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Abstract: The quest for sustainable, low-cost and environmental friendly engineering materials
has increased the application of natural fiber-reinforced polymer (FRP) composite. This paper
experimentally investigates the effects of variable mean hemp fiber (HF) aspect ratios (ARs) of 00
(neat), aspect ratios AR_19, AR_26, AR_30 and AR_38 on nano-mechanical (hardness, modulus,
elasticity and plasticity), surface and thermal properties of hemp fiber/polycaprolactone (HF/PCL)
biocomposites. These biocomposites were characterized by nanoindentation, contact angle, surface
energy, thermogravimetric analysis (TGA), thermal conductivity and differential scanning calorimetry
(DSC) techniques. After nanoindentation and thermal conductivity tests, the results obtained evidently
show that the HF/PCL sample with aspect ratio (AR_26) recorded optimal values. These values include
maximum hardness of approximately 0.107 GPa, elastic modulus of 1.094 GPa, and plastic and elastic
works of 1.580 and 1.210 nJ, respectively as well as maximum thermal conductivity of 0.2957 W/mK,
when compared with other samples. Similarly, the optimal sample exhibits highest main degradable
temperature and degree of crystallinity of 432 °C and 60.6%, respectively. Further results obtained for
the total surface energies and contact angles of these samples with glycerol and distilled water are
significant for their materials selection, design, manufacturing and various applications.

Keywords: polycaprolactone; hemp fibre; biocomposites; contact angle measurements; nanoindentation;
nano-mechanical properties; surface energy; thermal stability

1. Introduction

Hemp fibers are abundantly available, sustainable, renewable and biodegradable. Hemp fibers
have some outstanding mechanical properties (mainly tensile strength at break and tensile modulus)
when compared with other naturally available plant fibers, such as date palm, jute, flax, to mention
but a few [1–4]. These fibers have a good environmental impact, especially when compared with
conventional fibers, such as glass [5]. These attractive attributes have resulted into an increased use
of these fibers as reinforcements in composite materials. These bast fibers such as hemp and flax
provide good acoustic insulating properties due to their hollow structure. During their processing
stages, lesser energy is required when compared to the synthetic (carbon and glass) fiber-reinforced
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polymer (FRP) composites. However, natural (hemp) fibers attract few drawbacks. These include the
lack of confidence in the use and performance of natural plant fiber and their composites and low
degradation temperature, which is about 230 ◦C [6]. Poly(ε-caprolactone) (PCL) is a biodegradable
matrix, semi-crystalline, non-crytotoxic polyester.

Reported works on natural fibers as reinforcement in composites have revealed that the
shortcomings such as less compatible with hydrophobic matrices, natural variability, low processing
temperatures and comparatively lower mechanical properties in comparison to conventional glass and
carbon fibre reinforcements have been minimised by modifying fiber surfaces using various treatments.
These different modification methods have helped achieving improvements in physical, mechanical
and thermal properties of various natural fibres by making fibers compatible with different polymer
matrices [7,8]. In addition to these techniques, fiber aspect ratio (AR), which is determined as length
divided by diameter of the fiber (l/d), is one of the significant factors that determines the mechanical
properties of the polymer matrix composites (PMCs) [9]. Therefore, effects of variable hemp fiber ARs
on some important properties are investigated in this present paper.

Few experimental studies have been reported on mechanical properties of biocomposites.
Dhakal et al. [10] investigated into the effects of low-velocity impact from falling on jute/methacrylated
soybean oil bio-composites. Four different types of samples, different fiber geometry and various
thicknesses were impacted and they reported that the biocomposites displayed satisfactory impact
resistance behavior. Furthermore, another reported works on composites based on biodegradable PCL
matrices and reinforced with lignocellulosic reinforcements have suggested that the biocomposites
displayed comparable mechanical properties to that of conventional-based matrices. The influence of
the extrusion parameters on the fiber length evolution along the screw profile on hemp fiber-reinforced
poly (ε-caprolactone)-based biocomposites was investigated [11]. They suggested that fiber length was
rapidly decreased after introduction of the fiber and during the flow through the kneading blocks.
A recent comprehensive work on amorphized cellulose as filler in biocomposites based on PCL has
been reported [12].

