System with Similar Eigenvalues

The third example is a simple 3× 3 eigenvalue problem, which is used to discuss the stability of
the methodology in the case of “close modes” (with very similar eigenvalues). The mass and stiffness
matrices of the system are

M =


1 0 0
0 1 0
0 0 1

,
K = 1

p2+1


p + p2

2 +
p4

2 −
p
2 + p2

−
p3

2 0

−
p
2 + p2

−
p3

2
1
2 +

p2

2 + p3
−

p
2 + p2

−
p3

2

0 −
p
2 + p2

−
p3

2
3

10 +
p2

2 + p3


(51)

At p = 0.99, the eigenvalues of (K, M) are λ1 = 0.8890, λ2 = 0.9900 and λ3 = 0.9901. It is clear that
λ2 and λ3 are very close. Table 3 presents the eigenvector sensitivities computed by the proposed
method and the modal superposition method. From Table 3, one can see that the proposed method
can obtain the same calculation results as those of the modal superposition method. To a certain
extent, these results show that the proposed method can be used to solve the eigenvalue problem with
close modes.

Table 3. Eigenvector sensitivities obtained by the proposed method and the modal superposition method.

DOF
Number

∂φ1

∂p
(The

Proposed
Method)

∂φ1

∂p
(Modal

Superposition
Method)

∂φ2

∂p
(The

Proposed
Method)

∂φ2

∂p
(Modal

Superposition
Method)

∂φ3

∂p
(The

Proposed
Method)

∂φ3

∂p
(Modal

Superposition
Method)

1 −0.0000 −0.0000 0.3640 0.3640 −0.3677 −0.3677

2 −0.0494 −0.0494 −0.3677 −0.3677 −0.3640 −0.3640

3 0.0000 0.0000 −0.0347 −0.0347 0.0352 0.0352

5. Conclusions

In this paper, a new exact method for calculating the sensitivities of eigenvectors is proposed.
The explicit expressions for the first-order and second-order sensitivities of eigenvectors are derived,
and a strict proof is given. The method has the advantage of requiring only the knowledge of the
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eigenvector to be differentiated. The developed eigenvector sensitivity formulas are simple and
convenient in programming. Two numerical examples are used to demonstrate the proposed method
and the results show that the developed method is exact and reliable. The proposed method is as
powerful as Nelson’s method, but much more easy to use. The proposed method will have a broad
application prospect in engineering practice. Future research on the proposed method should be
carried out to tackle the cases of repeated eigenvalues, complex modes, damped systems, fractional
vibration systems and so on.
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Nomenclature

K, M structural stiffness and mass matrices
λ j, φ j the jth eigenvalue and eigenvector
pi the ith design parameters
n the number of degrees of freedom
∂λ j

∂pi
,
∂φ j

∂pi
the first-order eigenvalue and eigenvector sensitivities

∂2λ j

∂pi∂ps
,
∂2φ j

∂pi∂ps
the second-order eigenvalue and eigenvector sensitivities
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