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Abstract: The current landscape in the water industry is dominated by legacy technical systems that
are inefficient and unoptimized. In recent years, sustained efforts could be identified, especially under
the guidance of the Industrial Internet of Things (IIoT) paradigm, in order to develop an increased
level of both connectivity and intelligence in the functioning of industrial processes. This led to
the emergence of the data accumulation concept, materialized in the practical sphere by Historian
applications. Although various classic Historian solutions are available, the capability to optimize and
influence the monitored system in a proactive way, resulting in increased efficiency, cost reduction, or
quality indicators improvements, could not be identified to date. Following a proposed software
reference architecture for such a proactive Historian, a data dependency identification strategy and
some obtained recipes for energy efficiency improvements in the water industry were developed.
However, a complete solution for real industrial processes represents complex research. The current
paper contributes to this research effort by developing part of the reference architecture that predicts
the future evolution of the monitored system, based on weather dependency and forecast, thus
sustaining the effort to achieve a fully functional, real-world, tested and validated proactive Historian
application, with potential to bring significant direct benefits to the water industry.
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1. Introduction

The technical solutions and processes that are specific to the water industry present a very
heterogeneous characteristic, being simultaneously highly dispersed from a geographical standpoint,
thus contributing to defining a landscape currently prevailed by legacy systems. Although viable
solutions at the time of their implementation, the large majority of legacy systems that can be found
today in the water industry are inefficient by current standards, thus transforming the water industry
into the perfect environment for receiving quality, availability, and efficiency improvements.

The Industrial Internet of Things (IIoT) concept [1–4] groups a wide spectrum of industry-oriented
principles [5,6], aimed at different objectives, most of which can be achieved by developing intelligent
communication between different technical entities. This aspect places the superior and enhanced
connectivity, interoperability, and information exchange at the core of the IIoT paradigm, which
transposes from a practical standpoint to a continuous effort to connect industrial computers, sensors,
and actuators to the internet [7]. The improved communication as a result of the IIoT implementation
opens the way for developing more intelligent and sophisticated future systems, capable of improving
the working characteristics of technical systems (such as availability, cost reduction, safety, productivity),
by applying autonomous optimization techniques to the systems [8].
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The importance of developing the interoperability between industrial systems is emphasized
in [9], where the authors propose a communication framework that brings both efficiency and
interoperability improvements for service-based architecture. Their work prepares the appropriate
context for implementing future distributed monitoring and control applications. Such advances
in industrial communications have recently led to the emergence of the ideas around bringing both
fog computing and Big Data concepts closer to the industry, in accordance with the IIoT guidelines,
because of the data accumulation phenomenon that occurs. In this direction, Aazam et al. conclude
in [10] that a middleware support is required between the industrial environment and the cloud
services. This middleware can be represented by the fog computing [11], which is capable of providing
local computing support. On the other hand, the large amount of generated data requires Big Data
technologies in the industry, and the paper from [12] presents a survey of the Big Data solutions that
are already integrated into the industry, while [13] focuses on identifying the high performing Big Data
techniques that can be applied to industrial data.

Despite classic Historian applications [14–16] that store the large amounts of generated data into
industrial environments dominated by the IIoT principles are widely available and do not represent a
novelty anymore, the most recent trends in this area are to develop solutions that can make use of the
already-gathered data. The future Historian application will be intelligent and proactive, using the
stored data to identify dependencies and relations between the characteristics of the monitored system,
which, in turn, will be used to predict the future evolution of the technical system, as a starting point
for optimizing the monitored system, in an autonomous, non-invasive, unassisted-by-human manner,
being placed in the fog computing area close to the monitored system. Although such an Historian
application cannot be identified to date, progress is being made toward this development direction.
The study from [17] proposes efficiency improvements to a classic Historian application, while a
distributed and configurable data analytics infrastructure is presented in [18]. Another distributed,
wireless monitoring system is presented in [19], the problem of predictive maintenance is tackled
in [20], and lightweight, Raspberry Pi-based, classic Historian solutions are presented in both [21]
and [22]. In a similar research direction as that followed in this paper, Salvador et al. in [23] aim toward
a proactive Historian by implementing a predictive control strategy of a water distribution network
that is based on Historian gathered data. Although several researches are focusing on this gathered
data capitalization toward industrial systems optimization, a fully functional, real-world, tested and
validated proactive Historian solution has not been achieved to date.

