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Abstract: Object tracking is a challenging research task because of drastic appearance changes of the
target and a lack of training samples. Most online learning trackers are hampered by complications,
e.g., drifting problem under occlusion, being out of view, or fast motion. In this paper, a real-time object
tracking algorithm termed “robust sum of template and pixel-wise learners” (rStaple) is proposed to
address those problems. It combines multi-feature correlation filters with a color histogram. Firstly,
we extract a combination of specific features from the searching area around the target and then
merge feature channels to train a translation correlation filter online. Secondly, the target state
is determined by a discriminating mechanism, wherein the model update procedure stops when
the target is occluded or out of view, and re-activated when the target re-appears. In addition,
by calculating the color histogram score in the searching area, a significant enhancement is adopted
for the score map. The target position can be estimated by combining the enhanced color histogram
score with the correlation filter response map. Finally, a scale filter is trained for multi-scale detection
to obtain the final tracking result. Extensive experimental results on a large benchmark dataset
demonstrates that the proposed rStaple is superior to several state-of-the-art algorithms in terms of
accuracy and efficiency.

Keywords: object tracking; feature fusion; adaptive model update; real-time

1. Introduction

Object tracking has been widely used in the field of computer vision [1], such as in automatic driving,
precision guidance, and video surveillance. The pursuit of certain precision, speed, and robustness in
these applications has important engineering significance. Most object tracking algorithms estimate
the location and scale of the object in the subsequent frames based on the given object bounding box in
the first frame. This mimics human visual attention and eye movements by rapidly finding important
objects in a video sequence. However, in practice, there are significant challenges, such as motion blur,
occlusion, and background clutter [2,3] which still hinder the efficiency and accuracy of a tracker.

Most general trackers learn necessary information from the given first frame to model a tracking
target and estimate the position in the subsequent frames via the initially learned information.
Complicated background clutter is a crucial issue for robust object tracking. Most tracking algorithms
rely on model updates in each frame to sufficiently learn about the target’s appearance, which is prone
to drift in the case of a noisy update. Thereby, strategies of target description and model update are
both paramount to an outstanding tracker.

Owing to extensive studies in recent years, a number of algorithms mostly satisfy the requirements
of object tracking. However, there is still room for improvement in terms of accuracy and robustness.
In this paper, an object tracking algorithm based on sum of template and pixel-wise learners (Staple) [4],
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termed robust Staple (rStaple), is proposed. It can simultaneously improve tracking accuracy while
maintaining real-time performance based on the foundation in Staple of a combination of correlation
filters and a color histogram, which is inherently robust to both color changes and deformations.

Specifically, we combine histogram of oriented gradient of Felzenszwalb’s variant (fHOG) [5,6]
with the color names (CN) feature [7,8] to train the correlation filter. This further reduces the impact
of target deformation and the boundary effect [9], and effectively overcomes the instability of the
single histogram of oriented gradient (HOG) feature in Staple. In addition, the proposed method also
learns the color histogram score as in Staple, but with the difference that significant enhancements
are applied to the score map of color histograms. Therefore, the final tracking result could be located
via combining the response map of the correlation filter and color histogram score. Moreover, Staple
adopts a scheme to update learned filters each frame for handling the target appearance variations over
time. However, such a scheme tends to bring about model drift due to occlusion or being out of view.
To address this problem, we adopt a detection mechanism which can effectively detect despite severe
temporary occlusion or when the target is missing in the current frame. In this way, the correlation
filters terminate the model update. The model restarts updating when the target is re-detected correctly.
Therefore, this flexible mechanism can avoid tracking failure due to model corruption in subsequent
frames. Finally, the proposed rStaple is tested on the Visual Tracking Benchmark datasets OTB2013 [10]
and OTB2015 [11], and experimental results demonstrate its effectiveness.

The remaining sections of the paper are organized as follows. Some previous attempts to solve
the object tracking problem are presented in Section 2. Section 3 describes the basic preliminaries,
including the kernelized correlation filter and color histogram. In Section 4, the procedure of our
proposed rStaple tracking approach is described. Moreover, the detailed specification for implementing
the algorithm is presented. Section 5 shows the evaluation results of experiments on the test datasets.
Finally, conclusions are presented in Section 6.

2. Related Work

Existing object tracking algorithms mainly consist of two categories: generative model methods
and discriminative model methods [2,12,13]. The generative model method builds a model for the
given target area in the initial frame. The target location is estimated via searching for the area which
is most similar to the model in the subsequent frames. Typical algorithms of the generative model
method are adapative structural local sparse appearance (ASLA) [14], locality sensitive histograms
(LSHT) [15], locally orderless tracking (LOT) [16], and scale-adaptive mean-shift (SAMS) [17]. However,
these tracking algorithms usually lack the discriminative capability of distinguishing the target
from its background. Consequently, the generative model-based algorithms tend to suffer low
tracking accuracy, thus limiting their applications. Most state-of-the-art tracking algorithms adopt
the tracking-by-detection method, which is a form of discriminative model. A discriminative model
method [18–30] treats object tracking as an object detection task in each frame wherein image features
are collected to train a classifier. Specifically, the target area and background are regarded as positive
samples and negative samples, respectively. The optimal solution in the subsequent frames can be
acquired using the trained classifier. In the tracking process, the output in each frame is continuously
used as a positive sample and the background as a negative sample for training the classifier online.

