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Abstract: The high contact resistance at metal/two-dimensional (2D) semiconductor junctions is a
major issue for the integration of 2D materials in nanoelectronic devices. We review here recent
theoretical results on the contact resistance at lateral heterojunctions between graphene or 1T-MoS2

with 2H-MoS2 monolayers. The transport properties at these junctions are computed using density
functional theory and the non-equilibrium Green’s function method. The contact resistance is found
to strongly depend on the edge contact symmetry/termination at graphene/2H-MoS2 contacts, varying
between about 2 × 102 and 2 × 104 Ω·µm. This large variation is correlated to the presence or absence
of dangling bond defects and/or polar bonds at the interface. On the other hand, the large computed
contact resistance at pristine 1T/2H-MoS2 junctions, in the range of 3–4 × 104 Ω.µm, is related to the
large electron energy barrier (about 0.8 eV) at the interface. The functionalization of the metallic
1T-MoS2 contact by various adsorbates is predicted to decrease the contact resistance by about two
orders of magnitude, being very promising for device applications.

Keywords: 2D materials; density functional theory; non-equilibrium Green’s function method;
electronic transport simulations; contact resistance

1. Introduction

Two-dimensional (2D) materials are currently attracting a lot of attention, both fundamentally and
technologically [1–7]. Concerning their possible use in field-effect transistors, these materials would
enable to scale the channel thickness down to the atomic level, resulting in an optimized electrostatic
control of the devices. In addition, heterostructures based on 2D materials, formed by their van der
Waals stacking or via the formation of 2D lateral heterojunctions, show promise for the realization of
novel devices with unique electronic, optoelectronic or magnetic properties [8–13].

However, the high contact resistance (RcW) in these 2D material-based devices is still a major
issue [14,15]. Typical contact resistances at various metal/2D semiconductor interfaces are in the range
of 103–105 Ω·µm, severely limiting the device performances; RcW should be indeed reduced to about
100 Ω·µm in field-effect devices [14]. Promising interfaces, based on lateral 2D metal/2D semiconductor
heterojunctions, were realized recently [16–27]. Very interestingly, low RcW values, in the range of
100–200 Ω·µm, were reported at edge contacts formed between the metallic 1T-MoS2 phase and the
semiconducting 2H-MoS2 phase [16,20].

We discuss here recent theoretical results on the contact resistance at lateral heterojunctions
between graphene or 1T-MoS2 with 2H-MoS2 monolayers, obtained from first-principles simulations.
The computed contact resistance at graphene/2H-MoS2 junctions varies between 102 and 104 Ω·µm
and strongly depends on the edge contact symmetry (zigzag or armchair) and termination (Mo and/or
S terminated); these results are correlated to the presence or absence of dangling bond defects and/or
polar bonds at/near the interface. On the other hand, the contact resistance at pristine 1T/2H-MoS2
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contacts weakly depends on the edge contact symmetry, and it is about 3–4 × 104 Ω·µm, due to the
large electron energy barrier at the interface. The functionalization of metallic 1T-MoS2, by various
adsorbates, was found to decrease the contact resistance by about two orders of magnitude.

2. Computational Methods

The first-principles simulations of the 2D metal/semiconductor lateral heterostructures were
performed using density functional theory (DFT), as implemented in the Siesta code [28], using the
generalized gradient approximation (GGA) for the exchange-correlation functional [29]. Valence
electrons were described using double-zeta polarized basis sets, while core electrons were described by
norm-conserving pseudopotentials [30]. The slab models investigated in this work may include a net
dipole moment, induced by defects or adsorbates on the surface; the calculations on such systems are
performed by including self-consistent dipole corrections [31]. Long-range van der Waals forces were
also included, using Grimme dispersion corrections [32].

