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Abstract: The low-frequency vibration and radiation performance of a locally resonant (LR) plate with
periodic multiple resonators is studied in this paper, with both infinite and finite structure properties
examined. For the finite cases, taking the LR plate attached with two periodic arrays of resonators as
an example, the forced vibration response and the radiation efficiency are theoretically derived by
adopting a general model with elastic boundary conditions. Through a comparison with the band
structures calculated by the plane-wave-expansion method, it shows that the band gaps in the infinite
LR plate are in good agreement with the vibration-attenuation bands in the finite LR plate, no matter
what boundary conditions are applied to the latter. In contrast to the vibration reduction in the band
gaps, the radiation efficiency of the finite LR plate is sharply increased in the band-gap frequency
ranges. Furthermore, the acoustic power radiated from the finite LR plate can be seriously affected by
its boundary conditions. For the LR plate with greater constraints, the acoustic power is reduced
in the band-gap frequency ranges, while that from the one with fully free boundary conditions is
increased. When further considering the damping loss factors of the resonators, the attenuation
performance can be improved for both the vibration and radiation of the LR plate.

Keywords: locally resonant plate; periodic multiple resonators; boundary condition; vibration
attenuation; radiation efficiency

1. Introduction

Owing to the band-gap property, periodic structures have attracted a great deal of interest over
the past several decades. Periodic beams [1] and stiffened plates [2] are used widely in engineering,
while the band gaps are mostly limited to mid-and-high frequency ranges due to the Bragg scattering
mechanism [3,4], which requires the structure period to be of the same order as the wavelength
of the band-gap frequency. Since the locally resonant (LR) mechanism was proposed by Liu et
al. [5], the study of periodic structures based on the LR mechanism (e.g., phononic crystals [6,7],
acoustic metamaterials [8,9], etc.) has been increased. They are usually manufactured by adding
arrays of resonant microstructures periodically into/onto the structures to suppress flexural wave
propagation. It is considered as an efficient method to achieve the low-frequency band gaps. Xiao
et al. [10] studied the propagation of flexural waves in an LR thin plate made of a two-dimensional
periodic array of one type of resonator attached on a thin homogeneous plate. Qian and Shi [11]
extended the traditional plane-wave-expansion (PWE) method to calculate the band structures of the
“spring-mass” simplified model and the “spring-torsional spring-mass” simplified model of LR plate
systems, where the effect of the viscidity is also considered. Nouh et al. [12,13] presented the vibration
characteristic of metamaterial beams and plates manufactured out of assemblies of periodic elements
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with built-in local resonances. Wang et al. [14] proposed a meta-plate model by periodically attaching
high-static-low-dynamic-stiffness resonators onto the thin plate to attenuate very low-frequency
flexural waves. To broaden the bandwidths, many researchers investigated the band gaps in periodic
structures with multiple local resonators. Flexural wave propagation in locally resonant beams with
multiple periodic arrays of attached spring-mass resonators was studied by Xiao et al. [15], showing
that much broader band gaps can be achieved by applying damped resonators. Wang et al. [16]
studied a homogeneous damped plate with parallel attached resonators on both surfaces, from which
two band gaps were generated to improve the band-gap performance. Wang et al. [17] investigated
wave propagation and power flow in an acoustic metamaterial plate with a lateral local resonance
attachment, where two band gaps can be formed by tuning the parameters of the vertical spring-mass
and the lateral spring-mass. A chiral-lattice-based elastic metamaterial beam with multiple resonators
was numerically and experimentally studied for the broadband vibration suppression by utilizing
their individual band gaps by Zhu et al. [18]. Zhou et al. [19] realized multi-low-frequency band gaps
in beams by using the mechanism of multiple resonators containing negative-stiffness. Ma et al. [20]
studied the band-gap properties of a periodic vibration suppressor composed of a bottom spring-mass
oscillator with multiple secondary oscillators with an arbitrary degree of freedom. Qin and Sheng [21]
developed the theory of the PWE method to calculate the band structures of the LR plate attached
with multiple spring-mass resonators, which is applied in this paper. It was also concluded that the
spring damping characteristic can assist in attenuating the vibration responses outside the band-gap
frequency ranges.

At present, most studies were focused on dynamic behavior based on band-gap properties. It is
generally accepted that vibration attenuation leads to noise reduction. Since the band gaps affect the
flexural wave propagation, it is expected that the vibro-acoustic radiation from the LR plate can also be
suppressed, especially in the low-frequency range. Acoustic radiation from the LR plate-like structures
has been investigated by several researchers. Claus et al. [22] investigated the acoustic radiation
efficiency of local resonance-based band-gap materials in both infinite structures and corresponding
finite structures, with a specific focus on the radiation efficiency variation affected by the correlation
between the resonant frequency and the critical frequency of the plate. It was first found that the
band-gap property may increase the radiation efficiency of the LR plate. Song et al. [23] investigated
the suppression of vibration and acoustic radiation in a sandwich plate through the use of a periodic
design by the finite-element method (FEM). Guo et al. [24] derived the average radiation efficiency of
a sandwich plate with periodically inserted LR resonators theoretically. Recently, Jung et al. [25,26]
used the LR band gaps to increase the efficiency of sound radiation employing defect modes on
a phononic crystal. Although research has been conducted focusing on acoustic radiation in LR
structures, more studies can be done to further obtain valuable acoustical characteristics of the LR
structure in the low-frequency range.

In this paper, the low-frequency vibration and radiation performance of the LR plate attached with
periodic multiple resonators is studied. Following the introduction, the theoretical models are built
for the forced response and the total radiation efficiency of the finite LR plate in Section 2. A general
model of the boundary conditions is adopted by using linear and torsional springs for the finite LR
plate. In Section 3, the band-gap property in the infinite LR plate and vibration attenuation in its finite
counterpart are discussed. Furthermore, the acoustic radiation from the finite LR plate is analyzed,
with a focus on the effect of the boundary conditions of the plate itself and the damping characteristic of
the resonators on the acoustic radiation property. Finally, the conclusions are summarized in Section 4.
The theory built in this paper and the corresponding findings can guide the multi-band-gap design of
the LR plate for noise control.
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2. Model and formulations

2.1. Forced Response of the Finite LR Plate with Elastic Boundary Conditions

In this subsection, the displacement is derived by solving the forced response of the LR plate
with elastic boundary conditions. Shown in Figure 1 is a finite rectangular LR plate with multiple
spring-mass resonators periodically attached on the base plate, of which all four edges are applied
with elastic boundary conditions. The base plate has dimensions of thickness hp, length a, and width b,
and material parameters of Young’s modulus E, Possion’s ratio ν, and mass density ρp. A harmonic
point force F0e jωt is applied at the position of (x0, y0) on the base plate. The differential equation of
motion for a forced vibration of the base plate is given by:

D∇4w(x, y) − ρphpω
2w(x, y) = F, (1)

where D = Eh3
p/12

(
1− ν2

)
is the bending stiffness of the plate, ∇4 = ∂4/∂x4 + 2∂4/∂x2∂y2 + ∂4/∂y4,

and F includes both the external force and the forces from the resonators.
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Figure 1. The finite locally resonant plate with elastic boundary conditions.