Recently, correlation filters [18–27] and deep learning-based trackers [28–35] have become two
active research topics of discriminative model methods with outstanding performance. Owing to the
attractive property of extracting deep features, trackers based on deep learning have demonstrated
great potential for the object tracking task. Bertinetto et al. proposed a fully-convolution Siamese
network (SiamFC) [29] for object tracking, which extracted deep features of the searching and target
areas using the same fully-convolutional network to find the target position. Valmadre et al. proposed
an asymmetric Siamese network architecture named CFNet [30]. They interpreted the correlation
filter learner as a differentiable layer in a deep neural network and made full use of the advantages
of the correlation filter in object tracking. Choi et al. proposed the Attentional Correlation Filter
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Network (ACFN) [31], which introduced an attentional mechanism into a novel tracking framework
to increase robustness and computational efficiency. Hyeonseob and Han proposed a multi-domain
convolutional neural network (CNN) for visual tracking, which was referred to as a Multi-Domain
Network (MDNet) [32]. It pre-trained a CNN using a large set of data to obtain a generic target
representation. Subsequently, the domain-specific layers of the CNN were trained online to learn
the specific target representation of the tracking target in a new sequence. Recently, Yuan et al. [33]
proposed an anti-occlusion tracker which extracted features from different layers of a residual neural
network (ResNet) to produce response maps and an occlusion detection strategy was introduced to
prevent model drift. Lu et al. [34] exploited a novel deconvolution network to enlarge the low spatial
resolution feature maps in a deep convolution network and summarized the feature maps to better
represent the target appearance. Generally, deep learning-based algorithms rely on expensive hardware
components such as graphics processing units (GPUs). In addition, a large number of datasets are
required to pre-train the network. In spite of great performance in terms of accuracy, their running
speed is generally slow on central processing unit (CPUs). Moreover, with both the proposal of light
networks, such as MobileNet [36], and the advent of low-cost hardware with GPUs and embedded
segments, e.g., NVIDIA Jetson TX2 and Google Coral, deep learning based algorithms can increasingly
be applied to smaller devices such as drones, robots, and medical devices.

As a trade-off between accuracy and efficiency, correlation filter-based algorithms have attracted
extensive attention in recent years. Bolme et al. proposed a new type of correlation filter for visual
tracking, named Minimum Output Sum of Squared Error (MOSSE) [18]. Since MOSSE only uses a
single-channel grayscale feature, its practical performance is not desirable. However, the speed is over
600 frames per second (FPS), prompting researchers to discover the potential value of correlation filters.
Henriques et al. developed the circulant structure of tracking-by-detection with kernels (CSK) [19],
which adopted the well-established theory of circulant matrices based on MOSSE. The resulting
tracker increases the number of training samples, thus improves the tracking accuracy. Henriques et al.
proposed a high-speed tracker which trains a discriminant classifier using Kernelized Correlation Filters
(KCF) [20]. The derived tracker extended the single-channel grayscale feature to the multi-channel
histogram of oriented gradient (HOG) [5] feature and maintained high-speed capability. Aiming at
scale adaption, Discriminative Scale Space Tracking (DSST) [21] learned two separated discriminative
correlation filters for translation and scale estimation. Since the circulant matrix is introduced for
sampling in the correlation filters, the cosine window is applied to ensure the rationality of samples.
Nevertheless, the cosine window would lead to the boundary effect [9] which weakens the performance
of trackers on fast motion targets. To solve that problem, Danelljan et al. added spatial regularization
to the discriminative correlation filters (SRDCF) [23]. Specifically, this penalizes correlation filter
coefficients near the boundary and enlarges the searching area to learn more negative samples. One
obvious shortcoming is that it destroys the closed form of discriminative correlation filters (DCF);
instead, it uses Gauss–Seidel iterative optimization to obtain the optimal solution. As a result, it
increases tracking quality at the expense of running speed. Ma et al. [24] proposed a long-term tracker
which learns both the long-term and short-term memory of target appearance. For preventing severe
tracking failures, a learned detector is used to recover the target position. Recently, Zhou et al. [25]
applied adaptive context awareness and trained a structural correlation filter for tracking, to make the
tracker learn more context information. Shin et al. [26] proposed a failure detection and re-tracking
algorithm based on KCF performed in real-time. Li et al. [27] trained a large margin correlation filter to
maximize the margin between the tracking target and its background. In addition, the correlation filter
was trained with multi-level scale supervision to make it sensitive to scale variation.

In this paper, we propose a tracker which follows the state-of-the-art algorithm Staple mentioned
above. The proposed tracker uses more comprehensive features to describe the target, as well as an
adaptive model update strategy to avoid model drift to make the tracker more robust.
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3. Preliminaries

3.1. Kernelized Correlation Filter

The core of correlation filter-based trackers [18–27] is that they adopt the circulant matrix to construct
training samples. Since the correlation operation corresponds to the dot product operation in the Fourier
domain, the circulant matrix can be diagonalized by Fourier transform. Thus, the computational
complexity can be significantly reduced. In other words, it can be implemented efficiently via
Fourier transform.

A correlation filter generally adopts a ridge regression model [37] to train a classifier in order to
find a function f (x) = wTx, where x represents the input training samples and w corresponds to the
model parameters. It minimizes the squared error between the training samples xi and the regression
target yi. The ridge regression model can be formulated as an unconstrained optimization problem
expressed as:

min
w

∑
i

( f (xi) − yi)
2 + λ‖w‖2 (1)

where λ is a regularization parameter to avoid overfitting. One reason for using the ridge regression
model to train a classifier is that the optimization problem of Equation (1) has a closed-form solution,
which is given by [37]:

w = (XHX + λI)
−1

XH y (2)

Note that each row in X corresponds to a training sample generated by cyclic shifts and each
element in y represents the regression score of the training sample. The regression score of each sample
conforms to a Gaussian distribution which decays from 1 to 0 when the cyclic samples gradually shift
away from the target center. The sample X can be diagonalized by the discrete Fourier transform (DFT)
and expressed as:

X = Fdiag(x̂)FH (3)

where F denotes a constant matrix and x̂ = F(x) denotes the DFT of x. XHX can be obtained by:

XHX = Fdiag(x̂∗)diag(x̂)FH = Fdiag(x̂∗ � x̂)FH (4)

where � denotes element-wise product operation and x̂∗ is the complex-conjugate of x̂. The closed-form
of Equation (2) can be represented in Fourier domain as:

ŵ =
x̂∗ � ŷ

x̂∗ � x̂ + λ
(5)

Henriques et al. introduced a kernel trick to improve the discriminating ability of the classifier.
The linear regression function is replaced by a non-linear regression function f (z) = wTφ(z), while the
implementation speed of the non-linear correlation filters is still guaranteed to be as fast as the linear
correlation filters. The input linear problem can be mapped to a non-linear space through the kernel
trick. The solution w can be expressed as a linear combination of x by:

w =
∑

i

αiϕ(xi) (6)

The optimization problem of w can be converted into an optimization problem of α, which is a
dual problem [38]. Given a kernel function κ(x, x′) = ϕT(x)ϕ(x′), the dot product among all samples
is an n× n matrix with Ki j = κ(xi, x j), then K = φ(X)φ(X)T. Eventually, the optimization problem of
Equation (2) can be further written as:

min‖φ(X)φ(X)Tα− y‖
2
+ λ‖φ(X)Tα‖

2
(7)
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Equation (7) has a closed-form solution, which is given by [37]:

α = (K + λI)−1y (8)

One way to speed up the calculation is to convert the inversion operation into an element-wise
product, which needs the diagonalization of the matrix K. This indicates finding a kernel function that
transforms the kernel correlation matrix K into a circulant matrix. The parameter k is defined as:

kxx′ = exp(−
1
σ2 (‖x‖

2 + ‖x′‖2 − 2F−1(x̂∗ � x̂′))) (9)

By substituting the kernel correlation matrix K in Equation (8), the closed-form α can be expressed as:

α̂ =
ŷ

k̂xx + λ
(10)

The above operation converts a complex matrix inverse problem into a simple basic operation
problem, which greatly reduces the computational complexity. In this way, a correlation filter algorithm
would achieve high-speed object tracking. When detecting the target, the regression function can be
calculated by α, which is given by:

f (z) = (Kz)Tα (11)

where f (z) denotes a vector that contains the output of all circulant matrices of z. The computational
efficiency can be improved by transforming the regression function of Equation (11) into the frequency
domain, which leads to:

f̂ (z) = k̂xz
� α̂ (12)

where x is the object model learned from the previous frames, and z is the searching area in the current
frame. The final response map f (z) represents the similarity between the searching area and the
learned object model. The position in the response map with the highest response value is the relative
position of the target estimated in the current frame to the previous frame. The object model of each
frame is interpolated in the process of tracking to avoid large mutations in adjacent frames.

It is well known that robust features are one of the most important factors in object tracking to
distinguish object and background more effectively. KCF [20] extended the single-channel grayscale
feature to multi-channel HOG, so that the tracking performance is greatly improved. A multi-channel
correlation filter can be learned efficiently through the kernel trick. Let x = [x1, x2, x3, . . . , xn], wherein
the parameter n denotes the number of feature channels. The kernel correlation matrix k can be computed
by accumulating the dot products over each channel in the Fourier domain, which is given by:

kxx′ = exp(−
1
σ2 (‖x‖

2 + ‖x′‖2 − 2F−1(
∑

n
x̂∗n � x̂n

′))) (13)

3.2. Color Histogram

Horst et al. proposed an efficient model-free tracking method using a color histogram in the
Distractor-Aware Tracker (DAT) [39]. A color histogram [40–43] in one image is a statistical description
of the color distribution information, which represents the probability of different colors appearing
in the searching area regardless of the position of pixels. Therefore, it is robust to the deformation
and rotation of the target, but is less robust to illumination variation. As a result, by combining the
correlation filter with the color histogram, the shortcomings of correlation filters could be alleviated in
terms of deformation and fast motion.

In [39], the color histogram of foreground and background areas are first calculated. Then the
probability Pt, which indicates the probability of each pixel belonging to the tracking object in the
searching area can, be depicted as:
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P j
t =

P j(O)

P j(O) + P j(B) + λ
(14)

where λ denotes a fixed parameter to avoid the issue of dividing by 0, and P j(O) and P j(B) denote
foreground and background probability of a pixel on channel j, respectively. Once the probability is
known, each pixel could be regarded as a center, and the target probability of surrounding pixels are
summed to obtain the final score map. Notice that the size of the area for calculating surrounding
pixels equals the target area. Finally, the target position can be estimated according to the maximum
value in the score map.

4. Proposed rStaple Tracking Method

In this section, the detailed procedure of the proposed real-time object tracking algorithm termed
the robust sum of template and pixel-wise learners (rStaple) is presented. It is based on the Staple [4],
an effective tracker which has been widely used in visual tracking.

To initialize the tracker in the first frame of video sequence, the proposed method primarily extracts
fHOG [6] and CN [7,8] from the searching area around the given target position. The combination of
these two handcrafted features is used to train a translation filter FT. Secondly, the histogram models
of the foreground and background are established by current target information. Finally, our tracker
trains a 1-D scale filter with fHOG extracted from the initial searching area.

In subsequent frames, firstly, the combination of fHOG and CN of the searching area are extracted
to compute a translation filter response map via the translation filter FT learned in previous frames.
Then, we compute the color histogram pixel score map by the histogram model of previous frames,
and apply a significant enhancement to the original pixel score map. The final translation score map is
a linear combination of the above translation filter response map and the enhanced color histogram
score map. Thus, the target position in this frame can be obtained via the final translation score
map. Meanwhile, we use fHOG extracted in the current frame and the scale filter learned in the
previous frames for scale estimation. Note that the scale estimation can be obtained directly based on
the estimated translation result, which greatly reduces the computational cost. Finally, quantitative
indicators average peak-to correlation energy (APCE) [44] and Fmax are introduced to detect the state
of tracking target for the adaptive model update. If the indicators computed from the translation filter
response map satisfy the predetermined condition, the translation filter and scale filter are updated in
the current frame. Figure 1 illustrates the overall procedure of the proposed rStaple. The area in yellow
represents the estimation part in frame t and the green area is the training part in frame t. In particular,
the training part is performed after estimation.Appl. Sci. 2020, 10, x FOR PEER REVIEW 7 of 23 
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4.1. Feature Fusion

Researchers have demonstrated that feature extractors usually play the most important role in
various object trackers [1]. Therefore, it is necessary to select appropriate features for target modelling.
In this paper, fHOG and CN are combined to get a 42-D feature to meet the goal. The combined
feature is used to train a translation filter which can learn more information about the tracking target
and background.