The non-equilibrium Green’s function (NEGF) method was used for the ballistic transport
simulations of the heterostructures, as implemented in the TranSiesta code [33], with single-zeta
polarized basis sets [34–36]. The system was divided into three different parts, i.e., the left electrode,
the central channel region, and the right electrode, as schematically pictured in Figure 1.
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Figure 1. Schematic two terminal device used for the non-equilibrium Green’s function (NEGF)
transport simulation. The electrochemical potentials of the left (µ1) and right (µ2) electrodes are
shifted by qV when a bias V is applied to the structure. The self-energies Γ1 and Γ2 at the contacts are
also indicated.

The ballistic current–voltage (I–V) characteristics are computed using the Landauer equation [37,38].

I =
2q
h

∫
Trace

[
Γ1GRΓ2GA

]
( f1(E) − f2(E)) dE (1)

where q and h are the electron charge and Planck constant, respectively, GR (GA) is the retarded
(advanced) Green’s function, and Γi and fi are the self-energies and electronic distribution functions at
the contacts, respectively.

The resistance R of the 2D metal/semiconductor heterojunction is obtained from the simulated
current–voltage characteristics in the linear regime (R = V/I), as shown for a typical 1T/2H/1T-MoS2

structure in Figure 2a. The calculated resistance (multiplied by the contact width W) is shown in
Figure 2b as a function of the channel length. The resistance presents an almost linear dependence on
the channel length, as expected in the (quasi-) ballistic regime [39,40].

R(Lchannel) W = 2(RcW) + Rchannel(Lchannel) W. (2)
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Figure 2. (a) Computed current–voltage (I–V) characteristics of a 1T-MoS2/2H-MoS2/1T-MoS2

heterostructure. The resistance R of the structure is extracted from a linear fit to the data (solid
line), in the voltage range between 0.2 and 0.8 V. (b) Resistance (multiplied by the channel width W) of
the same heterostructure, for three different 2H-MoS2 channel lengths. The dashed line is a linear fit to
the data.

The factor 2 in this equation accounts for the two 1T/2H interfaces in the two-terminal device. The
contact resistance RcW is then obtained by extrapolating the resistance RW to the limit Lchannel→0 nm.

3. Structural and Electronic Properties of Graphene and MoS2

Before discussing the contact resistance at 2D metal/semiconductor interfaces, we briefly present
the structural and electronic properties of graphene and MoS2. Graphene consists of a single (flat)
layer of carbon atoms, arranged in a hexagonal network, as shown in Figure 3a [41–44]. The C atoms
are sp2-hybridized in graphene, forming two single bonds (σ) and one double bond (σ and π) with
their first neighbors. The computed lattice parameter of graphene, using DFT-GGA simulations, is
about 2.47 Å [3], typically 0.4% larger than the experimental one, i.e., 2.46 Å [43,44].
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Figure 3. (a) Top view of the atomic configuration of graphene. (b) Computed electronic band structure
of graphene. The Fermi level corresponds to the reference (zero energy) level.

The computed electronic band structure of graphene is shown in Figure 3b. The characteristic
linear energy dispersion near the Fermi level is clearly observed, forming a so-called Dirac cone; the
valence band (corresponding to π orbitals) and the conduction band (corresponding to π * orbitals)
touch at the Fermi level EF, resulting in a zero density of states at EF. For this reason, graphene is
often called a zero density-of-states metal or a zero band-gap semiconductor. Due to the linear energy
band dispersion near the Fermi level, the electrons in graphene are considered as “massless relativistic
particles”. This peculiar property results in very high charge carrier mobilities in graphene, in the
range of 104–106 cm2/Vs [45–47].