In order to implement a proactive Historian solution, a software reference architecture is primarily
needed and, although [24] presents general reference architectures for IIoT and [25] suggests design
patterns that should be applied in IIoT, the most suitable software architecture option for a proactive
Historian is described in [26]. The architecture proposed by the authors is specifically targeted for a
proactive Historian type of application, dividing the required software modules into three distinct
layers. The architecture is based on an already-existing classic Historian solution, which is capable of
storing chosen working parameters of a technical system and structures the required modules that
need to be added in order to transform a classic solution into a proactive solution. The first layer
of the proposed architecture is responsible for identifying relations and dependencies between the
measured characteristics by using historical stored data and external context data. The identified
relations and dependencies, alongside future context data, are used as input for the second layer of the
reference architecture, which must be capable of predicting the future evolution of the technical system.
The last layer of the reference architecture capitalizes on the results of the previous layer, making use
of the future prediction in order to decide how to influence this predicted future evolution so that
chosen objectives (such as cost reduction, efficiency improvements, substances consumption reduction,
maintenance improvements) are met. Ultimately, the third layer of the reference architecture should
be capable of directly influencing the monitored technical system, through actuators, transferring
the optimizations to the real-world system. Implementing the entire reference architecture would
result in obtaining a closed-loop Historian system, which monitors a technical system, adjusts it for



Appl. Sci. 2020, 10, 3015 3 of 17

optimization, monitors the system reaction to the adjustment, and so on. Besides presenting the
aforementioned reference architecture, the authors also implemented and tested the first level of the
architecture in [26], illustrating test cases from the water industry, with reference to a drinking water
treatment plant.

The current paper picks up the state of the research that was reached in [26] and takes it further
down the long path to implement the entire reference architecture and obtain the first proactive
Historian application capable of optimizing the monitored system without any human assistance.
Achieving the final goal of this research direction demands a considerable research, implementation,
and testing effort, which must be divided into several stages. The initial step was taken in [22], where
the authors developed a classic Historian solution, but in a lightweight and low-cost implementation,
perfectly suited for the industrial requirements. Then, important steps toward the proactive direction
were made in [26], where a reference architecture was proposed, the first level of it also being
implemented and tested in the water industry. The current paper falls in line with this research,
representing the next significant step toward the ultimate goal. The contributions of the current paper
are as follows: Improve the implementation of the first level of the reference architecture described
in [26]; integrate historical weather data into the relations and dependencies identification algorithm
developed in [26]; implement the second level of the reference architecture (which predicts the future
evolution of the monitored system), based on the weather forecast and the results of the first layer.
The unavoidable cybersecurity concerns that naturally arise from developing this type of software
application are considered by the authors as being beyond the scope of the current paper.

In order to test the contributions of the current paper, several test cases are considered from the
water industry, regarding a real wastewater treatment plant. This type of plant was chosen because of the
typical close dependencies that exist between wastewater treatment plants and weather characteristics.

The following section presents the typical processes that take place inside a wastewater treatment
plant, discloses defining problems, and emphasizes the typical weather influence over such plants, as
well as detailing the main contributions of the current paper, regarding both the improvements that
were made to the first level of the reference architecture and the implementation of the second level
of algorithms. Section 3 illustrates the test cases that were used for validating the implementation
described in the previous section in a real wastewater treatment plant environment. Section 4 dissects
and discusses the results of the test cases presented in the previous section, while Section 5 concludes
the paper.

2. Materials and Methods

2.1. Wastewater Treatment Plant Typical Processes

The representative processes that usually take place inside a wastewater treatment plant (WWTP)
are summarized in Figure 1, and further detailed in this section. The treatment process is divided,
from a logical standpoint, into multiple stages: Pretreatment, primary treatment, secondary treatment,
tertiary treatment, and sludge treatment.