HOG is one of the most popular features in computer vision. Specifically, it is mainly used to
describe the gradient change information in images, and is robust to translation, illumination variation,
and posture changes. An input image is divided into many small 2× 2 cells when calculating HOG,
wherein several adjacent cells are combined into one block. A [0,π) region is divided into nine unsigned
gradient directions, then each block can be described as a 36-D feature. As an optimization, fHOG [6]
divides a [0, 2π) region into 18 signed gradient directions to obtain a 108-D feature. For reducing
the dimensions, the features of four cells in each direction are accumulated to obtain a 27-D feature,
while nine unsigned gradient directions of four cells are accumulated to obtain a 4-D feature. Finally,
this results in a 31-D feature. In fact, fHOG slightly outperforms HOG via our offline experimental
verification. We evaluated the performance of using fHOG instead of HOG on 10 video sequences,
under the same experimental conditions. Results show that fHOG operates 22.7% faster than the
original HOG with similar accuracy. Therefore, fHOG is adopted in the proposed tracker for both
translation estimation and scale estimation.

In some challenging application tasks it is not desirable that trackers simply use fHOG, which
lacks robustness to target deformation. Therefore, CN is exploited in the proposed tracking method.
CN describes color characteristics of an object and is robust to rotation and deformation. Specifically, it
refines the 3-channel RGB features in 11 basic color terms: black, blue, brown, grey, green, orange,
pink, purple, red, white, and yellow. In this paper, the mapping given by Weijer et al. [7] is introduced
to compute CN, which is learned from the Google image dataset.

4.2. Histogram Significant Enhancement

In conventional tracking tasks, color information of the target generally differs from that of the
background, which is a convenient attribute for locating the target more simply. In other words,
the target can be found simply via highlighting it in the image. Thus, we can inspect the pixels in the
target area with certain rules to significantly enhance the target.

The color histogram tracking builds the color statistical model of the foreground and background.
Firstly, the probabilities that each pixel belongs to the foreground and background are calculated
separately to obtain the target probability of each pixel. Then, the target probability in a certain area
around the pixel is accumulated as the score of the point. Eventually, the difference in color between
target and surrounding background is used for tracking.

We can increase the histogram score of the pixels with a higher target probability to highlight the
target area in the image. When the target probability Pt of a pixel in Equation (14) is greater than a
certain threshold p0, we deploy a significant enhancement to this pixel as:

Pt =

(Pt − p0) · r + Pt, Pt > p0

Pt, else
(15)

where r denotes a magnification of the enhanced pixel score. By enhancing the high-response pixel,
the discrimination of the foreground and background in the searching area can be increased thereby
improving the tracking performance. We update the color histogram model in each frame to improve
the adaptability of our tracker:

Pt(O) = (1− ηhist)Pt−1(O) + ηhistPt
′(O)

Pt(B) = (1− ηhist)Pt−1(B) + ηhistPt
′(B)

(16)
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where ηhist denotes the learning rate of color histogram, Pt−1(O) and Pt−1(B) denotes foreground
model and background model from frame 1 to t− 1, respectively, and Pt

′(B) and Pt
′(O) denotes model

estimated in frame t.
As shown in Figure 2, we test our approach in a video sequence in which the target clearly

differs from its background. The tracker with histogram enhancement could keep following the target
consistently. In contrast, the tracker without histogram enhancement loses the tracking target in the
first few frames since the target is small with a fast motion. This proves that color histogram significant
enhancement can weaken the boundary effect of correlation filters to some extent.
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Finally, we linearly combine the response map of the translation filter rt and the color histogram
score map rhist to obtain the final translation score map r expressed as:

r = αrhist + (1− α)rt (17)

The position of the maximum in the score map r is the estimated target position in the current frame,
and we subsequently perform scale estimation to obtain the final tracking result.

4.3. Scale Estimation

As mentioned above, the target position can be estimated by the combination of translation filter
response map and color histogram score map. In addition, a scale pyramid is formulated on the
estimated target position to train a scale filter FS. Given the target size W ×H and scale factor σ, a scale
pool S containing N scales can be expressed as:

S ∈
{
σn
|n = [−

N − 1
2

], [−
N − 3

2
], . . . , [

N − 1
2

]
}

(18)

For each scale s in the scale pool S, we crop an image patch of size sW × sH at the center of the
estimated target position and interpolate to W ×H. fHOG is then extracted and extended into a 1-D
vector containing the multi-scale representation of the target. A one-dimensional scale correlation
filter can be trained using the features of N scales. The response score of each scale can be calculated

by g(xs) = exp(− (s−N/2)2

2σ2 ), which represents the similarity between the target in the scale s and the
learned model. Eventually, the best scale s′ can be solved from the following optimization problem:

s′ = argmax
s
{g(xs)|s ∈ S} (19)
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Notice that here only fHOG is adopted to train the scale filter. In order to reduce the errors by
inaccurate scale estimation, the result of scale estimation is merely used to update the scale filter,
instead of updating both scale filter and translation filter.

4.4. Adaptive Model Update

Most existing correlation filter algorithms update their models at each frame using the estimated
tracking result to fit the gradual change of the target appearance. The target position in the next frame
is detected by the updated model. However, when the target is occluded or out of view, even for a
short time, the accumulation of errors may cause the tracking model to drift. As a result, the model
is corrupted and even if the tracking target reappears, the object cannot be redetected by the tracker.
MOSSE [18] proposed a peak to sidelobe ratio (PSR) criterion to determine the confidence of the
current tracking result. However, this method is not highly effective since a fixed empirical threshold
is necessary to guide the selection of updating the model.