In the case of the LR plate attached with two periodic resonators of (mR1, kR1) and (mR2, kR2)

along the x−direction, F can be expressed as:

F = F0δ(x− x0)δ(y− y0) +
S∑

s = 1

T∑
t = 1

F1stδ(x− x1s)δ(y− yt) +
S∑

s = 1

T∑
t = 1

F2stδ(x− x2s)δ(y− yt), (2)

where F0 is the amplitude of the external force and δ(x− x0)δ(y− y0) is the 2-D Dirac delta function.
On the base plate 2S× T resonators are attached. The terms F1st and F2st are the amplitudes of forces
from the vibrating resonators of (mR1, kR1) and (mR2, kR2), respectively. The terms (x1s, yt) and (x2s, yt)

represent the coordinates of the individuals in both kinds, where s (s ∈ [0, S]) is an odd number, t
(t ∈ [0, T]) is an integer, and x2s = x1s + aL.

The transverse displacement of a thin rectangular plate can be expressed as [27,28]:

w(x, y) =
∞∑

m = 0

∞∑
n = 0

Amn cos(λamx) cos(λbny) +
4∑

l = 1

(
ξl

b(y)
∞∑

m = 0
cl

m cos(λamx) + ξl
a(x)

∞∑
n = 0

dl
n cos(λbny)

)
. (3)

Let the infinite series be truncated to m = M and n = N in the following calculation, and then
Equation (3) can be written as:

w(x, y) =
M∑

m = 0

N∑
n = 0

Amn cos(λamx) cos(λbny) +
4∑

l = 1

(
ξl

b(y)
M∑

m = 0
cl

m cos(λamx) + ξl
a(x)

N∑
n = 0

dl
n cos(λbny)

)
, (4)
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where λam = mπ/a and λbn = nπ/b. The terms Amn, cl
m, and dl

n are unknown expansion coefficients
that need to be determined by both boundary equations and governing differential equations. The
terms ξl

a(x) and ξl
b(y) are given in the form of trigonometric functions and are defined as: ξa(x) =

[
ξ1

a(x) ξ2
a(x) ξ3

a(x) ξ4
a(x)

]T
= Aaϕa,

ξb(y) =
[
ξ1

b(y) ξ2
b(y) ξ3

b(y) ξ4
b(y)

]T
= Abϕb

, (5)

where Aa and Ab are two arbitrary 4× 4 matrixes of full rank, and: ϕa =
[

sin(πx/2a) cos(πx/2a) sin(3πx/2a) cos(3πx/2a)
]T

,

ϕb =
[

sin(πy/2b) cos(πy/2b) sin(3πy/2b) cos(3πy/2b)
]T (6)

The first- to fourth-order derivatives used in the boundary equations and governing differential
equations can be determined as:{

ξa
(1)(x) = AaBa1Ba0ϕa, ξa

(2)(x) = AaBa2ϕa, ξa
(3)(x) = AaBa3Ba0ϕa, ξa

(4)(x) = AaBa4ϕa,
ξb

(1)(y) = AbBb1Bb0ϕb, ξb
(2)(y) = AbBb2ϕb, ξb

(3)(y) = AbBb3Bb0ϕb, ξb
(4)(y) = AbBb4ϕb

, (7)

where the matrixes Ba0, Ba1, Ba2, Ba3, Ba4, Bb0, Bb1, Bb2, Bb3, and Bb4 are defined in Equation (A1) in
Appendix A.

To make the separation of variables in Equation (4) possible,ϕa andϕb need to be expanded in
the form of cosine series as:

ϕa =
M∑

m = 0

τm cos(λamx), ϕb =
N∑

n = 0

τn cos(λbny), (8)

where τm =
[
τ1

m τ2
m τ3

m τ4
m

]T
and τn =

[
τ1

n τ2
n τ3

n τ4
n

]T
, which are defined in Equation

(A3) in Appendix A. Hence, Equation (5) can be further expressed as:

ξa
(i)(x) =

M∑
m = 0

αim cos(λamx), ξb
(i)(y) =

N∑
n = 0

βin cos(λbny) , (9)

where the superscript of (i) means the ith derivative and i = 0, 1, 2, 3, 4. The terms

αim =
[
α1

im α2
im α3

im α4
im

]T
and βin =

[
β1

in β2
in β3

in β4
in

]T
are 4× 1 column vectors, given

by: {
α0m = Aaτm, α1m = AaBa1Ba0τm, α2m = AaBa2τm, α3m = AaBa3Ba0τm, α4m = AaBa4τm,
β0n = Abτn, β1n = AbBb1Bb0τn, β2n = AbBb2τn, β3n = AbBb3Bb0τn, β4n = AbBb4τn

(10)

The base plate is elastically restrained on four edges bearing the shear forces and bending moments
balanced by the linear and torsional springs. The boundary conditions of the base plate can be expressed
by: kx0w(0, y) = Qx|x = 0, Kx0

∂w
∂x (0, y) = −Mx|x = 0, kxaw(a, y) = −Qx|x = a, Kxa

∂w
∂x (a, y) = Mx|x = a,

ky0w(x, 0) = Qy
∣∣∣
y = 0, Ky0

∂w
∂y (x, 0) = −My

∣∣∣
y = 0, kybw(x, b) = −Qy

∣∣∣
y = 0, Kyb

∂w
∂y (x, b) = My

∣∣∣
y = b

(11)

where kx0, kxa, ky0, and kyb are the linear spring stiffnesses, and Kx0, Kxa, Ky0, and Kyb are the torsional
spring stiffnesses. The bending moments Mx and My, and the so-called effective shear forces Qx and
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Qy, are defined in Equation (A4) in Appendix A. Substituting Equation (4) into Equation (11) and
applying the orthogonality of trigonometric functions give:

4∑
l = 1

M∑
m = 0

gi,1cl
m +

4∑
l = 1

gi,2dl
n =

M∑
m = 0

gi,3Amn (n = 0, 1, · · · , N, i = 1, 2, 3, 4),

4∑
l = 1

gi,1cl
m +

4∑
l = 1

N∑
n = 0

gi,2dl
n =

N∑
n = 0

gi,3Amn (m = 0, 1, · · · , M, i = 5, 6, 7, 8)
, (12)

where gi,1, gi,2, and gi,3 are given by Equation (A5) in Appendix A. Equation (12) represents 4(M + 1) +
4(N + 1) boundary equations, and they can be rewritten in a matrix form as:

Hp = Qa, (13)

where H and Q are coefficient matrixes represented with the elements gi,1, gi,2, and gi,3. The terms p
and a are defined as:

p =
[
c1

0, c1
1, · · · , c1

M, c2
0, c2

1, · · · , c2
M, c3

0, c3
1, · · · , c3

M, c4
0, c4

1, · · · , c4
M,

d1
0, d1

1, · · · , d1
N, d2

0, d2
1, · · · , d2

N, d3
0, d3

1, · · · , d3
N, d4

0, d4
1, · · · , d4

N

]T
,

(14)

a = [A00, A01, · · · , A0N, A10, A11, · · · , A1N, · · · , Amn, · · · , AM0, AM1, · · · , AMN]
T, (15)

respectively. Thus, p can be expressed by a, namely:

p = H−1Qa. (16)

In Equation (4), a total of (M + 1)(N + 1) + 4(M + 1) + 4(N + 1) unknown expansion coefficients
can be obtained. Except for 4(M + 1) + 4(N + 1) boundary equations supported by Equation (13),
(M + 1)(N + 1) governing differential equations are provided in the following. Furthermore, express
the force terms found in Equation (2) in Fourier series with a cosine form as:

F′δ(x− x′)δ(y− y′) =
M∑

m = 0

N∑
n = 0

Fmn cos(λamx) cos(λbny), (17)

where Fmn is the modal force. By using the orthogonality of trigonometric functions, multiplying
cos(λamx) cos(λbny) on both sides of Equation (17), and integrating in the area of (x, y) ∈ ([0, a] × [0, b]),
Fmn can be given by:

Fmn =
F′

LamLbn
cos(λamx′) cos(λbny′), (18)

where Lam =

{
a, m = 0

a/2, m , 0
and Lbn =

{
b, n = 0

b/2, n , 0
.

Hence, the external force in Equation (2) can be expressed as:

F0δ(x− x0)δ(y− y0) =
M∑

m = 0

N∑
n = 0

Fmn0 cos(λamx) cos(λbny), (19)

where Fmn0 = (F0/LamLbn) cos(λamx0) cos(λbny0).
When considering the damping characteristic of the springs, the force equilibrium equation of

both kinds of resonators can be written as:

mRi
..
wRist + kRi(1 + jηRi)[wRist −w(xis, yt)] = 0, i = 1, 2, (20)
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where ηRi is the damping loss factor of the spring damper, and then the displacements of two kinds of
resonators can be expressed by:

wRist =
kRi(1 + jηRi)

kRi(1 + jηRi) −ω2mRi
w(xis, yt), i = 1, 2. (21)

Thus, Fist in Equation (2) are given by:

Fist = −mRi
..
wRist = ZRi(ω)w(xis, yt), i = 1, 2, (22)

where ZRi(ω) =
ω2mRikRi(1+ jηRi)

kRi(1+ jηRi)−ω2mRi
. The substitution of Fistδ(x− xis)δ(y− yt) into Equation (17) gives:

Fistδ(x− xis)δ(y− yt) =
M∑

m = 0

N∑
n = 0

Fmnist cos(λamx) cos(λbny), i = 1, 2, (23)

where Fmnist = (Fist/LamLbn) cos(λamxis) cos(λbnyt).
Substituting Equations (4), (9), (19), and (23) into Equation (1) derives equations written in a matrix

form as:
(Ra + Sp) −ω2(Za + Tp) − [U(ω)a + V(ω)p] = F, (24)

where F =

[
· · · , Fmn0 +

S∑
s = 1

T∑
t = 1

(Fmn1st + Fmn2st), · · ·
]T

(M+1)(N+1)×1
. The coefficient matrixes R, S, Z,

T, U(ω), and V(ω) are defined in Equations (A6)–(A10) in Appendix A.
The substitution of Equation (16) makes Equation (24) be expressed as:[

K−ω2M−W(ω)
]
a = F, (25)

where K = R + SH−1Q, M = Z + TH−1Q, and W(ω) = U(ω) + V(ω)H−1Q.
For a given frequency ω, by solving Equation (25), the coefficient vector a can be achieved,

and then p can be determined by Equation (16). The transverse displacement of the base plate can be
further obtained by Equation (4).

2.2. Wavenumber Domain Approach for the Total Radiation Efficiency of the Finite LR Plate

A finite LR plate with elastic boundary conditions is embedded in an infinite rigid baffle, as shown
in Figure 2. As the acoustic medium is air in this paper, the effect of the fluid load is ignored.
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 0 0p v
z t

ρ
∂ ∂

+ =
∂ ∂

,  (28) 

Yields: 

xy z

O Infinite rigid baffle

Figure 2. Schematic of the locally resonant plate embedded in an infinite rigid baffle.

A harmonic motion at the arbitrary frequency ω is assumed. The radiated pressure p(x, y, z)
satisfies the Helmholtz equation: (

∇
2 + k2

)
p(x, y, z) = 0, (26)
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where ∇2 = ∂2/∂x2 + ∂2/∂y2, k = ω/c0, and c0 is the speed of sound. The propagation of acoustic
pressure in a plane, harmonic, bending wave in 3-D space can be represented as:

p(x, y, z, t) = p̃e− jkxx− jky y− jkzze jωt, (27)

where k2
x + k2

y + k2
z = k2. Substituting Equation (27) into the momentum equation:

∂p
∂z

+ ρ0
∂v
∂t

= 0, (28)

Yields:

p(x, y, z) =
ρ0c0k

kz
v(x, y, z), (29)

where v(x, y, z) is the particle velocity in air, and ρ0 is the air density. By using the spatial Fourier
transform as:

P
(
kx, ky, z

)
=

∫
∞

−∞

∫
∞

−∞

p(x, y, z)e− jkxx− jky ydxdy, (30)