The wastewater enters the treatment plant from the wastewater network, where the source of the
water is residential, institutional, commercial, industrial, rain, or a mix of the aforementioned. After
the water enters the treatment plant, the pretreatment processes are initiated. Firstly, odor treatment
can be applied so that the plant surrounding areas are protected from the foul smell that naturally
accompanies wastewater. The odor treatment process may not be necessary at some plants. There
are two distinct methods of odor treatment: Air treatment and liquid treatment. If the air treatment
method is applied, the wastewater is contained in large tanks, which are hermetically covered with
specially designed odor control covers. The air trapped under the cover, inside the tanks, is extracted
by a ventilation system and undergoes treatment before it is released to the environment. Regarding
the liquid treatment method, different chemicals that neutralize the foul smell-producing elements are
introduced in the wastewater. The second process that takes place during pretreatment is screening,
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where the wastewater is passed through filters in order to remove both grit and large objects such as
bottles, plastics, tree branches, sanitary items, and cotton buds. It is very important to remove such
objects early in the process because they can damage the plant equipment if present in future steps of
the treatment process. The removed objects are either incinerated or disposed in landfills.
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After the pretreatment is completed, the wastewater enters the primary treatment stage, where
the remaining solid matter is separated from the wastewater. In this stage, large sedimentation tanks
are used, in which the wastewater clarifies. The sludge settles at the bottom of the tank, while grease
and oil rise to the surface. The sludge is removed and directed to the sludge treatment process, while
the grease and oil can be used for soap making.

After the primary treatment, an optional bypass exists so that the treated water can be sent directly
to the natural environment without entering the secondary and tertiary treatment stages. This bypass
is used during heavy rainfall by plants that receive wastewater from a combined sewer system. In this
case, the secondary and tertiary treatment stages are bypassed in order to protect them from hydraulic
overloading, the mixture of sewage and rainwater receiving only primary treatment before being sent
back to the natural environment. In some plants, the bypass is implemented directly at the inlet, so the
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wastewater is not even screened. In addition, for larger plants without a complete gravitational bypass,
high-energy consumer pumps are used to transfer the untreated water directly into the emissary when
the large amounts of wastewater exceed the capacity of the plant.

The secondary treatment stage objective is to remove the biological matter from the wastewater,
by using a bioreactor tank where both oxygen (introduced with blowers) and a biological floc (bacteria
and microorganisms that consume the remaining organic matter) are inserted into the wastewater.
Before exiting the secondary treatment, wastewater is sent into a clarifier tank, where large particles
settle down at the bottom (sludge) and are extracted for the sludge treatment process. In order to
maintain the optimal process parameters during the biological treatment, a pH adjustment must take
place, involving different chemicals (Ca(OH)2, CaCO3, Na2CO3, NaOH, etc.).

The last stage is the tertiary treatment, which is similar to the drinking water treatment process,
the resulting water quality being close to drinking water quality. Firstly, a chemical compound (usually
alum, Al2(SO4)3, but polyaluminum chloride or ferric chloride, FeCl3, can also be used) is injected
into the wastewater in order to remove the phosphorus. In some plants, the phosphorus removal
can be implemented during different stages, such as the large sedimentation tank, during biological
treatment, or later, in the clarifier tank. If the phosphorus is removed by the biological treatment, the
chemical treatment becomes an auxiliary method. Then, the water passes through a sand filter and a
charcoal filter before entering a disinfection tank, where a mixture of chlorine and sodium hypochlorite
is added. Lastly, the water is sent into the discharge tank where sodium bisulfite is used in order to
chemically dechlorinate the water because residual chlorine is toxic to aquatic species. The water
exiting the tertiary treatment is released into the natural environment in rivers, lakes, or other local
waterways. Another important periodic process that takes place during tertiary treatment is the filters
cleaning, in which the sand and charcoal filters are washed with air and water, the resulting sludge
being sent to the sludge treatment process.

Each of the primary, secondary, and tertiary treatment stages produce sludge, which is also
processed inside the WWTP, during the sludge treatment process. Firstly, the sludge enters the
thickening procedure, which is conducted inside a sludge thickener, an equipment resembling a
clarifier tank with an added stirring mechanism. Then, the sludge goes through the organic matter
digestion process, which reduces the amount of organic matter in the sludge. Three different digestion
options can be used: Aerobic digestion, anaerobic digestion, and composting. The digestion process
can produce biogas (a mixture of CO2 and methane), which can be used at the plant for powering
equipment. The last sludge treatment process is dewatering, in which the sludge is commonly placed
in drying beds. The dried sludge is either burned in incinerators, sent to landfills or used as fertilizer
in agriculture.