In fact, the response map in object tracking can reveal the confidence of tracking to a certain
extent. When the peak value is large and fluctuation of the response map is slight, the confidence of the
tracking result is considered to be high. If the response map fluctuates intensely and multiple peaks
are detected, it indicates that there is background clutter or target occlusion. To solve this problem,
two criteria, namely the peak value of the translation filter response map Fmax and average peak-to
correlation energy (APCE) [44], are adopted to detect the confidence of the tracking result. Specifically,
APCE is defined as:

APCE =
|Fmax − Fmin|

2

mean
(∑

w,h
(Fw,h − Fmin)

2
) (20)

where Fmax, Fmin, and Fw,h denote the maximum, minimum, and the value of the coordinate (w, h) in
the translation filter response map, respectively. APCE can effectively indicate the confidence of the
response map. If the APCE of the response map is large, the peak value is sharp and the fluctuation is
slight. Otherwise, the fluctuation is intense and the peak is moderate. In this way, the occlusion or
missing state can be determined.

As demonstrated in Figure 3a, the target is not occluded in the 281th frame. It can be observed
that there is only one sharp peak in the response map and the remaining area is relatively flat, wherein
the APCE is 67.67. In Figure 3b, the target is severely occluded in the 341th frame. As a result, there are
many local peaks with relatively low values in the response map, among which the highest peak is not
obvious and the APCE is 10.29. To summarize, the APCE of the response map can effectively reflect the
confidence of the tracking result.

Therefore, in order to improve the tracking robustness, those two criteria are introduced to
determine whether to update the model. When the APCE and Fmax of the translation filter response
map are both greater than their historical average values with certain ratios β1, β2, the tracker updates
both models of the translation filter FT and scale filter FS. The filter model corresponds to α in Equation
(10), which is used to maximize the response in Equation (12) at the target position. Then the filter
model α would be updated as:

ŷt =

{
(1− η)ŷt−1 + ηŷt, APCE ≥ β1 ·APCEavg&Ft

max ≥ β2 · F
avg
max

ŷt−1, else

k̂xx
t =

{
(1− η)k̂xx

t−1 + ηk̂xx′
t , APCE ≥ β1 ·APCEavg&Ft

max ≥ β2 · F
avg
max

k̂xx
t−1, else

(21)

where η denotes the learning rate of the translation filter and scale filter, ŷt−1 and k̂xx
t−1 denote the

parameters estimated from frame 1 to t − 1, and ŷt and k̂xx
t denote the parameters estimated from

frame t alone.
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Figure 3. Average peak-to correlation energy (APCE) values of the response map when the target is
occluded or not in two separated frames.

Notice in Figure 4 that the target is partially occluded from the 320th frame until detaching from
occlusion in 385th frame. Our strategy adaptively determines to hold the current model since the
APCE and Fmax significantly decrease caused by target occlusion. In this way, the target could be
redetected when it appears again. In contrast, if the strategy is not applied, the tracking model would
be corrupted during the occlusion and cannot follow the target again when it appears.
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4.5. Implementation Details

The proposed rStaple is summarized in Algorithm 1. In this paper, the model of the translation
filter is normalized to a fixed size 150× 150. The learning rate of translation filter ηc f , the learning rate
of scale filter ηs, and the learning rate of color histogram ηhist are set to 0.01, 0.025 and 0.04, respectively.
The learning rate parameters determine how much target information the tracker can learn in the next
frame; too high a learning rate will lead to overlearning of the change of target area and a tendency to
drift under the situations of occlusion and being out of view. For scale estimation, the scale factor σ is
set to 1.02 and the number of scales N in the scale pool is 33. The update thresholds β1 and β2 of APCE
and Fmax in the adaptive model update are 0.57 and 0.38, respectively. The thresholds affect when
to perform the model update; if the thresholds are inappropriate, wrong update timing will lead to
tracking failure. The parameter p0 is set to 0.71 and r in histogram enhancement is 0.82. If p0 is too
high and r is too low, the enhancement will be weak and not beneficial to the performance. Otherwise,
the color histogram part will excessively impact the tracker result. We empirically determine
these parameters and fix them throughout all the experiments. The parameter of learning rate η is
determined by Staple and the parameters in scale estimation refer to DSST [21]. Furthermore, we
preset the update thresholds and parameters in the histogram enhancement with a few random initial
values. After, these values were tested in 10 video sequences which are not included in OTB2013 [10]
and OTB2015 [11] to avoid overfitting. Finally, we further fine-tune the values with good performance
to obtain the most suitable choice.

Algorithm 1 Outline of our proposed tracking algorithm

Input: Initial bounding box b1 = (x1, y1, w1, h1), FT, FS
Output: Estimated target bounding box bt = (xt, yt, wt, ht)

1: repeat
2: Crop out an image patch z from frame t at the center of (xt−1, yt−1) and extract its fHOG and CN features;
//Translation estimation
3: Compute the response map rt(z) with FT and rhist(z), estimate target position (xt, yt);
//Scale estimation
4: Construct scale pyramid at estimated target position (xt, yt), infer the best scale st with FS;
//Adaptive model update
5: Compute Fmax and APCE of rt(z);
6: if Fmax and APCE satisfy the condition then
7: Update FT and FS;
8: end if
9: until end of video sequence.