The properties of fiber-reinforced composites depend on many factors. These factors include,
but are not limited to, types of matrices and reinforcement used, fiber volume fraction, fiber AR, fiber
dimensions and interfacial adhesion between reinforcement and the matrix. At low AR, the addition
of reinforcement into the composite can create the phase of discontinuity leading to structural
heterogeneity and can result in poor mechanical performance. At higher AR up to its threshold,
the mechanical properties are expected to increase as a result of good interfacial interaction between the
matrix and the reinforcement [13]. In addition, both thermo-mechanical and morphological properties
(flexural, damping at temperature interest of 80 ◦C) of chopped industrial hemp fiber-reinforced
cellulosic plastic biocomposites have been improved, especially with 30% plasticized polar cellulose
acetate plastic (CAP) [14].

Furthermore, the mechanical properties (tensile and flexural) of woven natural (banana) fiber
with Musaceae/epoxy composite materials have been experimentally analyzed [15]. They obtained
maximum values of stress and Young’s modulus in both x and y-directions. An evaluation of the
mechanical properties of natural coir fiber-reinforced epoxy composite has been similarly reported [16].
Their results indicated coir as a promising reinforcing fiber for producing low load bearing thermoplastic
FRP composite.

The nanoindentation technique is commonly used to analysis the surface properties of materials,
such as coated surface [17]. It has been extensively used to evaluate the mechanical behavior of
different polymers [18–20] and nano-composites [21–28]. Perrier et al. [29] reported the influence of
water ageing on nanoindentation response of the in situ components of hemp yarn/epoxy composites.
Nanomechanical properties (hardness and elastic modulus) of layered silicate-reinforced unsaturated
polyester nanocomposites was studied [23], using nanoindentation technique. They reported that
the nanoindentation properties of the nanocomposites were enhanced, caused by clay reinforcement
and the amount of clay dispersion within the unsaturated polymer resin. The nanomechanical
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properties (creep, hardness and elastic modulus) behavior of human hair using the nanoindentation
and scanning electron microscopy (SEM) techniques was studied [30]. They reported that hair follicle
recorded the greater hardness and elastic modulus than cortex at lateral direction, while the depth
of indentation increased as both the elastic modulus and hardness of the hair decreased. Similar to
this study, the mechanical properties of short flax fiber-reinforced polypropylene compounds were
investigated [31]. Both strength and stiffness of the compound were achieved with the reinforcing flax
fiber as well as effective compactible fiber-matrix interaction.

Furthermore, mechanical, water absorption and thermal conductivity properties of hemp fiber
reinforced polyurethane composites have been investigated [32]. The experimental result suggested a
promising application of these sustainable composites in thermal insulation field, due to their improved
mechanical properties. The thermo-physical properties of natural fiber (banana/sisal), hybrid pineapple
leaf and glass fibers-reinforced polyester composites have been investigated [33]. The composite
thermal contact resistance was reduced due to the chemical treatment of the fibers, while a significant
improved heat transfer ability was achieved with the hybridised natural fiber with glass. The effects of
phenylphosphate-based flame retardant on flammability, thermal stability and mechanical properties of
glass fiber-reinforced epoxy (GRE) composites have been investigated [34]. The hardness and Young’s
modulus of the epoxy (EP) matrix was performed using a nanoindentation test. They reported that
N’-diamyl-p-phenylphosphonicdiamide (P-MA) had no effect on the hardness of the EP matrix and
the interfacial strength of glass fiber/epoxy matrix.

In addition, some studies have been conducted on contact angle and surface energy analysis of
different materials [6,35–37]. For instance, the effect of fiber treatment and glass fiber hybridisation on
thermal degradation and surface energy behavior of hemp fiber/unsaturated polyester (HF/UP)
composites has been studied [6], using thermogravimetric analysis (TGA) and contact angle
measurement. Their experimental results indicated the possibility of obtaining better thermal stability
and wetting behavior of HF/UP composites with surface treatment and hybridisation techniques.
Similarly, analysis of both contact angle and surface energy of soy materials subjected to potassium
permanganate (KMnO4) oxidation and autoclave treatment has been conducted [35].

Based on the extant, extensive and aforementioned literature, there is no comprehensive report
on thermal (stability and conductivity), surface (energy and contact angle) and nano-mechanical
properties (hardness, modulus, elasticity and plasticity) of a complete biodegradable and biocomposite
using thermogravimetric analysis, differential scanning calorimetry and nanoindentation techniques,
concomitantly. Importantly, the effects of variable hemp fiber aspect ratios (ARs) of 00 (neat), 19, 26,
30 and 38 on these notable properties of the HF/PCL composite samples are extensively investigated.
Therefore, this paper characterises the nano-mechanical, surface and thermal properties of natural and
biodegradable hemp fiber-reinforced PCL biocomposites.