V
(
kx, ky, z

)
=

∫
∞

−∞

∫
∞

−∞

v(x, y, z)e− jkxx− jky ydxdy, (31)

Equation (29) can be written as:

P
(
kx, ky, z

)
= Za

(
kx, ky

)
V
(
kx, ky, z

)
, (32)

where Za
(
kx, ky

)
is the acoustic impedance, expressed as:

Za
(
kx, ky

)
= ±


ρ0c0k√

k2−k2
x−k2

y

, k2
x + k2

y < k2

j ρ0c0k√
k2

x+k2
y−k2

, k2
x + k2

y > k2
. (33)

Considering the radiation of the air-plate interface, if V
(
kx, ky, z = 0

)
is known, the upper surface

pressure P
(
kx, ky, z = 0

)
can be derived. The term V

(
kx, ky, z = 0

)
can be determined by the base

plate velocity v(x, y), which can be acquired by multiplying w(x, y) by jω.
For the baffled LR plate under harmonic excitation, the total acoustic power can be calculated by

integrating the acoustic intensity over the plate-baffle plane, i.e., z = 0, expressed as:

W =
1
2

Re
{∫

∞

−∞

∫
∞

−∞

p(x, y)v∗(x, y)dxdy
}

, (34)

where the superscript of * means a complex conjugate.
The inverse Fourier transforms of p(x, y) and v(x, y) are represented as:

p(x, y) =
1

4π2

∫
∞

−∞

∫
∞

−∞

P
(
kx, ky

)
e jkxx+ jky ydkxdky, (35)

v(x, y) =
1

4π2

∫
∞

−∞

∫
∞

−∞

V
(
kx, ky

)
e jkxx+ jky ydkxdky, (36)

respectively, and substituting them into Equation (34) gives:

W =
1

32π4
Re

{∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

∫
∞

−∞

P
(
kx, ky

)
e jkxx+ jky ydkxdky ×

∫
∞

−∞

∫
∞

−∞

V∗
(
kx
′, ky

′
)
e− jkx

′x− jky
′ydkx

′dky
′dxdy

}
(37)
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By changing the order of integration and firstly performing the integration over x and y, the Dirac
delta function is obtained, namely:∫

∞

−∞

∫
∞

−∞

e j(kx−kx
′)xe j(ky−ky

′)ydxdy = 4π2δ(kx − kx
′)δ

(
ky − ky

′
)
. (38)

The substitution of Equation (32) into Equation (37) derives:

W =
1

8π2 Re
{∫

∞

−∞

∫
∞

−∞

Za
(
kx, ky

)
×

∣∣∣∣V(
kx, ky

)∣∣∣∣2dkxdky

}
. (39)

It should be noted that only the wavenumber components kx and ky satisfying k2
x + k2

y < k2

contribute to an effective acoustic radiation. The range of integration can be limited, and Equation (39)
can be expressed as:

W =
1

8π2 Re


∫ k

−k

∫ √
k2−k2

y

−

√
k2−k2

y

Za
(
kx, ky

)
×

∣∣∣∣V(
kx, ky

)∣∣∣∣2dkxdky

. (40)

The substitution of V
(
kx, ky

)
calculated by Equation (31) into Equation (40) can acquire W.

Therefore, the radiation efficiency of the LR plate can be derived by:

σrad =
W

1
2ρ0c0ab

〈
|v|2

〉 , (41)

where
〈
|v|2

〉
is the mean square velocity averaged over the plate surface.

3. Examples and Discussion

In Section 3, the band-gap properties in the infinite LR plate are acquired by the theory in
reference [21], and the vibration and radiation responses in the finite LR plate are obtained by the
theory in Sections 2.1 and 2.2. Examples of the LR plate with two resonators in each periodic element
(TRIEPE LR plate) are focused on, for a low-frequency vibro-acoustic performance. In the following
examples, the base plate is made of steel with a material density ρp = 7800 kg/m3, Young’s modulus
E = 2.1× 1011 Pa, Poisson’s ratio ν = 0.3, and damping loss factor ηp = 0.001. The thickness of the
plate is set as hp = 0.003m and the lattice constant aL = 0.05 m.

3.1. Band-Gap Property and Vibration Attenuation

It should be noted that introducing a new type of resonator will affect the original band-gap
frequency range in the LR plate with one resonator in each periodic element (ORIEPE LR plate), which
is related to the spring-mass parameters of the new resonators. Thus, the effect of the ratio between
the resonant frequencies on the band-gap frequency range is studied first of all. Since the complete
band gaps are closely related to the LR mechanism in the LR plate system, directional band gaps are
not considered in this paper. Shown in Figure 3 are the trends of two band-gap frequency ranges
versus fR2/ fR1 in the TRIEPE LR plate with resonators (mR1, kR1) and (mR2, kR2), with the resonant
frequencies of fR1 and fR2, respectively. The band-gap frequency ranges in the two corresponding
ORIEPE LR plates are also shown in Figure 3 for comparison. The parameters mR1 = 0.020 kg,
kR1 = 3.2× 104 N/m, fR1 = 201Hz, and mR2 = 0.014 kg are kept unchanged, while fR2/ fR1 is varied
by changing kR2.
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Figure 3. The effect of fR2/ fR1 on the band-gap ranges in the locally resonant plate with two resonators
in each periodic element (TRIEPE LR plate) with (mR1, kR1) and (mR2, kR2), and two corresponding
locally resonant plates with one resonator in each periodic element (ORIEPE LR plates).

It can be seen in Figure 3 that the single band gap in the ORIEPE LR plate with (mR1, kR1) is
201–233 Hz, as shown in the dark grey shaded area. The light grey shaded area shows that, within the
frequency range of 0–500 Hz, with the increase of fR2/ fR1, both the lower and upper frequencies of
the single band gap in the ORIEPE LR plate with (mR2, kR2) keep increasing, and the lower frequency
is very close to the resonant frequency fR2. When fR2/ fR1 = 1, the lower frequencies of the two
single band gaps are totally the same, while the difference between mR1 and mR2 makes the upper
frequencies 233 Hz and 224 Hz, respectively, which means the resonator mass plays an important part
in the determination of the upper frequency. Furthermore, it can be seen that the lower frequencies of
the two single band gaps in both ORIEPE LR plates almost coincide with those of the two band gaps in
the TRIEPE LR plate, while the band gaps in the former cases cover those in the latter case. In the
TRIEPE LR plate with both (mR1, kR1) and (mR2, kR2), when fR2/ fR1 < 1, the band gap formed by the
resonance of (mR2, kR2) is the 1st band gap. The 1st band gap is getting narrower as fR2 approaches
fR1, and meanwhile the 2nd band gap is getting wider. When fR2/ fR1 = 1, the original 1st band gap
vanishes and only one band gap exists. As fR2/ fR1 continues increasing, two band gaps reappear,
while the band gap formed by the resonance of (mR2, kR2) turns into the 2nd band gap. The bandwidth
of the 1st band gap is not changed after a slight increase, and the bandwidth of the 2nd band gap keeps
increasing after a decrease.