5. Experimental Results

We implemented rStaple in the MATLAB 2018b environment on a standard PC with i5-8400 and
16 GB RAM. The proposed tracking algorithm was evaluated on video sequences from OTB2013 [10]
and OTB2015 [11] datasets and compared with 12 state-of-the-art trackers, namely, KCF [20], DSST [21],
fDSST [22], Staple [4], SRDCF [23], dual linear structured support vector machine (DLSSVM) [45],
compressive tracking (CT) [46], CSK [19], long-term correlation tracking (LCT) [24], SiamFC [29],
CFNet [30] and ACFN [31]. Of these, SiamFC, CFNet, and ACFN are deep learning-based algorithms.
KCF, DSST, fDSST, Staple, SRDCF, LCT, CT, and CSK are correlation filter -based trackers. To show
the results clearly and avoid overly dense result curves, the proposed tracker is compared with nine
trackers without deep learning on OTB2013. In addition, the deep learning-based algorithms and
several trackers that perform well on OTB2013 are compared with our proposed tracker on OTB2015.
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5.1. Evaluation Metrics

The OTB2013 and OTB2015 datasets include 11 common challenges in object tracking: illumination
variation (IV), scale variation (SV), occlusion (OCC), deformation (DEF), motion blur (MB), fast motion
(FM), in-plane rotation (IPR), out-of-plane rotation (OPR), out-of-view (OV), background clutters
(BC), and low resolution (LR). Each video sequence also has one or more attributes. The proposed
tracker is evaluated by one-pass evaluation (OPE), which initializes the tracker with the ground truth
bounding box in the first frame, and subsequent frames are processed by the tracker. We evaluate the
performance of the proposed tracker using the following four widely used metrics in Visual Tracking
Benchmark dataset:

Overlap success (OS) rate: the percentage of frames in which the Intersection over Union (IOU)
between the estimated target bounding box b1 and the ground truth bounding box b0 is larger than a
threshold t, i.e., b1∩b0

b1∪b0
> t.

Distance precision (DP) rate: the percentage of frames in which the distance between the estimated
center location of the target and the ground truth center location is smaller than the threshold.

Average center location error: the average distance between the estimated center location and the
ground truth center location in each frame.

Average FPS: the average number of frames processed by the trackers in one second.

5.2. Overall Performance

In Figures 5 and 6, we depict the precision rate curve and success rate curve of the proposed
algorithm and other compared state-of-the-art algorithms using OPE on OTB2013 and OTB2015
datasets. Figures 5a and 6a show the smooth curve of the distance precision rate when the location
error threshold grows from 0 to 50 pixels. Figures 5b and 6b show the curve of the overlap success rate
as the overlap threshold increases from 0 to 1. Meanwhile, the data at a predetermined threshold is
displayed in the figure. The proposed method exhibits almost the best performance in both evaluation
metrics with the increment of the threshold.

Table 1 shows the distance precision rate at a threshold of 20 pixels, overlap success rate at a
threshold of 0.5 intersection over union (IOU), and average speed of 10 trackers evaluated on OTB2013.
In particular, to accurately evaluate the complexity of these algorithms, the average speed of all
trackers was tested on the same hardware environment. The proposed tracker achieves state-of-the-art
performance at real-time speed that is superior to many other methods in terms of accuracy. Compared
to the baseline Staple, the distance precision rate increases by 6.6%, the overlap success rate increases
by 4.9%, and the average center location error increases from 32 to 18.9 pixels according to the results.
The overall computational complexity of the proposed algorithm is O(nlogn) + O(m) + O(p) + O(q).
The first part O(n log n) comes from the correlation filter estimation and n represents the pixels of
features which are extracted from the search area. The second part O(m) comes from the color histogram
estimation, where m means the search area size. The third part O(p) represents scale estimation, where
p is characteristic of the pixels of features in scale pool S. The final O(q) is representative of the part of
model update. (Normally, q > p > m).

Table 2 shows the distance precision rate and overlap success rate of eight trackers evaluated on
OTB2015. Since the speed of deep learning-based algorithms depends largely on the hardware facilities
such as the GPU, only the accuracy of these trackers is depicted. The proposed method performs better
than these state-of-the-art trackers, including deep learning-based algorithms. Moreover, compared to
the baseline, the distance precision rate and overlap success rate of our tracker increase by 3.4% and
7.6%, respectively.
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Table 1. The performance on OTB2013 dataset of nine trackers.

Ours LCT SRDCF DLSSVM Staple fDSST DSST KCF CSK CT

DP rate (%) 84.8 84.8 83.8 82.8 78.2 80.3 74 74 54.5 39

OS rate (%) 78.7 81.3 78.1 72.5 73.8 74.7 67 62.3 44.3 26.9

Speed (FPS) 70.3 28.9 8 12.1 86 119 19.4 379 738 152

Table 2. The performance on OTB2015 dataset of eight trackers.

Ours CFNet ACFN SiamFC LCT Staple SRDCF DLSSVM

DP rate (%) 81.1 76.9 79.6 77.1 76.2 78.4 78.8 76.7

OS rate (%) 75.2 73.6 68.9 73 70.1 69.9 72.6 62.4

Although the difference in distance precision rate and overlap success rate compared to SRDCF
and LCT is not obvious in Figure 5, the proposed tracker can achieve better performance at a speed of
over two times faster than those methods. Practically, it is desirable for a tracker to provide a better
balance between trade-off between efficiency and accuracy.

Distance precision and overlap success rate are shown for 11 different attributes in Tables 3–6.
The cells in the first row of Tables 3–6 are abbreviations of attributes in the OTB dataset, and the number
of videos that belong to each attribute is in parentheses. The first-ranked tracker is marked in bold and
the second-ranked tracker is marked in italics. In Table 3, our tracker ranks first in seven attributes;
except for the motion blur attribute, the remaining three attributes are within 4% of the first-ranked
tracker. Compared to the baseline Staple, our performance is improved in all attributes, especially in
these five attributes: deformation (11.1%), illumination variation (11.6%), occlusion (10.6%), out of view
(12.6%), and scale variation (10.1%). In Table 4, our tracker ranks first in three attributes and second
in five attributes. Compared to Staple, the performance is improved in all attributes, especially in
these four attributes: fast motion (9.6%), deformation (7.6%), occlusion (9.1%), and out of view (22.9%).
In Tables 5 and 6, our tracker ranks first in eight attributes. Compared to the baseline Staple, our
performance is improved in all attributes. According to Tables 3–6, the proposed tracker is extremely
apt at handling the occlusion, out of view and scale variation situations. Furthermore, the performance
of the proposed tracker in low resolution is relatively poor, which is due to using fHOG because fHOG
resizes a 4× 4 pixel area to one pixel for calculating the final feature. Most tracking targets with a low
resolution attribute are extremely small, and a host of target information is lost after the resize which
leads to tracking failure.