Composite parts fabricated by using non-renewable reinforcements such as glass fibre are heavy
as well as poor acoustic and damping properties. The bio-composites based on PCL reinforced using
fibres such as hemp not only provide weight saving (lightweighting), but also provide improved
environmental sustainability than glass fibres. The hemp/PCL based biocomposites investigated in
this study can be applied in producing non-structural interior parts.

2. Experimental Procedures

2.1. Materials

A semi crystalline polymer and non-cytotoxic polyester, known as polycaprolactone, with
molecular weight of 80 kgmol−1 was used as a matrix. It is a biodegradable polymer with low melting
temperature of approximately 60 ◦C. A lignocellulosic hemp fiber was used as reinforcement. It was
harvested in Aube, France and supplied by FRD©, and melt with PCL Perstop (UK) (Capa© 6800),
to produce a completely biodegradable, sustainable, renewable, recyclable and environmentally
friendly HF/PCL biocomposite samples.
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2.2. Fabrication of Neat Poly(ε-Caprolactone) (PCL) and Hemp Fiber (HF)/PCL Biocomposite Samples

The small bundles of scutched bast hemp fibers were manually cut to a length of nearly 20 mm,
prior to its processing stage. Laminates were obtained by press moulding from both extrudate neat
PCL (AR_00) or 20% wt. hemp fiber/PCL composites differing in their average L/d ratio. The press
used was a two-column automatic laboratory hydraulic press (Carver, Wabash, IN USA) equipped
with heating platens. The mould (MGTS, La Neuvillette, France) dimension was 20 cm × 20 cm length
and 5 cm thickness, filled with samples and preheated for 5 min at 135 ◦C before 1 Ton pressing for
3 min. This is required to ensure homogeneity of the fibers. Therefore, after twin screw extrusion
and fabrication of the laminates, the mean fiber element diameter, d (µm) was approximately 22 µm,
while the mean fiber element lengths, l (µm) were 432, 568, 708 and 845 µm to produce fiber ARs of
19, 26, 30 and 38, respectively, including AR_00 (neat PCL matrix, without hemp fiber/reinforcement).
The average length of the fibers elements for the non-extruded fiber batch was measured by image
analyses from 2D high-resolution scanner. A Clextral BC 21 laboratory scale twin extrusion machine
was used for the fabrication. This machine has a length and diameter of 900 and 20 mm, respectively.
As shown in Figure 1, both hemp fibers and the PCL matrix were introduced into the machine through
the two-hopper location, the hemp fibers were added to the melted PCL matrix in order to prevent
severe extrusion conditions, during the fabrication of the HF/PCL biocomposite laminate samples.
These samples were further cut into samples for nanoindentation, thermogravimetric analysis and
differential scanning calorimetry tests.
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Figure 1. Clextral BC 21 Screw profile used in sample fabrication process, showing positions of
introducing hemp fibers before and after poly(ε-caprolactone) PCL melting as well as venting zone on
the twin screw extrusion machine.

2.3. Nanoindentation Test

The nanoindentation tests were performed using commercially available Nano TestTM

(Micro Materials, Wrexham, U.K.) apparatus, with a Berkovich (three-sided pyramidal diamond)
indenter. The schematic diagrams and illustrations of the nanotest system, a typical Berkovich indenter
tip and 16 symmetrical indentations (4 × 4 matrix, 30 µm apart) are shown in Figure 2a–c, respectively.
Each of the four nanoindentation test samples has dimension of 20 mm × 20 mm × 6 mm. With suitable
adhesive, the samples were mounted to the nanoindentation fixture and all the tests were performed at
room temperature. The tests were conducted in load controlled mode using the following experimental
indentation parameters: initial load of 0.1 mN, maximum load of 15 mN for all indents, dwell time
(holding time) of 5 s at maximum load, loading and unloading rate of 2.00 mN/s.
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Figure 2. (a) Diagrammatic illustration of the nanoindentation test system, (b) a typical Berkovich
indenter tip for nanoscale measurements and (c) symmetrical indentations at 30 µm apart (not to scale)
on the HF/PCL biocomposite sample.