Shown in Figure 4 are the total bandwidths of the band gaps in three corresponding LR plates
when fR2 is below 500 Hz. The bandwidth of the band gap in the ORIEPE LR plate with (mR1, kR1)

is 32 Hz. With the increase of fR2/ fR1, the bandwidth in the ORIEPE LR plate with (mR2, kR2) has
a nearly linear increase, which makes its bandwidth curve intersect with that in the ORIEPE LR plate
with (mR1, kR1) when fR2/ fR1 reaches a certain value. Moreover, the curve of the total bandwidth of
the two band gaps in the TRIEPE LR plate seems positively proportional to fR2/ fR1 with a lower slope
than that in the ORIEPE LR plate with (mR2, kR2). Interestingly, three bandwidth curves intersect at
fR2/ fR1 ≈ 1.4, where the total bandwidths are all 32 Hz. With the exception of this point, the bandwidth
in the TRIEPE LR plate stays between the bandwidths in both ORIEPE LR plates below 500 Hz.
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It can be seen that when aiming to achieve a new low-frequency band gap, the introduction
of the new periodic resonators might make the total bandwidth decrease in the TRIEPE LR plate.
Appropriate spring-mass parameters for both kinds of resonators could make the total bandwidth
not be greatly affected. Hence, the chosen parameters of the periodic element of the TRIEPE LR plate
in this paper are given in Table 1, together with the details of the finite base plate. In the following
analysis, the parameters are kept unchanged unless otherwise stated.

Table 1. Parameters of the periodic element and the details of the base plate in the finite locally resonant
plate with two resonators in each periodic element.

Symbol Description Value

mR1 Mass of the resonator (mR1, kR1) 0.020 kg
kR1 Spring stiffness of the resonator (mR1, kR1) 3.2× 104 N/m
mR2 Mass of the resonator (mR2, kR2) 0.014 kg
kR2 Spring stiffness of the resonator (mR2, kR2) 5× 104 N/m
aL Lattice constant 0.05 m
hp Thickness of the base plate 0.003 m
a Length of the finite base plate 0.8 m
b Width of the finite base plate 0.5 m

F0 Amplitude of excitation force 1 N
(x0, y0) Force position on the finite base plate (0.1 m, 0.1 m)

As illustrated in Section 2.1, the four boundaries of the plate are supported by a linear spring with
stiffness k and a torsional spring with stiffness K. The free, simply supported, and clamped boundary
conditions can be simulated by using specific stiffness values of k and K: the free boundary condition
can be expressed when k = 0 and K = 0; the simply supported boundary condition can be expressed
when k tends to infinity and K = 0; and the clamped boundary condition can be expressed when both
k and K tend to infinity. The variation of the boundary conditions can result in the difference in the
vibration response and acoustic performance [29,30]. In this paper, three kinds of different boundary
conditions are applied to the plate, including fully free boundary conditions (‘FFFF’), fully simply
supported boundary conditions (‘SSSS’), and fully clamped boundary conditions (‘CCCC’).

Before the analysis of the vibration attenuation property of the LR plate, taking the SSSS boundary
condition as an example, the theory to simulate the vibration response in this paper is examined by
using the FEM software of Ansys. The comparisons are shown in Figure 5a–c, respectively for the
bare plate, the mass-loaded (ML) plate, and the LR plate. The ML plate indicates the plate periodically
attached with point masses, for which the plate, the lattice constant, and the loaded masses are all
identical to those of the LR plate. The above theory is also appropriate for the ML plate via replacing
Equation (21) by wRist = w(xis, yt). Good agreements can be found between the root-mean-square
velocities (RMSVs) averaged over the whole surface calculated by the theory and FEM, which validates
the correctness of the theory in this paper.
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Figure 5. The comparison between the root-mean-square velocities (RMSVs) averaged over the whole
surface calculated by the theory and finite element method (FEM) for (a) the bare plate, (b) the
mass-loaded plate, and (c) the locally resonant plate.
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Shown in Figure 6a are the band structure curves of the infinite bare plate, the infinite LR
plate, and the infinite ML plate. The RMSVs averaged over the whole plate surface of the bare
plate, the LR plate, and the ML plate, for the cases of various boundary conditions, are shown in
Figure 6b–d. In the range of 0–500 Hz, the band gaps induced by the LR effect are labeled in Figure 6a,
with band-gap frequency ranges of 201–215 Hz and 300–320 Hz, where no waves propagate. The
two ranges correspond to the resonant frequencies of two kinds of resonators, i.e., fR1 = 201 Hz and
fR2 = 300 Hz. It can also be seen that, for the bare plate and the ML plate, waves are allowed at
any frequency. The comparison between the band structures in Figure 6a and the vibration results in
Figure 6b–d basically show a good coincidence between the band gaps of the infinite LR plate and the
vibration attenuation bands of its finite counterpart, no matter what boundary conditions are applied
to the finite plate. In the band-gap frequency ranges, the vibration of the finite LR plate is attenuated
when compared with those of the bare plate and the ML plate.

As illustrated above, the ML plate and the LR plate have the same weight, heavier than the
bare plate. From Figure 6b–d, it is obvious that the first few modal frequencies of the bare plate are
a little larger than those of the ML plate and the LR plate. Except for the effect on the structural
vibration, the weight also affects the acoustic behavior [22]. Thus, only the ML plate is considered for
comparison below.
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Figure 6. (a) Band structures of the infinite bare plate, mass-loaded (ML) plate, and locally resonant
(LR) plate, and the root-mean-square velocities (RMSVs) averaged over the whole surface of their
finite counterparts with (b) fully free (FFFF) boundary conditions, (c) fully simply supported boundary
conditions (SSSS), and (d) fully clamped (CCCC) boundary conditions. (BG: band gap).