2.2. Wastewater Treatment Plant Defining Problems and Weather Dependency

Some of the defining problems that can be identified in a WWTP are:

• Overloading of the plant: This can cause overheating of the blowers, which, in turn, causes a
low-oxygen level in the bioreactor tank, thus reducing the efficiency of the secondary treatment
stage. Plant overloading can also lead to sludge leakage from the settling tank.

• High substances consumption: For instance, the odor treatment process requires continuous
adjustment of the used substances, depending on the input wastewater concentration and content.
The wastewater content is highly dependent on the weather conditions.

• High energy costs: Around 30% of the annual WWTP operation costs is represented by the
electricity consumption. Considering a developed country, an estimate of about 2–3% of the
entire nation’s electrical power is consumed for wastewater treatment. This can be significantly
improved by optimizing the biological treatment processes.

• Equipment and/or algorithmic faults that can lead to various problems.
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• Undersized treatment plants: Most plants were developed 10–20 years ago, becoming undersized
for the current loads since then, leading to the choice of increasing the load and costs in order
to maintain a thorough cleaning process or discharging the partially treated wastewater to the
environment and keeping the costs lower.

A WWTP’s operation is influenced by the weather conditions, the most significant being the
precipitation amount. In case of very heavy rainfall, the WWTP may use the bypass channel, thus
resulting in a high increase in operational costs (electricity and substances usage) or pollution. Even
if the rain amount does not produce wastewater that can be legally sent to the environment after
just primary treatment, the amount of rain highly influences the content and concentration of the
wastewater present in the WWTP, which, in turn, influences the biological treatment that is applied in
the secondary treatment stage and the chemical addition amounts and concentrations in the tertiary
treatment. Besides rain, the temperature can also influence the WWTP, primarily from the odor
treatment process standpoint, but also from the biological treatment in the secondary stage and sludge
dewatering (when outdoor drying beds are used) processes standpoints. In addition, a storm or strong
winds, particularly in the autumn, can generate large quantities of tree branches and leaves that can
clog the screening filter during pretreatment.

Considering the typical processes that take place inside a WWTP, the defining problems and the
usual weather influence on WWTPs that were previously presented, the conclusion emerges that a
WWTP represents the perfect environment that can benefit from a solution capable of identifying the
exact dependencies and relations that exist between the measured characteristics of a WWTP and
meteorological characteristics. Furthermore, using those relations and dependencies for predicting
the future evolution of the plant characteristics can provide a valuable foundation for optimizing the
WWTP in order to reduce costs, lower energy consumption, decrease substance consumption, and
improve maintenance. Due to these considerations, although the implemented solution presented
in the following section represents a generic approach, it was deployed for testing and validating
purposes in a WWTP environment, where the potential to make an impact is considerable.

2.3. The Implemented Solution

As previously mentioned, the solution that was implemented in this paper is based on
the state of the research that was achieved in [26], making use of the already-implemented
both Historian application and the first level of the proactive Historian reference architecture.
This already-available technological state was tested and validated in the water industry as well (results
from the already-implemented first-level algorithms were used in [27] to successfully achieve energy
consumption reduction in a drinking water treatment plant, by 9% for short-term tests and by 30%
for long-term tests using only part of the proposed algorithm), so it represents a reliable platform on
which to build and develop, following the ultimate goal of accomplishing a fully functional proactive
Historian application.

In order to merge the implementation of the second level of the reference architecture into the
constantly developing application, several improvements and changes were required to the solution
already implemented in [26].

First, after long-term tests, a small improvement was made to the first-level algorithm accuracy,
which, in some cases, resulted in impacting differences. The computations were adjusted in order to
achieve more accuracy (in the form of decimals) in relating identified data dependencies.