2.4. Analysis of Nanoindentation Quantities

Figure 3, adapted from Shokrieh et al. [27], illustrates the schematic representation of a complete
evolution of typical loading-unloading cycle. This indentation cycle depicts the maximum test load or
force (Pmax), maximum depth (hmax), final depth after loading (h f ) and the slope (S) of the unloading
curve (Equations (1) and (2)). This slope is referred to as the elastic contact or unloading stiffness
of the sample. Loading–unloading curves were analysed using the Oliver–Phar method [38] with
the software provided by Micromaterials. The hardness, H and the reduced elastic modulus, Er are
defined by Equations (1) and (2), respectively:

H =
Pmax(hmax)

A(hc)
(1)

where A and hc are the contact area (between the indenter and the sample) at maximum load and
contact depth, respectively;

Er =
S
2β

√
π

A(hc)
(2)

where β is a correction factor which varies slightly for various indenter geometry (1.034 for a Berkovich
indenter) and S = dP

dh . The reduced elastic modulus accounts for the elastic displacement of both
indenter and sample. The elastic modulus of the sample, Es can be derived from the reduced elastic
modulus, Er (from the tests) and the indenter elastic modulus, Ei (usually 1141 GPa for the diamond)
by Equation (3):

1
Er

=

(
1− vs

2
)

Es
+

(
1− vi

2
)

Ei
(3)

where vs and vi are Poisson’s ratios of the polymer sample and diamond indenter tip respectively,
approximately 0.2 for polymer and 0.07 for diamond. The diamond indenter tip is much stiffer than
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polymer sample (Es � Ei). Therefore, Equation (3) can be reduced to 1
Er
≈

(1−vs
2)

Es
and hc = hmax −

ε. Pmax
S , where ε depends on the shape of the indenter tip (usually 0.75 is recommended for a Berkovich

indenter) and hmax ≤ 200 nm for nano range [39,40]. However, from Equation (3), elastic modulus of
the sample, Es can be expressed as:

Es =
1− vs

2

1
Er
−

1−vi
2

Ei

(4)

The mean values of the concerned experimental nanoindentation data obtained from the
loading–unloading curves of the tests performed at a peak indentation load of 15 mN are later
presented and discussed extensively.

Appl. Sci. 2020, 10, x FOR PEER REVIEW 6 of 16 

where 𝑣𝑠 and 𝑣𝑖 are Poisson’s ratios of the polymer sample and diamond indenter tip respectively, 

approximately 0.2 for polymer and 0.07 for diamond. The diamond indenter tip is much stiffer than 

polymer sample (𝐸𝑠 ≪ 𝐸𝑖 ). Therefore, Equation (3) can be reduced to  
1

𝐸𝑟
 ≈  

(1−𝑣𝑠
2)

𝐸𝑠
 and ℎ𝑐  = ℎ𝑚𝑎𝑥 − 

Ԑ.
𝑃𝑚𝑎𝑥

𝑆
, where Ԑ  depends on the shape of the indenter tip (usually 0.75 is recommended for a 

Berkovich indenter) and ℎ𝑚𝑎𝑥 ≤ 200 nm for nano range [39,40]. However, from Equation (3), elastic 

modulus of the sample, 𝐸𝑠  can be expressed as: 

 

Figure 3. The evolution of the nanoindentation test, showing a typical load–displacement curve and 

loading–unloading cycle. 

𝐸𝑠 =
1 − 𝑣𝑠

2

1
𝐸𝑟

−  
1 − 𝑣𝑖

2

𝐸𝑖

 (4) 

The mean values of the concerned experimental nanoindentation data obtained from the 

loading–unloading curves of the tests performed at a peak indentation load of 15 mN are later 

presented and discussed extensively. 

2.5. Thermal Stability Analysis 

As a result of the wide range of applications of composite materials, including thermal 

insulators, engine covers and body of automobiles and air/space crafts, to mention but a few, there is 

need for further investigation of the thermal stability of the 5 samples for better characterization of 

their properties and effective applications. 

2.5.1. Thermogravimetric Analysis (TGA) 

TGA was performed using a TGA2950 (TA Instrument). The samples were placed in a platinum 

crucible, and heated in a nitrogen filled environment at the heating rate of 10 °C/min from ambient 

temperature to 600 °C. The initial weights of the samples were approximately 12 mg. The data from 

the test is displayed as TG (weight loss as a function of temperature) and DTG (derivative thermal 

gravimetry, weight loss rate as a function of temperature). 

2.5.2. Differential Scanning Calorimetry (DSC) 

Differential scanning calorimetry (DSC) experiments were performed on hemp fiber/PCL 

biocomposite samples with a DSC Q100 (TA Instrument) in aluminium pans. The following 

parameters were used: 

Figure 3. The evolution of the nanoindentation test, showing a typical load–displacement curve and
loading–unloading cycle.