It is noted that the RMSV results in Figure 6b–d are all averaged over the whole plate surface,
which makes the vibration attenuation in the LR plates not very obvious at some frequencies in
two band gaps, especially for the FFFF boundary conditions in Figure 6b. In the finite LR plates,
the vibration attenuation in the band-gap frequency ranges is usually evaluated by the vibration
transmittance. With the band structure curves of the infinite ML and LR plates shown in Figure 7a
for comparison, Figure 7b shows the vibration transmittances of the finite ML and LR plates with
FFFF boundary conditions. The vibration transmittance is given by T = 20 log 10|vres/vext|, where the
RMSVs averaged over the area of 0 < x < 0.1 m and 0.5 m < x < 0.6 m within the base plate surface
are chosen as vext and vres, respectively. From the comparison between the vibration transmittances
of the ML and LR plates, it can be seen that the flexural waves in the LR plate can be dramatically
suppressed in the band-gap frequency ranges, better revealing its band-gap property. Figure 8a,b
shows the displacement profiles of the LR plate at 202 Hz and 310 Hz, respectively within two band
gaps. It can be seen that, with the exception of the area around the force position, the excited responses
over almost the whole surface of the LR plate are significantly suppressed at the two frequencies.
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Figure 7. (a) Band structures of the infinite mass-loaded (ML) plate and locally resonant (LR) plate,
and (b) the vibration transmittances of their finite counterparts with fully free boundary conditions.
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Figure 8. Displacement profiles of the finite locally resonant plate with fully free boundary conditions
at (a) 202 Hz within the 1st band gap and (b) 310 Hz within the 2nd band gap.

For all of the above results of the LR plates, the damping characteristic of the resonators is not
considered, while it could broaden the vibration attenuation band outside the band-gap frequency
ranges [21]. Shown in Figure 9a–c are the RMSVs averaged over the whole surface of the FFFF ML
plate and the FFFF LR plate with the ηR1 and ηR2 values of the resonators varying separately and
simultaneously. When applying the damping loss factors to the resonator springs, it has little effect on
the RMSV in a lower frequency range under 150 Hz in this case. With ηR2 kept as zero and ηR1 varied
by 0, 0.05, and 0.1, the attenuation band covering the 1st band-gap frequency range becomes wider,
though the RMSV in the original 1st band-gap frequency range is increased. Meanwhile, the RMSV
within the 2nd band-gap frequency range changes little, as shown in Figure 9a. Figure 9b shows an
analogous effect in the case where ηR1 is zero and ηR2 is varied by 0, 0.05, and 0.1. With the damping
loss factor increasing simultaneously, as shown in Figure 9c, the RMSV is decreased between the two
band-gap frequency ranges, and a much wider attenuation band appears covering them. Moreover,
the RMSV curves become smoother in the higher frequency range with the application of the resonator
damping. It is revealed that a better attenuation performance can be achieved in the LR plate with
multiple resonators when further considering their damping characteristic.
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Figure 9. The root-mean-square velocities (RMSVs) averaged over the whole surface of the mass-loaded
(ML) plate and the locally resonant (LR) plate with the resonator damping loss factors of (a) ηR1 varied
by 0, 0.05, 0.1, and ηR2 kept as 0, (b) ηR1 kept as 0 and ηR2 varied by 0, 0.05, and 0.1, and (c) ηR1 and ηR2

simultaneously varied by 0, 0.05, 0.1, and 0.2.

3.2. Acoustic Radiation Property of the Finite LR Plate

As derived in Sections 2.1 and 2.2, the theory in this paper can calculate the radiation efficiencies
of the finite LR plate with various boundary conditions. Figure 10a–c gives the radiation efficiencies of
the FFFF, SSSS, and CCCC plates, including the results of the ML plate, the LR plates with undamped
resonators, and the LR plate with damped resonators of ηR1,2 = 0.05. It is not difficult to observe that
more peaks and dips appear in the curves of the RMSV and the radiation efficiency of the FFFF plates
in 0–500 Hz, than in those in the case of greater constraints, such as the SSSS and CCCC boundary
conditions simulated in this paper. Moreover, the modal frequencies shift to higher frequencies when
more constraints are applied to the plate boundaries; for instance, the 1st modal frequencies of the LR
plates with FFFF, SSSS, and CCCC boundary conditions are respectively 22 Hz, 36 Hz, and 69 Hz in
this paper. As for the radiation efficiency, it can be easily seen from Figure 10a–c that, in contrast to the
vibration attenuation in the two band-gap frequency ranges, the radiation efficiency has been obviously
increased in both bands compared with the results of the ML plates. When the resonators are damped,



Appl. Sci. 2020, 10, 2843 14 of 21

the curves become smoother than those in the undamped case from below the lower frequency of the
1st band gap, while the acoustic radiation is still high in the band-gap frequency ranges in each case.
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Figure 10. The radiation efficiencies of the mass-loaded (ML) plate, the locally resonant (LR) plate with
undamped resonators (ηR1,2 = 0), and the LR plate with damped resonators (ηR1,2 = 0.05 ), with (a)
fully free boundary conditions, (b) fully simply supported boundary conditions, and (c) fully clamped
boundary conditions.

It is known that the acoustic radiation from the infinite bare plate is effective only above the
critical frequency [31] where the acoustic wave number exceeds the structural wave number. For its
finite counterpart, though its acoustic power can effectively radiate in the whole frequency range,
the radiation efficiency reaches the highest at the critical frequency and tends to unity above the critical
frequency. Based on this relationship, the structural and acoustic wave numbers of the infinite LR
plate are then calculated. In an infinite LR plate with the wave vector k =

(
kx, ky

)
, the displacement

function can be assumed as:
w(x, y) = We− jkxxe− jky y (42)

The substitution of Equation (42) into the governing equation of the infinite LR plate:

(
D∇4

−ω2ρphp
)
w(r) =

2∑
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S∑
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T∑
t = 1

Fistδ(x− xis)δ(y− yt), (43)

Yields: 
Dk4

p −ω
2ρphp −

ω2mR1
2a2

L
−
ω2mR2

2a2
L

e jkxaL

−kR1 kR1 −ω2mR1 0
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W
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wR2

 = 0, (44)
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where kP =
√

k2
x + k2

y is the structural wave number. To obtain the non-zero displacement responses of
the base plate and the resonators, the matrix determinant of Equation (44) should equal zero, and then
the structural and acoustic wave numbers can be obtained.