Another change was made regarding the choice of the reference tag. In [26], the implemented
algorithm required the user to choose a reference from the available tags, and the remaining tags were
analyzed regarding the chosen tag. In order to materialize a broader understanding of all the relations
and dependencies that exist inside the monitored system, the implementation presented in this paper
removed the need for choosing a reference tag. Instead of this approach, each of the monitored tags are
set as a reference, one at a time, and the relations identifying algorithm developed in [26] is run once
for each reference.
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By adopting the aforementioned change related to the reference choice, new data structures
are required for storing the results generated by the first-level algorithm. The relations identifying
algorithm was adjusted in order to build an oriented graph of dependencies, where the results of the
algorithm execution are stored. The built graph is oriented, weighted, and can contain cycles. The
results are modeled using the following convention:

• An arc from node i to node j with weight -N signifies when node i was set as the reference,
• A dependency of node j on node i was identified,
• The measured values of node j evolving inversely proportional (minus sign) to the node i values,

in a quantitative proportion of N% (this percent represents the quantitative result identified by
the analysis; more details regarding this percent is available in [26]).

In the current implementation, the dependencies graph is stored using the adjacency matrix.
Inside the matrix, line i contains the dependency values (please refer to [26] for details) of all nodes j
on the columns when node i is used as a reference. The dependencies graph represents essential input
for the second level of the reference architecture.

The last improvement that was brought to the solution developed in [26] consists of the possibility
to involve the meteorological characteristics in the relations analysis. Historical weather data can
be used in the relations and dependencies identification algorithm (at the first level of the reference
architecture) at user demand. The historical weather data source is the DarkSky online service [28]. If
the user chooses to use historical weather data, the values of the relevant weather characteristics for
the water industry (maximum temperature, minimum temperature, precipitation amount, humidity,
atmospheric pressure, wind speed, and ultraviolet (UV) index) are obtained from [28] for each of the
days in which tags values that are involved in the analysis exist. As a requirement for obtaining the
weather data, the geographical location of the monitored technical system must be provided by the
user. The longitude and latitude of the location that are required for calling the weather application
programming interface (API) are obtained from the user-provided address, using [29]. After having at
disposal the values of each of the 7 meteorological characteristics considered of interest, each of them
is used as a reference, one at a time, in the relations identifying algorithm, which computes only the
dependency of the technical system tags on the weather features. The weather features dependency on
the technical system tags does not make sense, so it is not computed. As a consequence, if the user
chooses to include historical weather data into the first-level algorithm analysis, the adjacency matrix
of the dependencies graph will be deformed, containing i + o lines and i columns (where i signifies the
number of tags from inside the monitored system and o signifies the number of tags from outside the
system, essentially the number of meteorological features), meaning that the graph will not contain
any arcs from a technical system-monitored tag to a weather feature.

The improvements described above have led to the modification of the Historian application
graphical user interface (GUI), where the new interface elements are presented in Figure 2. The user
may enable the Historian to be augmented with the predictive algorithm from the second layer of
the reference architecture. This action is only allowed if the historical weather data are used in the
relations and dependencies identification algorithm, at the first level.

Improvements in the developed solution from [26] were necessary for the second level of the
reference architecture. The section follows with the predictive algorithm development, placed at the
second level in the reference architecture. The algorithm predicts the future evolution of the monitored
technical system, based on the weather forecast and the relations and dependencies identified by the
first-level algorithms.
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The execution of the developed prediction algorithm is conditioned by the following prerequisites:

• the dependencies graph generated by the first-level algorithms must be available;
• weather forecast data must be obtained from [28];
• the most recent values of the monitored tags (which are used as initial values in the prediction

process) must be extracted from the database (it is not necessary that they represent the current
values; if the current values are not available, then the most recent ones are used);

Considering the valid prerequisites, the prediction algorithm is launched in execution, and Figure 3
below summarizes an overview of the implemented algorithm.
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When the predictive algorithm starts predicting values for a new day, it first initializes the
monitored tag values from the technical system. For the first day of prediction, the initial values for
the system tags are the most recent values from the database. For the remaining predicted days, the
initial values are the same as those computed/predicted by the algorithm for the previous day.
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The forecast weather data can be obtained from [28] for a maximum of 7 days (d) ahead, thus
leading to a breadth-first traversal of the dependencies graph for each of the chosen weather features
in each of the 7 d ahead. The standard breadth-first traversal algorithm was adjusted in order to
remember the node from which the traversal arrived at the current node, information required by the
function that processes the current node (process_node function is presented in Figure 3). The root node
of the breadth-first traversals is always a weather feature, meaning that, starting from the weather
features-predicted evolution, the algorithm can predict the evolution of the technical system tags,
based on the identified dependency between the weather features and the system characteristics that
were identified by the first-level algorithm. By executing the breadth-first traversal, all the existing
relations between the technical system tags are considered in a global manner. For instance, if technical
system characteristic A is directly influenced by temperature and technical system characteristic B is
inversely influenced by A, the weather forecast indicating an increase in temperature for the following
day, only computing characteristic A’s new value based on the temperature increase, does not offer an
accurate prediction of the system’s overall evolution, because the increase in A causes a decrease in B
as well. These kinds of cases are fully covered by the implemented algorithm, thus seeking to obtain a
realistic prediction.