2.5. Thermal Stability Analysis

As a result of the wide range of applications of composite materials, including thermal insulators,
engine covers and body of automobiles and air/space crafts, to mention but a few, there is need
for further investigation of the thermal stability of the 5 samples for better characterization of their
properties and effective applications.

2.5.1. Thermogravimetric Analysis (TGA)

TGA was performed using a TGA2950 (TA Instrument, Paris, France). The samples were placed in
a platinum crucible, and heated in a nitrogen filled environment at the heating rate of 10 ◦C/min from
ambient temperature to 600 ◦C. The initial weights of the samples were approximately 12 mg. The data
from the test is displayed as TG (weight loss as a function of temperature) and DTG (derivative thermal
gravimetry, weight loss rate as a function of temperature).

2.5.2. Differential Scanning Calorimetry (DSC)

Differential scanning calorimetry (DSC) experiments were performed on hemp fiber/PCL
biocomposite samples with a DSC Q100 (TA Instrument, Paris, France) in aluminium pans.
The following parameters were used:

1. Equilibrate at −15 ◦C
2. Isothermal for 1 min
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3. Ramp 5.00 ◦C/min to 120 ◦C
4. Cooling: Non regulated section (decrease between 10 and 15 ◦C/min) [41]
5. Isothermal for 1 min
6. Ramp 10 ◦C/min to 120 ◦C.

2.5.3. Thermal Conductivity

The quick thermal conductivity meter QTM-500 (Kyoto Electronic Manufacturing Company,
Tokyo, Japan) consisted of a thermocouple, and a single heater wire was used. Its operating principle
was based on the temperature variation (increase or rise) when applying constant electric power to the
heater and thus the wire. This rise in temperature has an exponential shape. The temperature values
occurred during the experiment were recorded and plotted in a linear form (taking the logarithm of
the exponential one). Various important properties were derived and drawn from the linear plot of the
temperature values. Therefore, from the linear plot obtained and the angle, the thermal conductivity is
determined using Equation (5):

λ =
q. ln ti+1

ti

4π(Ti+1 − Ti)
(5)

where; λ = specimen thermal conductivity (W/mK), q = generated heat per unit length of specimen/time
(W/m), ti and ti+1 = measured time length (s), Ti and Ti+1 = temperature values at ti and ti+1, respectively
(K). The test was performed according to the standards ASTMC177 [32] and in different directions to
derive the average values.

2.6. Contact Angle and Surface Energy Determination

A computer-controlled KSV 101 optical contact angle meter (CAM) (KRÜSS GmbH, Hamburg,
Germany) was used to determine the contact angle and surface energy of the 5 hemp/PCL biocomposite
samples. It captured and analysed video images automatically in order to measure the dynamic or
static contact angles, the surface tension of liquids, surface free energies and absorption of liquids.
Both water and glycerol were used as the test fluids or liquid probes, with known polar and dispersive
components of surface tension. The thermodynamics of solid–liquid interactions are analysed from the
measurements of contact angle data obtained. From Young’s equation [42], solid surface tension from
contact angle is obtained in Equation (6):

γs= γlCosθ+ γsl (6)

where θ represents the probe liquid contact angle, γs and γl denote the solid and liquid surface tensions
or free energy respectively and γsl indicates the solid–liquid interfacial free energy. θ and γl are the
only measurable quantities in Young’s equation. An additional relationship known as geometric mean
is required to obtain both γs and γsl. This relationship is obtained by combining Young’s equations
using Fowke’s proposed model or approach [35,43,44]:

γl(1 + Cosθ) = 2
[√

(γl
p ∗ γsp) +

√
(γl

d ∗ γsd)

]
(7)

where γl
p and γs

p represent the liquid and solid polar surface energy, respectively and γl
d and γs

d

liquid and solid dispersive surface energies, respectively. The total surface energy is the addition of
the polar and dispersive surface tensions or energies. Therefore, Equation (7) was used to determine
both two components (dispersive and polar) of the total surface free energy of all the 5 biocomposite
samples. This was based on the measurements from the contact angle of 20 drops averaged for each
of the liquids, using KSV contact angle meter (CAM) surface free energy (SFE) software. Similarly,
the solid surface was characterised by determining free surface energy.
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2.7. Scanning Electron Microscopy (SEM)

The morphological analysis of the biocomposites was performed by using scanning electron
microscopy (SEM) JSM/JEOL 6100 (Jeol Ltd., Tokyo, Japan) at room temperature. The samples were
then placed on stands and coated with gold palladium to enhance the conductivity during imagery.