MoS2 is a member of the transition metal dichalcogenide family. Monolayer and few-layer MoS2

were investigated recently for their potential use in 2D material-based field-effect transistors and
photonic devices [48–51]. Each molybdenum atom is bonded to six sulfur atoms in MoS2, with three S
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atoms above and three below, in a trigonal prismatic or octahedral structure, forming a three-layered
atomic sheet [52] (see Figure 4a). In bulk MoS2, these sheets are “bonded” via weak Van der Waals
forces. In its most stable form, bulk MoS2 crystallizes in the 2H (trigonal prismatic) phase, with a lattice
parameter of 3.16 Å; the computed lattice parameter, using DFT-GGA simulations, is about 3.17 Å [3].
Bulk 2H-MoS2 is an indirect semiconductor, with an energy band-gap of about 1.2 eV. The band-gap of
MoS2 increases when the number of layers decreases, becoming a direct band-gap semiconductor at
the limit of a MoS2 single layer [53,54], with a computed DFT-GGA band-gap of about 1.8 eV [3], as
shown in Figure 4b. Depending on the growth conditions and/or on the chemical treatment [17,55],
2H-MoS2 can be transformed to the meta-stable 1T-MoS2 phase. This octahedral phase has a computed
lattice parameter of 3.15 Å, and it is metallic [3,56–58], as shown in Figure 4c.
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Figure 4. (a) Schematic representations of 2H, 3R, and 1T phases of transition metal dichalcogenides.
(b) Computed electronic band structure of a 2H-MoS2 monolayer. The reference energy level corresponds
to the valence band edge. (c) Computed electronic band structure of a 1T-MoS2 monolayer. The reference
energy level corresponds to the Fermi level.

4. Graphene/2H-MoS2 Edge Contacts

We considered four different graphene/monolayer 2H-MoS2 slab models, with various edge
contact symmetries and/or terminations, as shown in Figure 5 [59]. Large supercells (with about
250 atoms) were used for the DFT simulations, to minimize the strain in the graphene and MoS2 layers
(which is typically below 1.5% in both materials). The zigzag and armchair interface models were
built by using (36.5 × 19.4) Å2 and (36.8 × 16.8) Å2 rectangular supercells, respectively. A vacuum
layer of about 20 Å was considered for each interface models, to avoid spurious interactions between
adjacent cells. Model 1 was based on an armchair–edge interface, with a single graphene layer. After
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relaxation, carbon–sulfur (2.14 Å average bond length) and carbon–molybdenum (1.83 Å average bond
length) bonds were present at this interface, as well as sulfur dangling bonds (from the bottom sulfur
sublayer). A graphene bilayer was considered in model 2, in order to saturate these dangling bonds
by the formation of C–S bonds. Model 3 was based on a zigzag–edge interface, terminated by Mo
atoms, where C–Mo bonds (2.13 Å average bond length) were only present after relaxation, resulting
in a “defect-free” contact model. A sulfur-terminated zigzag edge contact was considered in Model 4.
In this case, only C–S bonds (1.79 Å average bond length) were formed, but S dangling bonds were
present in the bottom sulfur sublayer.
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Figure 5. Top and side views of the relaxed atomic configurations of lateral graphene/MoS2 interface
models [59]. Model 1 and model 2 correspond to armchair edge contacts, with a single graphene layer
and a double graphene layer, respectively. Models 3 and 4 correspond to zigzag edge contacts with Mo
termination and S termination, respectively. Dark-gray, blue, and yellow spheres correspond to C, Mo,
and S atoms, respectively. The S dangling bonds in model 1 and model 4 are encircled in red.

The formation energy γ of the graphene/MoS2 interface is calculated using the following
equation [24,60]:

γ =
1

2L

(
Etotal − nCµC − nMOµMoS2

− ∆nSµS

)
, (3)

where L is the interface length, Etotal is the total energy of the graphene/MoS2/graphene system, ni

and µi are the number of atoms and their chemical potentials, respectively, µMoS2 is the total energy of
a MoS2 (single layer) unit cell, and ∆nS = nS − 2nMo. The chemical potential µMo was fixed to that
of body-centered cubic Mo, while µS = 1

2 (µMoS2 − µMo) in the Mo-rich limit, and µS = µS(bulk) in the
S-rich limit, where µS(bulk) corresponds to the sulfur chemical potential of a S8 ring [24].