The development of the process_node function is based on:

• computing the percent of change in the previous node (the node from which the arc leading to the
current node starts), by comparing the previous node’s current value and the node’s previous
day value.

• computing the sign of change (if the previous node’s value increased or decreased from the
previous day).

• using the percent of change in the previous node and the dependency from the graph, the
predictive algorithm computes the percent of change for the current node (more details regarding
the value of dependency in the graph can be found in [26]).

• the percent of change for the current node is further used alongside the current value of the
current node in order to identify the value of change (in units) for the current node. The value of
change is onwards used together with the current value of the current node, the corresponding
dependency from the graph, and the sign of change for the previous node, in order to compute
the new value of the current node.

The output of the implemented algorithm represents the predicted values for the monitored tags
from the technical system for 7 d of the prediction.

Thus far, the presented research implementation of the second layer follows a generic approach
and can extend the water domain to any industry that relates to weather data. However, in order to
apply and test the algorithm, a specific process is absolutely necessary.

After implementing the second layer of the reference architecture, it became obvious that the
relations and dependencies identification algorithm and the predictive algorithm could both receive a
significant accuracy improvement by capitalizing on different process-specific information, which can
be used during algorithm execution (e.g., knowing that a specific Open Platform Communications
Unified Architecture (OPC UA) tag signifies the ‘fault’ code for a pump can be used during analysis in
order to avoid false-positives identification for dependencies between the pump energy consumption
and other values; knowing that from a process point of view, the aeration process requires a blower
that implicitly consumes energy; knowing process flow of the specific process; etc.). The process-aware
Historian concept is essential for correct predictions, recipes, relevant data dependency analysis, and
constraint and objective function interpretation. To be able to gather and use those process-specific
information, the Historian application received a newly developed software module (Process Editor),
which allows the creation of a model of a monitored process, inside the Historian application. Multiple
processes can be defined, from which only one can be set as the currently used one, thus facilitating an
easy switch between different monitored processes. Therefore, the process-aware Historian will request
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essential data mapping from the user according to the predefined process components characteristics.
A defined process inside the Process Editor contains steps, which, in turn, contains items. There are
multiple predefined item types from which the user can choose (water source, air blower, pump,
flowmeter, water tank, etc.), each item having its own predefined characteristics (example for a
biological basin: Level, set point, oxygen level, NH4 level). For each characteristic, the user can set an
OPC UA tag from the server list, thus assigning a meaning to each monitored OPC UA tag. Figure 4
presents the editing of an item from the Process Editor, while Figure 5 presents a process of a WWTP,
as defined in the Historian Process Editor. Furthermore, the possibility of adding different constraints
to the process was also implemented and is illustrated in Figure 6.
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Considering the generic approach of the Historian application, which is intended at not restricting
it only to the water industry, even though predefined item types and characteristics are offered,
the implementation created a generic framework, which makes use of two Java String arrays (containing
all the predefined elements), for both building the required GUI elements and interacting with the
Extensible Markup Language (XML) structure used for storing the process definition. This approach
implies that adding and/or removing items or item characteristics requires just a small change in an
array of Strings (no additional changes are required at GUI elements building or XML interaction),
thus keeping the application suitable for easy expansion toward other industries.
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3. Results

With the purpose of testing and validating the newly implemented features described in the
previous section of this paper, multiple test cases were considered in the water industry, regarding a
real WWTP, owned and operated by the local water company.