3. Results and Discussion

3.1. Nanoindentation Behavior

The average values of the nanoindentation experimental results obtained are summarized and
tabulated in Table 1. The samples exhibit a similar, continuous and consistent loading, holding period
and unloading stages, but at different loads and depth. With an increase in the fiber ARs of the
samples, the material resistance to nanoindentation is found to be different. The maximum hardness
and reduced elastic modulus of nearly 0.107 GPa and 1.094 GPa were recorded by sample AR_26
and sample AR_38 has the minimum hardness and reduced elastic modulus values of 0.073 GPa
and 0.540 GPa respectively. This implies that sample AR_26 has the highest resistance to material
plastic deformation.

Table 1. Nano-mechanical properties of the samples after nano-indentation test, with standard deviation.

Samples Hardness
(GPa)

Reduced
Modulus

(GPa)

Elastic
Recovery

(mm)

Plastic
Work
(nJ)

Elastic
Work
(nJ)

Maximum
Depth
(nm)

Plastic
Depth
(nm)

AR_00
(Neat)

0.0820
(±0.009)

0.5457
(±0.042)

0.3886
(±0.019)

0.98
(±0.086)

1.05
(±0.115)

1855.46
(±8.12)

1336.42
(±20.32)

AR_19 0.0882
(±0.006)

1.0893
(±0.135)

0.2083
(±0.017)

1.40
(±0.145)

0.94
(±0.050)

1820.97
(±8.40)

1507.39
(±24.58)

AR_26 0.1066
(±0.009)

1.0936
(±0.127)

0.2510
(±0.018)

1.58
(±0.220)

1.21
(±0.107)

1815.58
(±6.43)

1451.56
(±23.08)

AR_30 0.0903
(±0.013)

0.9433
(±0.116)

0.2448
(±0.026)

1.43
(±0.226)

1.08
(±0.182)

1852.19
(±35.87)

1488.63
(±44.00)

AR_38 0.0726
(±0.004)

0.5403
(±0.026)

0.3470
(±0.015)

0.95
(±0.080)

0.93
(±0.072)

1841.73
(±12.70)

1367.43
(±17.72)

From the trend of the results presented in Table 1, it is observed that the both nano-mechanical
(nanoindentation) hardness and reduced elastic modulus properties of the 5 samples were increased
till maximum and threshold sample AR_26 were obtained. After this optimal sample, these two
important properties began to decline until the least values were recorded by the sample AR_38,
with highest fiber AR. Also, both hardness and elastic modulus of the samples determined the contact
depth, as these properties decreased with an increasing contact depth among the HF/PCL biocomposite
samples, especially with higher AR samples. Comparatively, it was evident that hemp fiber has a clear
reinforcement effect on the PCL matrix, as observed by the increased hardness (+30%) and modulus
(+100.39) of sample AR_26 when compared with the neat PCL sample AR_00. This can be attributed
to the best intermolecular interaction and interfacial properties between PCL and hemp fiber AR_26,
as depicted in Figure 4a,b.
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Figure 4. Effects of aspect ratios on (a) hardness (b) reduced modulus.

In addition, other properties such as elastic and plastic works of the samples recorded similar
trend, having maximum values of nearly 1.21 nJ and 1.58 nJ respectively with sample AR_26. With these
optimal properties, sample AR_26 was expected to possess the least indentation depth, which was
approximately 1816 nm. The neat PCL recorded the highest indentation depth of nearly 1856 nm.
The average maximum depth recorded by all the samples at peak load was approximately 1840 nm.
These results are in close agreement with that of Aldousiri et al. [25]. They used spent neat polyamide
and layered silicate as matrix and filler/reinforcement materials, respectively. Moreover, the plastic
work was done during the loading stage of the indenter inside the samples, while the elastic work
was recovered during the unloading stage, as previously and graphically illustrated in Figure 3.
Furthermore, a small change, commonly known as ‘pop out’ and ‘elbow’ in the unloading load-depth
curves only occurred from all the samples, towards the end of the cycle. This phenomenon has been
similarly observed by Singh et al. [45,46] and associated with the Berkovich indenter [47] and phase
transformation of materials [48].