The computed interface formation energies of the slab models are shown in Table 1. The
Mo-terminated zigzag interface model (model 3 in Figure 5) was the most stable one, in the
molybdenum-rich limit. On the other hand, the armchair interface model, with a bilayer graphene
layer, had the lowest γ in the sulfur-rich limit. Note that the Mo and S-terminated zigzag edge contacts,
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with a graphene monolayer (model 3 and 4), also had comparable interface formation energies in the
S-rich limit, with both interfaces likely produced during such a growth process.

Table 1. Computed interface formation energies γ of the different graphene/MoS2 interface models
shown in Figure 5, in the Mo-rich and S-rich limit, respectively. The value of the computed contact
resistance RcW of each interface model is also given.

Interface Model γ (eV/Å)
Mo-Rich Limit

γ (eV/Å)
S-Rich Limit

RcW (Ω.µm)

Model 1 2.4 2.4 8.1 × 103

Model 2 1.5 1.5 5.6 × 102

Model 3 1.2 1.8 2.2 × 102

Model 4 2.6 1.9 2.3 × 104

The computed RcW of the different edge-contact models is also shown in Table 1. The contact
resistances for the “defect-free” interfaces (model 2 and 3) were typically between 220 and 560 Ω.µm.
These values are comparable to those reported at graphene/metal edge contacts [61]. On the other
hand, the RcW at interfaces with sulfur dangling bonds was about two orders of magnitude larger.

The transmission probabilities of the Mo and S terminated zigzag interface models are discussed
below, in order to gain further insight into these results. The computed (zero-bias) transmission
spectrum of the molybdenum-terminated zigzag interface model (model 3) is shown in Figure 6a.
The onset of transmission is at about 0.1 eV from the Fermi level, a result which is in agreement with
the energy barrier height ΦB of about 0.1 eV, calculated from the electrostatic potential profile of the
heterostructure [59], as well as from the graphene and MoS2 contributions to the electronic density of
states, shown in Figure 6b. Note that the computed graphene work function and MoS2 electron affinity
were about 4.4 eV and 4.2 eV, respectively, resulting in an “ideal” interface barrier of 0.2 eV. The barrier
height at the Mo-terminated interface model was reduced by about 0.1 eV from the ideal value, due
to the presence of polar C–Mo bonds (electrons transferred from Mo to C atoms), forming a dipole
layer at the interface, as illustrated in Figure 7a. These C–Mo bonds significantly contributed to the
electronic density of states near the Fermi level, as indicated from the isosurface charge density plot
shown in the inset of Figure 6b. The resulting low energy barrier at the Mo-terminated zigzag interface
led to a low RcW, in the range of 200 Ω·µm.
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Figure 6. (a) Computed transmission spectrum (at zero bias) of a graphene/MoS2 lateral heterostructure
with Mo-terminated zigzag edge contacts (model 3 in Figure 5). The Fermi level corresponds to the
reference (zero) energy. (b) Partial electronic density of states (PDOS) of graphene and MoS2. The inset
shows the isosurface charge density (0.01 e/Å3) near the Fermi level. Adapted from Reference [59].
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Figure 7. (a) Schematic energy band diagram of (a) Mo-terminated and (b) S-terminated zigzag edge
graphene/MoS2 interfaces.

The (zero-bias) transmission probability of the S-terminated zigzag interface model, with a large
density of sulfur dangling bonds (model 4), is shown in Figure 8a. The onset of the transmission
probability was at about 0.4 eV from the Fermi level at this interface, and the transmission was much
reduced, in comparison to the molybdenum-terminated interface model. The energy barrier ΦB,
extracted from the electrostatic potential profile [59] and the partial electronic density of states, shown
in Figure 8b, was increased by about 0.3 eV at the S-terminated contact, due to the presence of S
dangling bonds, which produced gap states at about 0.4–0.5 eV below the MoS2 conduction band.
The isosurface charge density (see the inset of Figure 8b) indicates that the sulfur dangling bonds
significantly contributed to the electronic DOS near the Fermi level, which was pinned by these gap
states, resulting in an interface barrier ΦB of about 0.4 eV, as illustrated in Figure 7b. Consequently,
the RcW was increased by about two orders of magnitude at this S-terminated zigzag interface, as
compared to the Mo-terminated one.
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Figure 8. (a) Computed transmission spectrum (at zero bias) of a graphene/MoS2 lateral heterostructure
with S-terminated zigzag edge contacts (model 4 in Figure 5). The Fermi level corresponds to the
reference (zero) energy. (b) Partial electronic density of states (PDOS) of graphene and MoS2. The inset
shows the isosurface charge density (0.01 e/Å3) near the Fermi level. Adapted from Reference [59].
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5. T/2H MoS2 Edge Contacts