The tests were conducted by making use of the most recent Historian application version available,
which included the implementation of both level 1 and 2 of the reference architecture, while being
installed on the Raspberry Pi platform.

Figure 7 details the seven test cases that were considered for validating the second level of the
reference architecture implementation. Each test case is covered over a period of time where data are
collected (a set of relevant process data from a WWTP can contain 200–2000 tags, although the total
number of tags from a WWTP can exceed 6000). From the entire set of tags, the monitored tags are
defined as relevant to predict regarding the weather evolution. The number of analyzed tags for value
prediction was 26 in all seven test cases. The 26 tags were chosen by the authors as being the most
relevant and having the most potential of being used in any future optimization, representing mostly
electric current consumptions for different pumps and air blowers and different water volumes inside
the treatment plant and water quality indicators, such as turbidity.

Initially, the Historian application was used to store the measured values of the chosen tags for
the time period presented in Figure 7, a task that did not involve any proactive features and could
have been carried out by any classic Historian application. Afterward, the proactive features were
assessed by executing the predictive algorithm for each test case, using the GUI controls illustrated
in Figure 2 above. The inputs for the test execution included historical weather data alongside the
stored values of the tags from the monitored system and started with the execution of the first level
algorithm (the improved version described in the previous section, deriving from that implemented
in [26]), which generated as output the dependencies graphs (a different one for each test case), such
as the example depicted in Figure 8 (corresponding to test case 7). In building the representation
from Figure 8, only the tags (and their corresponding relations) that were found dependent on at least
one weather characteristic were considered, where a drawing approach containing all the monitored
system tags (and their corresponding relations) made it difficult to follow.
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The dependencies graphs (such as that shown in Figure 8) were used as input, in addition to
the weather forecast (obtained from [28]) and the latest tags values at the moment of analysis, for the
predictive algorithm described in the previous section. The outcome consisted of the algorithm
successfully computing the predicted values of each of the 26 tags from the monitored system for the
following 7 d starting from the execution date, in each of the seven test cases. Basically, the developed
prediction algorithm accurately estimated the impact the forecasted weather will have on the technical
system, by identifying and understanding (from the historical stored data) the relations that exist
between the weather and the technical system tags. An example of the numerical results of the
algorithm execution (for test case 5) is presented in Figure 9, where the illustrated pdf document has
been exported directly from the Historian application.
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4. Discussion

After computing the prediction, the Historian application was left in operation to store the values
of all the monitored tags for a period of 7 d (the prediction is made for 7 d ahead); thus, at the end of
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the 7 d for which predicted values were available, the actual values, recorded from the WWTP, were
also available, facilitating an assessment of the prediction algorithm viability.

For supporting an identification of conclusive aspects, in each of the seven test cases considered,
the predicted values were compared to the actual values; the most significant results, considering
all test cases, regarding the possibility of future optimizations and improvements in the monitored
technical system, as summarized in Figure 10, are displayed in the following more detailed explanation.
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Figure 10 presents five OPC UA tags (CSF10_Curent, OPCTpH1UA, TGD1_Ep, CSF7_Curent,
and F2_Debit_T), whose values were identified as being related to the evolution of different weather
characteristics. For each of those tags, Figure 10 illustrates the predicted value (blue lines) and the actual
value (green lines) in each of the seven predicted days (the seven columns with headers containing
dates). The error lines (red lines) present the prediction error for each day (computed in percent, using
the following formula: E = (ABS (P – A) * 100) / A, where E = error, P = predicted value, A = actual
value, and ABS = function returning the absolute value). The last column (“Average Error”) represents
the arithmetic mean of the error values computed per day of the respective tag.

In the continuation of this section, the interpretation of the results presented in Figure 10 follows,
with regard to the optimization possibilities of a WWTP.

Tag CSF10_Curent represents the intensity (in amps) of the electric current consumed by a pump,
which is used for the transfer of wastewater from mechanical treatment to biological treatment inside
a WWTP. This pump intensifies in usage as more wastewater enters the system and has a similar
behavior as the bypass pump. Being able to accurately predict the usage of those pumps signifies the
capability to predict the usage amount of the bypass system, which also has a huge impact on both the
overall power consumption of the WWTP and the overall substances consumption of the WWTP. The
usage of the transfer pumps and the bypass system is dependent on rainfall for the majority of the
plants, leading to the conclusion that the prediction algorithm can bring significant added value to
this area.