The structural and acoustic wave numbers of the infinite LR plate are compared in 0–500 Hz and
3–6 kHz, where the effective radiation frequency ranges are shaded, as shown in Figure 11a. It can be
seen that, besides the range where the infinite LR plate radiates sound effectively above the critical
frequency of about 4 kHz, the acoustic wave number also exceeds the structural wave number in the
two additional bands of 201–215 Hz and 300–320 Hz. The two bands coincide well with the band gaps,
which means that the acoustic radiation from the infinite LR plate is effective in the band-gap frequency
ranges. Therefore, the acoustic radiation from the finite LR plate of identical resonator parameters
can reach a high effectiveness in the band-gap frequency ranges, as expressly shown in Figure 11b.
It can be seen that the radiation efficiencies of the finite FFFF, SSSS, and CCCC LR plates are sharply
increased in two band-gap frequency ranges. Furthermore, by comparing the results of three different
LR plates, the results behave almost the same and closer to unity in the band-gap frequency ranges.
However, at most frequencies in 0–500 Hz, the greater the boundary conditions are, the higher the
radiation efficiency of the LR plate is in this case.
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Figure 11. (a) The structural and acoustic wave numbers of the infinite locally resonant (LR) plate,
and (b) the radiation efficiencies of the finite LR plates with undamped resonators (ηR1,2 = 0), with fully
free (FFFF) boundary conditions, fully simply supported (SSSS) boundary conditions, and fully clamped
(CCCC) boundary conditions, together with the wave numbers for comparison.

Figure 12a–c shows the acoustic power radiated from the finite ML and LR plates with FFFF, SSSS,
and CCCC boundary conditions. It can be observed from the comparison between Figures 12a and 12b
(or Figure 12c) that the acoustic behavior behaves quite different when no constraints are applied to
the plate. It has been explained in reference [29] that the acoustic power in the low-frequency range
radiated from the FFFF bare plate is mainly dominated by three rigid body modes. The rigid body
motion and rotation of the FFFF plate make the first few flexural modes inefficiently radiating ones,
and then the acoustic power at these modal frequencies is not highlighted, unlike the results of the
finite plates with higher constraints. As shown in Figure 12a, the acoustic power radiated from the ML
plate is almost constant below 200 Hz in this case. For the LR plate, the radiated power is approximate
to that from the ML plate in 0–100 Hz and is decreased below the lower frequency of the 1st band gap,
while it turns out to be increased at a certain frequency within the band gap. A similar phenomenon is
found around the 2nd band-gap frequency range.
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Figure 12. The acoustic power radiated from the mass-loaded (ML) plate, the locally resonant (LR)
plate with undamped resonators (ηR1,2 = 0), and the LR plate with damped resonators (ηR1,2 = 0.05),
with (a) fully free boundary conditions, (b) fully simply supported boundary conditions, and (c) fully
clamped boundary conditions.

For the LR plates with greater constraints, such as the SSSS and CCCC boundary conditions
considered in this paper, it is expected that the acoustic power is decreased in the band-gap frequency
ranges, as shown in Figure 12b,c. It can be concluded that, although the radiation efficiency of the
LR plate with greater constraints, is increased in the band-gap frequency ranges, due to the good
performance of the vibration attenuation the acoustic power is reduced much in the same bands.
Moreover, when considering the damping characteristic of the resonators, the acoustic power curve
becomes smooth from below the lower frequency of the 1st band gap. Although the degree of acoustic
power reduction in the band-gap frequency ranges is weakened, the attenuation band of acoustic
radiation is broadened.

It can be seen that the application of the periodic resonators on the FFFF base plate cannot be
a good noise-control method in this case, especially in and above the band gap frequency ranges. In
fact, it can be understood from the vibration profile shown in Figure 13a that the vigorously vibrating
FFFF ML plate at the two frequencies may not radiate much sound power due to radiation cancellation
from the uniform distribution of anti-phase regions. Conversely, though the vibration over the whole
surface of the FFFF LR plate is not strong, as shown in Figure 13b, the acoustic power radiated from
the vibrating area near the excitation can be very high when no cancellation exists.
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Figure 13. The displacement profiles of (a) the mass-loaded plate and (b) the locally resonant plate
with fully free boundary conditions at 304 Hz.

However, when considering the damping loss factors of the resonators, the high acoustic power
radiated from the FFFF LR plate can be decreased. The vibration profile of the FFFF LR plate with
damped resonators is shown in Figure 14. It can be seen that the LR plate with undamped resonators in
Figure 13b vibrates vigorously near the excitation and hardly over the other surface. When replaced by
damped resonators, the response of the FFFF LR plate is suppressed in the region where it is originally
vibrating strongly, as shown in Figure 14, and thus the radiated power is reduced. This is why the
acoustic power radiated from the LR plate with undamped resonators is peculiarly high and decreased
greatly after considering the damping characteristic of the resonators at 304 Hz, as shown in Figure 12a.
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Figure 14. The displacement profile of the locally resonant plates with damped resonators with fully
free boundary conditions at 304 Hz.

Overall, the acoustic power radiated from the plates is related to their boundary conditions.
For the FFFF ML plate, the radiation cancellation could appear more easily in a wide frequency
range, and the plate radiates sound weakly. However, for the FFFF LR plate without good radiation
cancellation, despite a lower RMSV in the band-gap frequency ranges, the higher radiation efficiency
will translate to a higher acoustic power. In other cases where the base plate has greater constraints,
such as the SSSS and CCCC LR plates in the manuscript, even though the radiation efficiency is higher
in the band-gap frequency ranges, a lower RMSV will lead to a lower acoustic power.

4. Conclusions

In this paper, the low-frequency vibration and radiation performance of an LR plate is analyzed.
The theoretical model is established for the band structures of the infinite LR plate with periodic
multiple resonators. Taking the finite LR plate attached with two periodic arrays of resonators as an
example, the forced vibration response and the radiation efficiency of the finite LR plate are derived,
by adopting a general model with elastic boundary conditions.

First, we discuss the impact of the parameter of the ratio between the resonant frequencies of
two resonators on the band-gap frequency ranges. The band-gap width in the TRIEPE LR plate stays
between those in both corresponding ORIEPE LR plates. By using the proper spring-mass parameters,
the band structures of the infinite bare, ML, and LR plates and the RMSVs of their finite FFFF, SSSS,
and CCCC counterparts are calculated. The comparison shows a good coincidence between the band
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gaps in the infinite LR plate and the vibration attenuation bands in the finite LR plate, no matter
what boundary conditions are applied to the latter. A better vibration attenuation performance can be
achieved when further considering the damping characteristic of the resonators.