We considered 1T/2H-MoS2 heterostructures (also based on MoS2 monolayers) with armchair or
zigzag edges [62], as shown in Figure 9. The armchair-edge (198 atoms) and zigzag-edge (216 atoms)
interface models were obtained by using (35 × 16.5) Å2 and (34 × 19) Å2 rectangular supercells,
respectively, with a vacuum layer of 20 Å; the residual strain in the MoS2 layers was typically less
than 0.25%.
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Figure 9. Top views of the relaxed atomic configurations of lateral 1T-MoS2/2H-MoS2 interface models
with (a) armchair and (b) zigzag edge contacts. Blue and yellow spheres correspond to Mo and S
atoms, respectively.

The relaxed 1T/2H-MoS2 interface models, with armchair and zigzag edges, are shown in
Figure 9a,b, respectively. Since the lattice parameters of 1T- and 2H-MoS2 are almost identical, atomically
sharp and defect-free interfaces were obtained, in agreement with previous DFT simulations [26].

The computed RcW at the pristine 1T/2H-MoS2 interfaces was about 3–4 × 104 Ω·µm for the
armchair and zigzag edges (see Table 2). The high contact resistance was due to the large interface
energy barrier (ΦB ≈ 0.8 eV), which corresponds to the difference between the computed work function
of 1T-MoS2 (Φm ≈ 5 eV) and the computed electron affinity of 2H-MoS2 (χ 2248 4.2 eV), as schematically
illustrated in Figure 10. The calculated interface barrier ΦB ≈ 0.8 eV is in very good agreement
(ΦB = 0.82 eV) with other DFT simulations performed on similar 1T/2H-MoS2 heterojunctions [26].

Table 2. Computed contact resistance, adsorption energies Eads and electron transfer (Hirshfeld
population analysis) of the different 1T/2H-MoS2 interface models. The adsorption energies and charge
transfer were computed for one adsorbed atom or molecule on a (4 × 4) 1T-MoS2 supercell.

Interface Model RcW (Ω·µm) Eads (eV) Electron Transfer to 1T-MoS2 (e)

Pristine armchair contact 3.8 × 104 / /

Pristine zigzag contact 2.9 × 104 / /

H-adsorbed contact 2.8 × 102 −0.75 0.05
Li-adsorbed contact 1.9 × 102 −1.46 0.18

H2O-adsorbed contact 4.7 × 102 −2.43 0.08
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It should be pointed out that the calculated RcW was about two orders of magnitude larger than
experimental values reported on 1T-MoS2/2H-MoS2 edge contacts [16,20]. The discrepancy may be
explained by assuming that 1T-MoS2 has a lower effective work function, which could arise from
its interaction with chemical species during the local semiconducting (2H) to metallic (1T) MoS2

transformation. During device processing, 2H-MoS2 is indeed exposed to n-butyllithium solutions, to
induce its transformation to the 1T metallic phase [16,20,63]. During this chemical treatment, chemical
species like H, Li, and/or H2O could be adsorbed onto the 1T-MoS2 surface. We, thus, investigated
the effect of these adsorbates on the 1T-MoS2 work function. An H atom was adsorbed onto 1T-MoS2