3.2. Thermal Properties: Thermogravimetric, Differential Scanning Calorimetry and Conductivity Analysis

3.2.1. Thermal Stability

The results obtained for both TGA and DSC were discussed to further characterize the damage
responses of the samples. The temperature of the main degradation peaks obtained from TGA test for
all samples are illustrated in Table 2. The data recorded for hemp fiber/PCL show a clear decrease of
the degradation peak temperature (close to 10 ◦C) compared to the PCL matrix, especially marked for
the highest ARs of 30 and 38. It is clearly evident that the closest value of degradation temperature,
to the neat PCL sample with highest value, was obtained with the HF/PCL biocomposite sample of AR
of 26. The results of thermal stability of the neat PCL matrix are very similar to the result obtained by
Cocca et al. [49] and significantly affected with the hemp fiber reinforcement, as shown in Figure 5.

Table 2. Thermogravimetric analysis (TGA) measurements.

Samples Main Degradation Temperature (◦C)

AR_00 433
AR_19 428
AR_26 432
AR_30 424
AR_38 424
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Figure 5. Typical TGA degradation curves of both neat PCL matrix samples (AR_00) and HF/PCL
biocomposite samples (AR_19, 26, 30 and 38), showing the effect of fiber on the degradation properties
of the HF/PCL samples.

3.2.2. Crystallization Behavior

TGA results presented in Figure 5 do not clearly show a shift of the temperature of the melting
peak (around 58 ◦C). Hence, there is need for the DSC melting results to further analyse the heat flow
(Figure 6). The addition of fibers into the matrix increased the degree of crystallinity of the neat PCL
matrix to at least 5%, as illustrated in Table 3. The DSC thermogram of the neat PCL matrix is very
similar to the result obtained by Cocca et al. [49]. The degree of crystallinity slightly increased with
fibers, which is attributed to acting as nucleating agents for the PCL matrix. It is also evident that the
highest increase in crystallinity was observed in the HF/PCL composite sample with AR_26, similar to
TGA results. Both TGA and DSC (thermal) results obtained for HF/PCL composite sample with AR_26
could be attributed to its previous optimum and best nano-mechanical properties, as discussed earlier.

Table 3. Differential scanning calorimetry (DSC) melting 1er run.

Samples Degree of Crystallinity χ (%)

AR_00 50.9
AR_19 55.7
AR_26 60.6
AR_30 56.5
AR_38 58.0
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Figure 6. Typical DSC thermogramms of both neat PCL matrix samples (AR_0) and hemp/PCL
composite samples (AR_19, 26, 30 and 38), depicting the heat flow at an increasing temperature.
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3.2.3. Thermal Conductivity

The thermal conductivity is a prominent property that determine the application of thermal
insulating materials, as function of parameters such as morphology, homogeneity and density, among
others. Figure 7 depicts the average thermal conductivity results of the 5 HF/PCL biocomposites.
From the results, the average thermal conductivities for ARs_00 (neat), 19, 26, 30 and 38 samples are
0.2539, 0.2824, 0.2957, 0.2922 and 0.2539 W/mK, respectively. There is no difference in the thermal
conductivities of neat PCL (AR_00) and highest AR_38, as both samples recorded the same value of
0.2539 W/mK. This behavior can be attributed to the longest porous structures exhibited by the sample
of highest fiber AR_38, with maximum mean fiber element length of nearly 845 µm. There are the
presence of central hollows in the multicellular morphology of the bast fibers such as hemp, as depicted
in Figure 8. Notwithstanding, it is evident that the thermal conductivity depends on the sample
AR. There was an initial increase in the thermal conductivity when hemp fiber was introduced into
the PCL matrix, as similarly observed when same hemp fiber and other cellulosic fibers (date palm
particles) were added into polyurethane matrix [32,50]. Importantly, it is observed that the thermal
conductivities of the samples increased with the hemp fiber AR to a threshold value of 26, after it began
to decrease with an increase AR. Therefore, the HF/PCL sample of AR_26 recorded the maximum
thermal conductivity of 0.2957 W/mK. This exhibited characteristic could be attributed to the fiber
architecture, content, volume fraction as well as properties of the fiber, matrix and their ratios in the
optimal sample. These properties include, but are not limited to density of the PCL matrix resin and
strength of the embedded fiber present in sample of AR_26. The strength of this optimal sample in terms
of thermal stability and nano-mechanical properties has been extensively and previously discussed.
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Figure 8. The scanning electron microscope (SEM) micrographs of the (a) hemp fiber and PCL matrix
and (b) morphological structure of the bast fiber element (hemp), showing hollow (lumen).