Table 3. Distance precision rate (%) of 11 different attributes on OTB2013 dataset.

Ours LCT SRDCF DLSSVM Staple fDSST DSST KCF CSK CT

FM (17) 73.4 66.5 74.1 74.5 64.2 72.1 51.3 60.2 38.1 23.9
BC (21) 80.5 79.6 80.3 81.4 73 84.2 69.4 75.3 58.5 35.3
MB (12) 70.5 66.4 78.9 75.7 67 78.5 54.4 65 34.2 23.3
DEF (19) 89.9 87.3 85.5 86.9 78.8 74.8 65.8 74 47.6 36.9
IV (25) 84.3 79.2 76.1 75.9 72.7 80.4 73 72.8 48.1 31.8

IPR (31) 81.7 80.2 76.6 81.4 77.3 78.3 76.8 72.5 54.7 36.9
LR (4) 50.8 35.2 51.8 54.6 50.5 47.4 49.7 38.1 41.1 13.1

OCC (29) 88.1 84.5 84.4 82.1 77.5 76.2 70.6 74.9 50 40.1
OPR (39) 85.5 85 81.8 83.7 76.4 77.8 73.6 72.9 54 38.2

OV (6) 79.5 72.8 68 68.8 66.9 68.3 51.1 65 37.9 22.5
SV (28) 82.2 75.8 77.8 76.2 72.1 76.2 73.8 67.9 50.3 40.3
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Table 4. Overlap success rate (%) of 11 different attributes on OTB2013 dataset.

Ours LCT SRDCF DLSSVM Staple fDSST DSST KCF CSK CT

FM (17) 70.1 67.6 71.1 69.6 60.5 69.9 50.3 55.7 38 20.3
BC (21) 75.1 76.7 71.5 74.8 69.8 77 62.7 67.2 49.1 28.2
MB (12) 66.6 66.5 76.2 72.7 62.8 73.5 52.8 59.5 33.6 16.2
DEF (19) 85 88.2 80.5 76.7 77.4 72.2 63.1 67.1 37 29.5
IV (25) 74.8 75.4 70.1 65.6 69.2 74.3 68.1 58.1 38.8 24.6

IPR (31) 73.4 77 70.8 69.4 71.4 71.9 67.9 61.5 45.7 21.4
LR (4) 50.6 34.5 52.6 51.2 49.9 45.5 49.7 35.7 39.7 9.8

OCC (29) 82.3 80.5 79 72.4 73.2 69.3 64.6 61.8 40.4 26.5
OPR (39) 77.1 80.3 73.9 71.3 70.6 70.4 64.3 60.8 43.9 23.8

OV (6) 81.5 69.9 70.2 70.7 58.6 67.7 51.2 65 41 23.8
SV (28) 78.7 69.3 78.1 72.5 73.8 74.7 67 62.3 44.3 26.9

Table 5. Distance precision rate (%) of 11 different attributes on OTB2015 dataset.

Ours CFNet ACFN SiamFC LCT Staple SRDCF DLSSVM

FM (39) 76.6 71.6 74.3 74.3 68.1 71 76.9 73.3
BC (31) 78.1 73.4 75.2 69 73.4 74.9 77.5 74.3
MB (29) 74 63.3 71.2 70.5 66.9 69.9 76.7 75.1
DEF (43) 79.3 69.6 76.8 69.3 68.5 74.7 73 71.3
IV (37) 81.4 70.6 78.4 74.1 74.3 77.8 78.1 74.5

IPR (51) 79.4 76.8 77.4 74.2 78.2 76.8 74.2 79.2
LR (9) 63 76 62.3 84.7 53.7 61 66.3 67.4

OCC (48) 74.3 70.3 74 72.6 67.9 72.4 72.7 72.4
OPR (63) 78.2 74.1 77.7 75.6 74.6 73.8 74 76
OV (14) 75.2 53.6 65.2 66.9 59.2 66.8 60.2 65.8
SV (63) 76.2 72.7 75.3 73.8 67.8 72.4 74.2 71.6

Table 6. Overlap success rate (%) of 11 different attributes on OTB2015 dataset.

Ours CFNet ACFN SiamFC LCT Staple SRDCF DLSSVM

FM (39) 72.1 68.4 65.7 70.3 65.5 64.5 71.7 63.1
BC (31) 76 69.9 66.3 65.7 70.3 68.8 70.1 64.9
MB (29) 71 62.8 67.6 68.3 65.9 65 72.9 69
DEF (43) 70.9 63.6 62.6 63.7 61.6 65.6 65.9 56.3
IV (37) 76.2 66.7 69.9 71.7 71.5 77.8 73.5 61.1

IPR (51) 69.1 73.2 63.6 69.7 69.4 66.9 65.8 63.5
LR (9) 56.2 73.8 53 77.7 43.6 47.2 62.5 39.2

OCC (48) 72.3 67.4 61.5 68.8 63.1 65.3 67.4 59.2
OPR (63) 70.7 69.1 63.5 70.5 67.6 64.9 66 60.8
OV (14) 71.1 53.6 51.8 62.8 53.1 54.8 55.8 55.6
SV (63) 75.2 73.6 68.9 73 70.1 69.9 72.6 62.4

The contribution to performance improvement can be generalized to three aspects. Firstly, we
apply significant enhancement to the score map of the color histogram. This improves the attention of
the tracker to the target and increases the weight of the color histogram with high confidence, thus
weakening the boundary effect. Secondly, the combination of fHOG [6] and CN [7,8] strengthens the
discriminating ability of the proposed tracker, which facilitates the translation filter locating the target
more accurately. Thirdly, we adaptively update the model of the translation filter and scale filter with
criteria APCE [44] and Fmax. When the target is occluded or out of view, the filter model update is
terminated. Therefore, this strategy effectively avoids model drift.
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5.3. Specific Analysis

In order to analyze more intuitively, we display the specific tracking results of tested algorithms
in five video sequences from OTB2013 and five video sequences from OTB2015. The challenging
attributes of these sequences are shown in Tables 7 and 8.