by forming an S–H bond, with a bond length of 1.37 Å (see Figure 11a). On the other hand, Li was
most favorably adsorbed onto of an Mo atom, with average Li–Mo distance of 3.07 Å, as indicated in
Figure 11b, as in 2H-MoS2 [64]. Interestingly, the formation of the more stable distorted 1T’-phase of
MoS2 [56] was promoted by the adsorption of H and Li, as indicated by the distorted Mo atoms forming
“one-dimensional (1D) zigzag chains”, which are connected by red dashed lines in Figure 11a,b. We
also studied the interaction between a sulfur vacancy and an H2O molecule. An O–H group tended to
fill the vacant site, with the O atom bonding to neighbor Mo atoms (2.22 Å average Mo–O bond length);
this resulted in the local distortion of the 1T-MoS2 lattice, as indicated in Figure 11c. A neighbor S–H
bond was also formed, with a bond length of 1.38 Å.

The adsorption energies Eads of these atoms or molecules on 1T-MoS2 are computed using the
following equation:

Eads = Etot(MoS2 + adsorbate) − Etot(MoS2) − Etot(adsorbate), (4)

where the last term, representing the total energy of the adsorbate, was fixed to 1
2 Etot(H2) for H,

1
2 Etot(bulk-Li) for Li, and Etot(H2O) for H2O [62].

All the calculated adsorption energies were negative (see Table 2), indicating that these
atoms/molecules were favorably adsorbed onto 1T-MoS2. A partial electron transfer, from the
adsorbate to 1T-MoS2, also occurred, which led to its “n-type doping”. Consequently, the adsorption of
all these chemical species led to the reduction of the 1T-MoS2 work function; an almost linear decrease
of Φm was indeed computed for all the adsorbates considered here [62]. In fact, as shown in Figure 12,
the work function shift ∆Φm depended almost linearly on the partial charge transferred between the
adsorbate and 1T-MoS2.
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The impact of these adsorbates on the contact resistance of 1T/2H-MoS2 heterojunctions is
highlighted in Table 2. The adsorbate coverages were fixed to 8% Li, 12% H2O, and 22% H;
such coverages are consistent with experimental values obtained during the functionalization of
transition-metal dichalcogenide monolayers [65]. The corresponding 1T-MoS2 work function was about
4.3 eV, resulting in an energy barrier at the 1T/2H-MoS2 interface of about 0.1 eV. The functionalization of
1T-MoS2 by the adsorbates subsequently resulted in the decrease of the contact resistance by more than
two orders of magnitude (see Table 2), being comparable to the experimental values (100–200 Ω·µm)
reported in References [16] and [20].

6. Concluding Remarks

The potential integration of 2D materials in nanoscale field-effect transistors will require the
formation of metal/2D semiconductor contacts with contact resistances in the range of few hundreds of
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Ω·µm. First-principles simulations predict that the contact resistance of graphene/monolayer 2H-MoS2

lateral heterostructures strongly depends on the edge contact symmetry and termination. A low
contact resistance, in the range of 200 Ω·µm, was computed at Mo-terminated zigzag edges, due to
the possible formation of a “defect-free” interface with a low electron energy barrier. However, the
presence of a large density of sulfur dangling bonds at S-terminated (zigzag or armchair) edge contacts
resulted in a larger electron energy barrier, with the contact resistance being increased by two orders of
magnitude. Obtaining a low contact resistance at graphene/MoS2 lateral heterostructures will, thus,
critically depend on the control of the edge symmetry and/or termination.

Another promising 2D metal/2D semiconductor edge contact consists of 1T/2H-MoS2 lateral
heterostructures. Low contact resistances, in the range of 200 Ω·µm, were also predicted from
first-principles simulations at such interfaces based on MoS2 monolayers, resulting from the
functionalization (electron doping) of the 1T-MoS2 contact by various adsorbates (H, Li, H2O),
likely present during the transformation of the stable 2H-MoS2 phase into the meta-stable 1T-MoS2

polymorph. These simulations importantly highlight the beneficial effect of the functionalization of
metallic 1T-MoS2 in order to achieve low contact resistances in MoS2-based nanoscale devices.
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