Moreover, the FRP composites are predominantly affected by fiber content, which increased with
hemp fiber AR. This implies that hemp fiber possessed higher thermal conductivity than the neat
PCL matrix.

Moreover, this sample (AR_26) has the best ability to transfer heat energy through conduction.
This property is required during machining operation as much tool-workpiece interfacial temperature
is absorbed in order to prevent high tool wear. However, this could lead to high machining-induced
damage on the workpiece such as delamination, matrix melting and fiber degradation, if not properly
controlled. In addition, material of higher thermal conductivity, such as the HF/PCL biocomposite
sample of AR_26 has significant applications potential for electronic packaging and thermal control.

3.3. Contact Angle and Surface Energy Characterization

The wettability of lignocellulosic hemp fiber in liquid matrices plays a significant role in the
fabrication of FRP composites, their overall properties and engineering applications. The fiber–matrix
adhesion, interfacial bond and strength depend of the wetting behavior. Wettability, hydrophilicity
and hydrophobicity are often analysed by the measure of contact angle formed between the materials
(HF/PCL biocomposites) and liquids (glycerol and distilled water) used as well as surface energy levels
with these liquids. Therefore, the maximum average contact angles for both glycerol and distilled
water taken at 1.05 s for all the 5 samples are presented in Table 4 and the total surface energy results
for the 2 liquids are illustrated in Table 5.

Table 4. Summary of the contact angle and surface energy results for the 5 samples.

Specimens
Contact Angle (◦)

Glycerol Distilled Water

AR_00 * 86.70 94.12
AR_19 93.07 101.95
AR_26 85.21 95.77
AR_30 79.19 86.87
AR_38 87.85 86.65

* AR_00 denotes neat sample, without hemp fiber.
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Table 5. Surface tension values of the liquids used.

Liquid Total Surface Energy (mN/m)

Distilled water 72
Glycerol 64

It is observed that almost all the contact angles from glycerol are less than that of distilled
water, and significantly less than 90◦. This indicates that glycerol exhibited higher relative wettability,
hydrophilicity and adhesion properties with the samples. Consequently, lower total surface energy
of 64 mN/m on the surfaces of the samples with glycerol was obtained when compared with
72 mN/m using distilled water. The discrepancy in these values has been similarly reported with
water and diiodomethane recorded total surface energies of 72.8 and 50.8 mN/m, respectively [35].
Also, the samples experimentally demonstrated their higher hydrophobic nature with water. It shows
that glycerol spread over larger area with smaller contact angles. This phenomenon further shows
lower hydrophobicity of most of these samples using glycerol, when compared to distilled water.

4. Conclusions

This experimental paper has comprehensively characterized various nano-mechanical and thermal
stability characteristics of biodegradable and sustainable hemp fiber-reinforced PCL biocomposites
using nanoindentation, TGA and DSC techniques. Evidently, the effects of variable mean hemp fiber
aspect ratios on these properties have been investigated.

From the nanoindentation results obtained, a significant improvement in both hardness and
reduced elastic modulus for the biocomposite samples was achieved, with sample AR_26 having the
optimal values of hardness and elastic modulus, among other outstanding nanoindentation properties
considered. This improvement can be attributed to the hemp fiber AR and the interfacial interaction.

With regard to surface properties, the surface tension values for all samples using glycerol were
less than the values obtained from water. This indicated that exposing the samples to glycerol exhibited
more wettability than water. In addition, exposure of the samples to water demonstrated a higher
hydrophobicity. Furthermore, it was evident that the thermal conductivity of the samples depended
on their ARs, as the optimal HF/PCL biocomposite sample of AR_26 recorded the highest average
threshold value of 0.2957 W/mK, while both neat (AR_00) and AR_38 samples possessed the lowest
average value of 0.2539 W/mK.

Hence, the addition of lignocellulosic hemp fiber into the biodegradable PCL matrix enhanced
the properties of the HF/PCL biocomposite samples, when compared with the neat PCL sample.
Conclusively, all the results obtained indicated hemp fiber as a promising reinforcing material for making
biodegradable, renewable, low-cost and load-bearing thermoplastic biocomposites, significantly with
optimal nano-mechanical and thermal properties of sustainable HF/PCL biocomposite sample AR_26.
In summary, better knowledge of the properties obtained for these samples is very germane for materials’
selection, design, and manufacturing of lightweight parts for various engineering applications.
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