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Featured Application: The herein survey is among the first research efforts to synthesize the
intelligent models and paradigms applied in education to predict the attainment of student
learning outcomes, which represent a proxy for student performance. The survey identifies
several key challenges and provides recommendations for future research in the field of
educational data mining.

Abstract: The prediction of student academic performance has drawn considerable attention in
education. However, although the learning outcomes are believed to improve learning and teaching,
prognosticating the attainment of student outcomes remains underexplored. A decade of research
work conducted between 2010 and November 2020 was surveyed to present a fundamental un-
derstanding of the intelligent techniques used for the prediction of student performance, where
academic success is strictly measured using student learning outcomes. The electronic bibliographic
databases searched include ACM, IEEE Xplore, Google Scholar, Science Direct, Scopus, Springer, and
Web of Science. Eventually, we synthesized and analyzed a total of 62 relevant papers with a focus
on three perspectives, (1) the forms in which the learning outcomes are predicted, (2) the predictive
analytics models developed to forecast student learning, and (3) the dominant factors impacting
student outcomes. The best practices for conducting systematic literature reviews, e.g., PICO and
PRISMA, were applied to synthesize and report the main results. The attainment of learning out-
comes was measured mainly as performance class standings (i.e., ranks) and achievement scores
(i.e., grades). Regression and supervised machine learning models were frequently employed to
classify student performance. Finally, student online learning activities, term assessment grades, and
student academic emotions were the most evident predictors of learning outcomes. We conclude
the survey by highlighting some major research challenges and suggesting a summary of significant
recommendations to motivate future works in this field.

Keywords: performance prediction; student learning outcomes; systematic literature review;
academic performance; student success; learning analytics; machine learning; educational data mining

1. Introduction

Student academic performance in higher education (HE) is researched extensively to
tackle academic underachievement, increased university dropout rates, graduation delays,
among other tenacious challenges [1]. In simple terms, student performance refers to the
extent of achieving short-term and long-term goals in education [2]. However, academicians
measure student success from different perspectives, ranging from students’ final grades,
grade point average (GPA), to future job prospects [3]. The literature offers a wealth of
computational efforts striving to improve student performance in schools and universities,
most notably those driven by data mining and learning analytics techniques [4]. However,
confusion still prevails regarding the effectiveness of the existing intelligent techniques
and models.
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The timely prediction of student performance enables the detection of low performing
students, thus, empowering educators to intervene early during the learning process and
implement the required interventions. Fruitful interventions include, but are not limited to,
student advising, performance progress monitoring, intelligent tutoring systems develop-
ment, and policymaking [5]. This endeavor is strongly boosted by computational advances
in data mining and learning analytics [6]. A recent comprehensive survey highlights that
approximately 70% of the reviewed work investigated student performance prediction
using student grades and GPAs, while only 10% of the studies inspected the prediction
of student achievement using learning outcomes [3]. This gap incited us to thoroughly
investigate the work carried out where the learning outcomes are used as a proxy for
student academic performance.

Outcome-based education is a paradigm of education that focuses on implementing
and accomplishing the so-called learning outcomes [7]. In effect, student learning outcomes
are goals that measure the extent to which students attain the intended competencies,
specifically knowledge, skills, and values, at the end of a certain learning process. In our
view, the student outcomes represent a more holistic metric for judging student academic
achievements than mere assessment grades. This view concurs with the claim that the
learning outcomes represent critical factors of student academic success [8]. Moreover,
renowned HE accreditation organizations, such as ABET and ACBSP, use the learning
outcomes as the building blocks for assessing the quality of educational programs [9]. Such
importance calls for more research efforts to predict the attainment of learning outcomes,
both at the course and program levels.