In contrast to the obvious decrease of the RMSV, the radiation efficiency of the finite LR plate
has been sharply increased in the band-gap frequency ranges compared with the ML plate. By
comparing the structural and acoustic wavenumbers, it can be seen that the acoustic radiation from
the infinite LR plate is effective in the band gaps, and correspondingly that its finite counterpart can
radiate sound highly effectively in the band-gap frequency ranges. Moreover, the acoustic power
radiated from the finite LR plate around the band-gap frequencies may be seriously affected by its
boundary conditions. The acoustic power radiated from the FFFF LR plate could be increased in the
band-gap frequency ranges due to no effective cancellation of radiation from the strongly vibrating
area near the excitation. However, for the LR plate with greater constraints, such as the SSSS and
CCCC boundary conditions considered in this paper, the acoustic power is decreased in the band-gap
frequency ranges. When further considering the damping characteristic of the resonators, a better
vibration attenuation performance can result in the improvement of a radiation reduction around and
above the band-gap frequencies.
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Appendix A

The terms Ba0, Ba1, Ba2, Ba3, Ba4, Bb0, Bb1, Bb2, Bb3, and Bb4 in Equation (7) can be expressed as

Bs0 =


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

, (A1)


Bs1 = diag(1,−1, 3,−3) ·π/2/s,
Bs2 = diag(−1,−1,−9,−9) ·π2/4/s2,
Bs3 = diag(−1, 1,−27, 27) ·π3/8/s3,
Bs4 = diag(1, 1, 81, 81) ·π4/16/s4

, (A2)

where s in the above equations represents correspondingly a or b.
The terms τm and τn in Equation (8) are given by

τ1
r =

 2
π , r = 0

4
(1−4r2)π

, r , 0 , τ2
r =

 2
π , r = 0

4(−1)r

(1−4r2)π
, r , 0

,

τ3
r =

 2
3π , r = 0

12
(9−4r2)π

, r , 0 , τ4
r =

 −
2

3π , r = 0
12(−1)r+1

(9−4r2)π
, r , 0

, (A3)

where r in the above equation represents correspondingly m or n.
The terms Mx, My, Qx, and Qy in Equation (11) are given by Mx = −D

(
∂2w
∂x2 + ν∂

2w
∂y2

)
, Qx = −D

(
∂3w
∂x3 + (2− ν) ∂3w

∂x∂y2

)
,

My = −D
(
∂2w
∂y2 + ν∂

2w
∂x2

)
, Qy = −D

(
∂3w
∂y3 + (2− ν) ∂3w

∂x2∂y

) . (A4)
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The coefficients gi,1, gi,2, and gi,3 in Equation (12) are given by

g1,1 = kx0βl
0n, g1,2 = kx0ξl

a(0) + Dξl
a
(3)(0) −D(2− ν)ξl

a
(1)(0)λbn

2, g1,3 = −kx0,

g2,1 = D
(
βl

0nλam
2
− νβl

2n

)
, g2,2 = Kx0ξ

l(1)
a (0) −Dξl(2)

a (0) + Dνξl
a(0)λbn

2, g2,3 = −D
(
λam

2 + νλbn
2
)
,

g3,1 = (−1)mkxaβl
0n, g3,2 = kxaξl

a(a ) −Dξl(3)
a (a ) + D(2− ν)ξl(1)

a (a )λbn
2, g3,3 = (−1)m+1kxa,

g4,1 = D(−1)m
(
νβl

2n − β
l
0nλam

2
)
, g4,2 = Kxaξ

l(1)
a (a ) + Dξl(2)

a (a ) −Dνξl
a(a )λbn

2,

g4,3 = D(−1)m
(
λam

2 + νλbn
2
)
, g5,1 = ky0ξl

b(0) + Dξl(3)
b (0) −D(2− ν)ξl(1)

b (0)λam
2, g5,2 = ky0αl

0m,

g5,3 = −ky0, g6,1 = Ky0ξ
l(1)
b (0) −Dξl(2)

b (0) + Dνξl
b(0)λam

2, g6,2 = D
(
αl

0mλbn
2
− ναl

2m

)
,

g6,3 = −D
(
λbn

2 + νλam
2
)
, g7,1 = kybξ

l
b(b) −Dξl(3)

b (b) + D(2− ν)ξl(1)
b (b)λam

2, g7,2 = (−1)nkybα
l
0m,

g7,3 = (−1)n+1kyb, g8,1 = Kybξ
l(1)
b (b) + Dξl(2)

b (b) −Dνξl
b(b)λam

2, g8,2 = D(−1)n
(
ναl

2m − α
l
0mλbn

2
)
,

g8,3 = D(−1)n
(
λbn

2 + νλam
2
)

(A5)

The terms R, S, Z, and T in Equation (24) are all diagonal matrixes. The elements of R and Z are
defined respectively as Rs,s = D

(
λam

4 + 2λam
2λbn

2 + λbn
4
)

Zs,s = ρh
, s = mN + n, (A6)

with dimensions of [(M + 1) × (N + 1)] × [(M + 1) × (N + 1)]. The terms S and T can be expressed as S =
[

S1
β S2

β S3
β S4

β S1
α S2

α S3
α S4

α

]
T =

[
T1
β T2

β T3
β T4

β T1
α T2

α T3
α T4

α

] , (A7)

of which Sl
α and Tl

α have the dimensions of [(M + 1) × (N + 1)] × (M + 1), and Sl
β and Sl

β have the
dimensions of [(M + 1) × (N + 1)] × (N + 1), expressed as

Sl
βs,m = D

(
βl

0nλam
4
− 2βl

2nλam
2 + βl

4n

)
Sl
αs,n = D

(
αl

0mλbn
4
− 2αl

2mλbn
2 + αl

4m

)
Tl
βs,m = ρhβl

0n
Tl
αs,n = ρhαl

0m

, s = mN + n. (A8)

The terms U(ω) and V(ω) in Equation (24) are given\] by

U(ω) =
2∑

i = 1

ZRi(ω)
S∑

s = 1

T∑
t = 1



· · ·
κistmn

LamLbn

· · ·


(M+1)(N+1)×1

×

[
· · · κistmn · · ·

]
1×(M+1)(N+1)

, (A9)

V(ω) =
2∑

i = 1

ZRi(ω)
S∑

s = 1

T∑
t = 1



· · ·
κistmn

LamLbn

· · ·


(M+1)(N+1)×1

×


· · ·

ξl
b(yt) cos(λamxis)

· · ·

ξl
a(xis) cos(λbnyt)

· · ·



T

1×4(M+1+N+1)


, (A10)

where κistmn = cos(λamxis) cos(λbnyt).
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