Tag OPCTpH1UA signifies the water turbidity, measured at the exit of the WWTP, a characteristic
that shows the water quality after receiving the treatment inside the WWTP. This characteristic must
meet legal requirements regarding its limits, and predicting it helps in better estimates of the future
consumption of substances.

Tag TGD1_Ep represents the overall WWTP energy consumption, its accurate prediction being
imperatively needed for any energy-related optimization.

Tag CSF7_Curent represents the intensity (in amps) of the electric current consumed by an air
blower that introduces oxygen into a biological basin. Estimating this value accurately opens the
possibility of understanding and predicting the energy consumption of a biological basin and its weight
in the overall energy consumption.
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Tag F2_Debit_T signifies the water volume at the WWTP entrance, where its correct prediction
allows for an accurate estimate of the overall energy consumption, the overall substances consumption,
and the bypass system usage. The water volume at the WWTP entrance is directly influenced to a
large extent by meteorological characteristics (especially precipitation amount).

The differences between the considered test cases resulted from the various weather characteristics
encountered during each considered period, such that the authors could identify different possible
optimization paths to follow in the future third-level implementation of the reference architecture.

To conclude the results analysis, the seven test cases involved successfully capitalized on real
data recorded from the WWTP, with promising results. Unfortunately, the exact overall accuracy of
the predictive algorithm is very difficult to assess because it is directly influenced by the weather
forecast accuracy. For example, a difference of 1 ◦C between the forecasted temperature and the
actual temperature at a 5◦ value (average temperature during the period when the test cases were
considered) leads to a 20% error that is introduced by the weather forecast accuracy, not by the
implemented algorithm. In addition, analyzing historical data gathered in a period of time in which
certain meteorological phenomena did not occur (for example, it did not rain) could lead to the
situation in which the relations identifying algorithm does not find any dependency between some of
the meteorological characteristics and technical system tags (even if they could exist). This implies that
the algorithm’s overall accuracy could be better evaluated after considering some long-term test cases
(covering multiple months or even years).

Due partly to the exponential growth of the dependencies graph dimensions when a larger
number of variables are involved that makes it infeasible to track by human operators and partly to
the paper space constraints, a test case involving a larger number of variables (over 100) cannot be
presented in this section, by illustrating each step of the analysis, because the section presents examples
from different test cases that are suitable for highlighting the necessary aspects. Nevertheless, taking
into account all the tests performed by the authors, the latest Historian application version can be
considered validated as a solution capable of computing the impact of the weather characteristics over
a technical system from the industry, thus meeting the goals set for the current paper.

5. Conclusions

The state of the art in industrial automation research is focused toward the IIoT principles, guiding
the industry into a more intelligent era, characterized in the incipient phase that is taking place currently
by intelligent communication, improved interoperability, and connectivity. The transition toward this
new era has already begun in recent years and is currently in full swing, where the huge potential is
enabled by the new technologies being recognized by the industry as well. After this initial transition,
the framework and infrastructure will be in place in order to develop the next significant level of
improvements, in the form of intelligent, autonomous, proactive software applications, possessing
the capabilities of analyzing technical systems and optimizing them for maximized performance.
In the industry, a fog-based process-aware proactive Historian concept satisfies these requirements.
The current research is hesitant in offering such solutions.

Addressing the challenge of developing the future generation of proactive Historian applications
has been started by the authors with encouraging results. The current paper sustains this effort and
brings the solution a step closer to the final goal. The presented contributions are bringing both
improvements to the first level of the reference architecture, as well as contributions to the second level
of the reference architecture in the form of predicting process values regarding integrated weather data
as context data. The research is applied in the water industry, particularly for wastewater treatment
plants. The testing is realized using wastewater-specific test cases, and the obtained results are
promising. Although the water industry represents the main target of the current development, the
software solution follows a generic mindset, which does not limit it to any specific industry.

To conclude, the current paper falls in line with a series of research papers in what is already
starting to outline itself as a well-defined research direction, contributing to the efforts of achieving
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the fully functional, tested, validated, proactive Historian solution that will prove its value in
tomorrow’s industry.
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