The lack of systematic surveys investigating the prediction of student performance
using student outcomes has motivated us to pursue the objectives of this research. In a
systematic literature review (i.e., SLR), a step-by-step protocol is executed to identify, select,
and appraise the synthesized studies to answer specific research questions [10,11]. Our
systematic survey aims to review the research works conducted in this field between 2010
and 2020 to:

• Deeply understand the intelligent approaches and techniques developed to forecast
student learning outcomes, which represent the student academic performance.

• Compare the performance of existing models and techniques on different aspects,
including their accuracy, strengths, and weaknesses.

• Specify the dominant predictors (e.g., factors and features) of student learning out-
comes based on evidence from the synthesis.

• Identify the research challenges and limitations facing the current intelligent tech-
niques for predicting academic performance using learning outcomes.

• Highlight future research areas to ameliorate the prediction of student performance
using learning outcomes.

The remainder of this paper is organized into eight sections. Section 2 presents
the foundational concepts of student performance prediction and highlights the surveys
conducted in this field regarding their shortcomings. Section 3 outlines the systematic
survey methodology that we adopted in this research, as well as the research questions
and objectives that we intended to address. Section 4 details the answers to the research
questions about the prediction of student performance using learning outcomes. Section
5 discusses the key findings and specifies the limitations. Section 6 proposes several
recommendations, while Section 7 defines future research directions.

2. Background and Related Works

This section introduces the basic concepts of student outcomes and student perfor-
mance, followed by identifying the research gaps in the literature concerning the prediction
of student learning outcomes.
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2.1. Student Outcomes

Outcome-based education (OBE) has emerged as a new school of thought in education
and has recently enjoyed wide acceptability and adoption [12]. This educational paradigm
shifts the focus of the teaching and learning process from the traditional teacher objectives to
the so-called student outcomes. In simple terms, student outcomes refer to the knowledge,
skills, and values to be attained by the students at the time of graduation or at end of
a course [13]. The outcomes, representing the targeted competencies, might be defined
and measured at the course level, i.e., course outcomes, or program level, i.e., program
outcomes. Essentially, course outcomes enable the accomplishment of program outcomes,
and their alignment (i.e., courses to program) is performed in a critical activity referred
to as curriculum mapping. Computerized tools were developed to assist in realizing the
OBE goals [14] and effectively document the educational assessment activities [15]. Their
usefulness could be extended by incorporating intelligent models that can prognosticate
the attainment of learning outcomes during academic terms.

Measuring student outcomes in higher education indisputably brings about various
benefits, including the establishment of program expectations for students and course
instructors, the practical assessment of the quality of courses and programs, and the
provision of key success indicators of the program, among others [7,16]. Several qual-
ity assessment instruments, e.g., [17], and quality assurance frameworks, e.g., [18], were
proposed to realize the outcome-based education philosophy and acquire program ac-
creditations. Moreover, the ability to forecast the attainment of student outcomes adds
further invaluable advantages, such as the ability to introduce corrective interventions to
the learning processes. However, few works surveyed the intelligent prediction of stu-
dent outcomes. Furthermore, the factors and attributes that impact educational outcomes
are still vague. Studies suggest that these factors range between academic factors, e.g.,
teaching quality [19] and online engagement [20], and non-academic traits, e.g., family
engagement [21] and student motivation [22]. In this work, we aim, through a systematic
survey, to understand the landscape of student outcomes prediction using data mining
and machine learning, identify the main challenges hindering the prediction of student
outcomes, and propose relevant recommendations.

2.2. Student Performance

Albeit, due to the substantial educational shift in teaching and learning, i.e., OBE,
student performance remains a significant concern in higher education [5], especially given
the low grades and increasing dropout rates even at world-class universities [23]. Previous
reviews showed that the cumulative GPA and course assessments are the most used pre-
dictors of student performance and success [24,25]. Indeed, several studies used next-term
course grades as the main indicator of student performance, e.g., [26,27]. However, it is
not uncommon to measure student performance in other forms, including dropout rate,
student knowledge, post-course outcomes, among other indicators [28]. In our view, stu-
dent academic performance should not be assessed using assessment grades only. Instead,
it should be studied within a broader context, particularly using the student outcomes,
which are now guiding the learning process by looking at the cohort performance. More-
over, recent research recommends exploring the prospect of predicting the attainment of
student outcomes to infer student performance [29].