Table 7. Attributes of test video sequences on OTB2013.

Sequence Attributes Number of Frames

Girl SV, OCC, IPR, OPR 500
Jogging-2 OCC, DEF, OPR 307

Matrix IV, SV, OCC, FM, IPR, OPR, BC 100
Skiing IV, SV, DEF, IPR, OPR 81
Soccer IV, SV, OCC, MB, FM, IPR, OPR, BC 392

Table 8. Attributes of test video sequences on OTB2015.

Sequence Attributes Number of Frames

Bolt2 DEF, BC 293
DragonBaby SV, OCC, MB, FM, IPR, OPR, OV 113

KiteSurf IV, OCC, IPR, OPR 84
Lemming IV, SV, OCC, FM, OPR, OV 1336

Panda SV, OCC, DEF, IPR, OPR, OV, LR 1000

Figure 7 shows the tracking results of the proposed algorithm and nine compared trackers on
five video sequences from OTB2013. In the first sequence Girl, CT and CSK both lose the target before
the 400th frame. Occlusion occurs between the 430th frame and 460th frame. Since the obstruction is
similar to the target in color and appearance, Staple, KCF, DSST, and fDSST all drift when the occlusion
object leaves. All the tracking bounding boxes follow the occluded object and leave the real target. Our
approach successfully avoids model drift when the target is occluded based on the adaptive model
update. In the second sequence Jogging-2, the target has a short-term out of view between the 50th

frame and 65th frame. Only SRDCF, DLSSVM, and rStaple keep tracking when the target reappears at
the 65th frame; the other trackers all fail to track the target again.

The scene of the third sequence, Matrix, is relatively complicated: the target is small and
undergoing fast motion and the background changes drastically. From the 20th frame, CSK, CT, KCF,
and DSST fail to track because of the frequent background variance. Staple, LCT and SRDCF lose the
target due to fast motion and background clutter. There is also an easily neglected tracking object
in the fourth sequence Skiing. The searching area of the correlation filter is related to the size of the
estimated bounding box in the current frame, so it is quite difficult to track accurately when the target
moves fast and the size of searching area is small. Since DLSSVM abandons correlation filters, only the
proposed rStaple and DLSSVM keep tracking till the end. In the last sequence Soccer, DSST fails to
track due to fast motion around the 60th frame. Both CSK and LCT lose the target in the 90th frame due
to occlusion and severe background clutter. In the 110th frame, the target is completely occluded by the
red background and the colors of most areas in the image are very similar, thus, most trackers cannot
detect the target precisely. Only rStaple, fDSST, and SRDCF can follow the target when it reappears in
the 135th frame.
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Figure 8 shows the tracking results of the proposed algorithm and seven compared trackers on five
video sequences from OTB2015. In the first video sequence Bolt2, ACFN, LCT, SRDCF, and DLSSVM
lose the tracking target before the 10th frame due to fast motion and deformation. In the 30th frame,
ACFN follows a similar object near the target. SiamFC loses the target in the 200th frame since it is
surrounded by several similar objects. In the second sequence DragonBaby, the tracking target is a
baby’s head which has a small size and undergoes a fast motion. Many trackers fail to follow the target
because of the fast motion. The target in the third sequence, KiteSurf, is also a man’s head. In the 42th

frame, head rotation of the man leads to most trackers losing the target. In the fourth sequence, Lemming,
target occlusion occurs between the 320th frame and 380th frames. SRDCF, DLSSVM, and Staple fail to
track the target due to model drift within this period. ACFN miscalculates the target scale in the 950th

frame and fails to recover. In the last sequence, Panda, LCT and SRDCF lose the target when it turns a
corner. In the 620th frame, Staple and ACFN fail to follow the panda when it passes a tree because of
the noisy update of the tracking model.

To show the details of the tracking results on ten sequences mentioned above clearly, distance
precision rate curves of these sequences are demonstrated in Figure 9. The order from the first figure
to the last is: Girl, Jogging-2, Matrix, Skiing, Soccer, Bolt2, DragonBaby, KiteSurf, Lemming, and Panda.
As shown in Figure 9, the improvement of the proposed method over the baseline Staple is remarkable.
In addition, our method has outstanding performance compared to all of these state-of-the-art trackers.

As illustrated above, the proposed method, rStaple, can handle the challenges of occlusion,
fast motion, deformation, and scale variation well in most complex scenes, and achieves
state-of-the-art performance.
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6. Conclusions

In this paper, we propose a robust object tracking algorithm, rStaple, based on Staple [4]. We first
combine fHOG [6] and CN [7,8] to train a translation filter that improves the discriminating ability.
Secondly, we use two criteria to adaptively update the model of the translation filter and scale filter,
thus alleviating the problem of model drift when the target is occluded or lost. Finally, we apply
significant enhancement to the score map of the color histogram, which improves the attention of the
tracker to the target. Experimental results show that the proposed tracker achieves state-of-the-art
performance at real-time speed. On the other hand, the algorithm still has some defects in several
aspects. For example, when encountering objects with intense changes in shape, such as a dancing
man or a swimming fish, our tracker tends to lose the target due to the lack of semantic information
of the tracking target. For this problem, we will consider extraction of deep features for tracking in
subsequent research.
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