The intelligent techniques employed in learning analytics to forecast student achieve-
ments are generally categorized into supervised learning, unsupervised learning, data
mining, and statistical approaches [3,28]. Each category incorporates a wealth of intelli-
gent algorithms, such as Artificial Neural Networks, Support Vector Machine, K-Nearest
Neighbor, and Random Forests. The attributes that predict student performance are sur-
veyed extensively in the literature, leading to a mix of academic (e.g., pre-admission scores
and entry qualifications) and non-academic factors (e.g., emotional intelligence and re-
silience) [30,31]. However, mystery still surrounds the factors that influence the attainment
of course and program outcomes.
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Measurable student outcomes are developed to improve the quality of learning pro-
cesses and educational programs [13]. Effectively, these outcomes assess what students
can perform with what they have learned. The attainment of learning outcomes, both at
the course and program level, is performed using direct and indirect assessment methods
at the end of the learning process. The direct assessment methods seek to find tangible
evidence demonstrating student learning, while the indirect methods rely on the students’
reflections on their learning experience. To calculate the attainment rate of outcomes, one
should identify a priori the attainment targets and levels and then properly align student
grades to the appropriate attainment level [13]. In our work, we examined the studies that
predict the attainment of student outcomes, irrespective of their form.

2.3. Existing Student Performance Reviews and Literature Gaps

Our extensive review of previous surveys revealed that, to the best of our knowledge,
no systematic literature survey was carried out focusing on the prediction of student
academic performance from the learning outcomes perspective. Table 1 summarizes the
prominent surveys carried out on the prediction of student performance and emphasizes
their focus and weaknesses. Indeed, our search returned numerous surveys on the use of
data mining techniques in education (i.e., EDM) to unravel student modelling activities and
predict academic performance. These reviews suffered from several limitations, for they
(1) were generally broad, (2) did not focus on using student outcomes as an indicator of
student performance, (3) suffered from quality issues (e.g., methodologies not thoroughly
defined), and (4) were not published in highly indexed venues. These weaknesses are
highlighted in Table 1.
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Table 1. Existing surveys on student performance prediction, their weaknesses and strengths.

Focus of Survey and
Publication Venue Type of Survey

Number of Bibliographic
Databases Explored;

Papers Reviewed

Metric of Student
Performance Comparison

Models and
Approaches Reviewed Years Covered Weakness Strength

Prediction of student performance
using data mining [24];

Indexed Conference
Systematic review Four databases;

30 papers Prediction accuracy (%) Data mining techniques (2002–Jan 2015)

− Did not forecast student outcomes
− Reviewed a small number

of papers
− Did not discuss the limitations

+ Identified that attributes and
methods that predict
student performance

+ Applied the PICO methodology

Prediction of student outcome using
data mining [32];

Symposium
Systematic review 10 databases;

42 papers Prediction accuracy (%) Data mining techniques Not indicated

− Focused on the Moodle virtual
learning system only

− Did not address student outcome
from different perspectives

− Did not discuss the limitations
− Did not compare the

predictive models

+ Formulated well
defined questions

Techniques and algorithms used for
student performance prediction [5];

Indexed Conference
Traditional literature review One database;

88 papers/projects/reports Not reported Education analytics (2013–2017)
− Did not assess the quality of

the studies
− Did not compare the models

+ Listed the techniques used in the
learning analytics for predicting
student performance

Data mining techniques to discover
knowledge in education [33];

Indexed Journal
Traditional review Databases not indicated;

240 papers Not reported Educational data mining (2010–first quarter 2013)
− Did not focus on student outcomes
− Only 46 papers were reported

about performance modelling

+ Covered different areas such as
student performance modelling
and assessment approaches

Performance prediction using data
mining techniques [34];

Unindexed Journal
Systematic review Six databases Prediction accuracy (%) Data mining techniques (2007—July 2016)

− Did not survey student outcomes
− Reported only five techniques
− Did not discuss the limitations
− Adopted a weak

survey methodology

+ Discussed the factors predicting
student performance

Performance prediction using
machine learning [35];

Unindexed Journal
Literature survey Not indicated Prediction accuracy (%) Machine learning models Not indicated − Did not survey student outcomes + Compared the performance of

machine learning models

Features predicting student
performance [3];
Indexed Journal

Systematic review Three databases;
357 papers

Different measures of
performance were considered.

Statistical approaches, data
mining techniques, machine

learning models
(2010–2018) − Did not discuss student outcomes

+ Adopted a robust methodology
+ Highlighted the predictors of

student performance
+ Described the most used

prediction methods

Preliminary results of predictive
learning analytics [36];

Indexed Conference
Systematic review Databases not indicated;

39 papers Prediction accuracy (%) Machine learning models (2002–2016)

− Presented a preliminary study
(2-page long) lacking
crucial details

− Did not publish the full results of
the survey.

+ Reported the overall context of
student outcomes



Appl. Sci. 2021, 11, 237 6 of 28

Other less relevant surveys published in the field focused on the effects of homework
assignments on student performance [37], the impact of using interactive whiteboards on
student achievement [38], the predictors of student success in the first year of study [39],
and the factors of graduate success [40]. Unlike the above-mentioned surveys, our research
opted to conduct a systematic review by implementing a comprehensive review process
that allows synthesizing concrete answers to well-defined research questions, in the context
of predicting student learning outcomes.

3. Survey Methodology

This research performed a systematic review where the relevant academic works
predicting student performance using learning outcomes were identified, selected, and
critically evaluated using several criteria, as presented in the results section. To streamline
our contributions, we formulated three key research questions as follows:

• RQ1-Learning Outcomes Prediction. How is student academic performance measured
using learning outcomes?

• RQ2-Academic Performance Prediction Approaches. What intelligent models and
techniques are devised to forecast student academic performance using learning
outcomes?

• RQ3-Academic Performance Predictors. What dominant predictors of student perfor-
mance using learning outcomes are reported?

The main objective of this survey was to create a comprehensive understanding of the
landscape of academic performance prediction by focusing on the attainment of learning
outcomes. To answer the above research questions accurately, we adopted the well-founded
PICO model [41]. The PICO protocol emphasizes the definition of four key elements,
namely population, intervention, comparison, and outcome. Concerning our research,
population refers to the investigation of the learning outcomes prediction studies, the
intervention refers to the intelligent approaches and factors used to predict the attainment
of student outcomes, comparison refers to the performance prediction variability between
the surveyed models, and outcome refers to the accuracy of these approaches as well as
the predictors of learning outcomes. Table 2 details the PICO elements of our survey.

Table 2. PICO protocol adopted in our survey.

Population/Problem Intervention Comparison Outcome

Studies predicting student
performance using the
learning outcomes

List of intelligent models
and techniques

Comparison across the
identified models
and techniques

Quality and accuracy of the approaches
Set of performance predictors of
learning outcomes

Moreover, we applied the best practices for conducting useful systematic reviews [10].
As such, we identified and searched seven major online bibliographic databases, which con-
tain engineering and science publications. These databases include the ACM digital library,
IEEE Xplore, Google Scholar, Science Direct, Scopus, Springer, and Web of Science. These
are the common databases searched by software engineering reviews and are expected to
incorporate the studies investigating the predictive modeling of student outcomes. Other
electronic databases, such as DBLP and CiteSeer, were excluded from the search since their
results are inclusive within the previous seven databases. Furthermore, the databases that
publish non-reviewed articles were ignored. Figure 1 summarizes the general steps of our
full systematic review.
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Figure 1. Major steps of our survey methodology.

We conducted the searches in November 2020 using the above databases with a
focus on the studies published between 2010 and November 2020. The key terms that
were devised to perform the searches were directly linked to the concepts of the research
questions and PICO elements.

(predict* OR forecasting)
AND
(“student learning outcomes” OR “student outcomes” OR “learning outcomes”)
AND
(“artificial intelligence” OR “machine learning” OR “data mining” OR “deep learning”
OR “learning analytics”)
It is worthwhile to note that the search string syntax was trialed multiple times and

slightly modified in each database to obtain all relevant results, as recommended in [10].
When the searches were carried out on the full texts of our selected databases, thousands of
irrelevant studies were fetched and returned. Therefore, we restricted our searches to the
titles, abstracts, and keywords only, yielding a more reasonable pool of studies, as shown
in Table 3.

Table 3. Inclusion criteria in our systematic literature review.

Inclusion Criteria Description of Criteria

I1. Focus of study Studies that explicitly predict student performance
with a direct reference to the learning outcomes

I2. Empirical evidence of prediction Studies that contain empirical evidence of the
performance prediction

I3. Language of publication Only articles written in English are considered

I4. Year of publication Studies published between 2010 and 2020 (both
years inclusive)

I5. Publication venue Studies published in peer-reviewed scientific venues
(e.g., conference or journal)

I6. Availability of text Full text is accessible for analysis

3.1. Inclusion Criteria

Table 3 lists the inclusion criteria that were applied to shortlist the candidate articles
for consideration in this review. In other words, the studies that did not satisfy the criteria
listed below, were disregarded. For instance, non-refereed articles, such as technical reports,
and non-English papers were excluded.
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To ensure clarity and quality of our methodology, this systematic review followed the
four stages advocated by the PRISMA statement and the reporting guidelines [42]. The
first phase of PRISMA identifies the potential studies to investigate using automated and
manual searches. The screening phase of the studies follows the identification phase to
exclude duplicate and irrelevant studies. Next, the qualified articles are thoroughly read
and assessed for eligibility, leading to the final set of studies to be included in our synthesis.
In the screening and eligibility phases, we strictly applied the inclusion criteria listed in
Table 3. Studies that did not directly refer to the prediction of learning outcomes (i.e., the
outcome variable) were excluded from the synthesis. Moreover, it is not uncommon to see
such a high drop in the number of papers that do not meet the inclusion criteria. Figure 2
shows the PRISMA flow diagram of our survey.
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Figure 2. PRISMA flow diagram of our survey methodology.

The initial round of automated searches on the electronic databases gave a corpus con-
taining a total of 586 articles, as listed in Table 4. After removing the duplicate publications
and scanning the titles and abstracts, the number was reduced to 187 potentially relevant
articles. Full scanning of the eligible articles reduced the search results to 51 relevant
articles. Moreover, manual searches were executed by the authors to consider a further
11 primary articles.

To sum up, the automated search yielded 51 relevant articles. However, SLR guidelines
suggest carrying out manual searches to overcome the threat of missing primary studies and
improve the reliability of the survey [10]. To this end, we (1) hand searched different journal
and conference publications and (2) looked into the reference lists of our candidate articles
to identify new relevant articles. These manual search approaches gave an additional
11 primary articles. Hence, the final sample of articles judged to be relevant to the prediction
of student outcomes using intelligent approaches, e.g., machine learning, amounted to
62 papers.
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Table 4. Search results of several rounds from the electronic bibliographic databases.

ACM IEEE Xplore Google Scholar Science Direct Scopus Springer Web of Science Round Total

Round 1
(Initial Results) 64 152 65 91 63 115 36 586

Round 2
(Removing Duplicates) 64 148 65 91 28 114 33 543

Round 3
(Scanning the Title

and Abstract)
12 63 10 13 53 9 27 187

Round 4
(Reading Full Text) 3 7 5 5 12 2 17 51

Round 5
(Manual Searches) A further 11 articles were added through manual searches 62

3.2. Data Extraction

Upon applying the PRISMA approach [42], the final pool of selected studies was
thoroughly analyzed to extract the data that assist in answering the research questions.
The extracted data included:

• General information about the publication, for instance, publication year, venue type,
country of publication, and number of authors;

• Educational dataset and context of prediction (e.g., students, courses, school, univer-
sity, . . . etc.);

• Input variables used for student outcomes prediction and the form in which they were
predicted;

• Intelligent models and approaches used for the prediction of academic performance;
• Significant predictors of learning outcomes.

We applied thematic analysis to the extracted data to answer RQ1, RQ2, and RQ3. The
data were grouped and categorized according to the themes reported in the results section.
However, it was not feasible to carry out the meta-analysis of the selected studies, mainly
because most educational datasets were either private or not possible to obtain. Below we
detail the results of our synthesis analysis.

4. Survey Results

This section reports general information about the surveyed articles, the forms in
which the student outcomes were forecasted, the intelligent models developed for perfor-
mance prediction, and the predictors of student attainment of learning outcomes.

4.1. Publication Venues and Years

A total of 62 studies were analyzed to assist with answering the questions posited in
our research. Figure 3 shows that these studies were published in peer-reviewed journal
venues (35 studies, 56.45%) and conferences (27 studies, 43.55%). Overall, the publications
appeared in four categories, most notably Computing and Engineering (22 studies, 35.48%)
and Information Technology and Education (13 studies, 20.96%) venues. The student
performance prediction papers also appeared in the Education (17 studies, 27.41%) and
Psychology (8 studies, 12.90%) fields of study, as depicted in Figure 4.

It can be seen that the number of studies endeavoring to forecast learning outcomes
as an indicator of student success is on a constant rise. Figure 5 shows that the interest in
student outcomes prediction models was increasing since 2017, which coincides with the
global educational shift towards outcome-based assessment and accreditation efforts. Our
search of the databases retrieved articles published until the start of November 2020, which
might explain the slight decrease in the number of published articles in the year 2020.
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4.2. Experimental Datasets and the Context of Performance Prediction

All selected studies reported using at least one educational dataset to test its pre-
diction model or understand the factors influencing the attainment of student outcomes.
Thirty-two studies (51.6%) reported collecting performance data from traditional classroom
learning, 21 studies (33.8%) from virtual learning environments, and nine studies (14.5%)
from blended learning environments (e.g., a mix of online and face-to-face learning activi-
ties). The performance prediction models were applied to the university (72.58%), school
(25.81%), and kindergarten data (1.61%). When we explored the type of degrees pursued
by the students whose performance was being predicted, 43 (69.35%) studies examined the
performance of undergraduate university students, and seven (11.29%) studies investigated
the performance of high school students. Only two studies (3.22%) reported examining the
performance of postgraduate students [43,44].

When we looked at the context of prediction, the datasets and prediction models were
applied mainly to courses in the natural sciences field (i.e., STEM) (33 studies, 53.22%).
Figure 7 shows less emphasis on the courses belonging to the social sciences field (8 studies,
12.90%). More precisely, learning outcomes predictions were developed for Computer
Science (13 studies, 20.96%), Mathematics (5 studies, 8.06%), and Engineering majors
(4 studies, 6.45%), as depicted in Figure 8.
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Since the studies were performed in 23 different countries, we chose to cluster them
per continent, as shown in Figure 9. Twenty-five (40%) studies took place in the USA
alone, followed by Europe (18 studies, 29%) and Asia (13 studies, 20%). Moreover, the
training datasets for 59 studies were collected from one country only. However, two studies
collected their data from students enrolled in more than one country [45,46].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 29 
 

 
Figure 8. Frequency of prediction studies per type of major. 

Since the studies were performed in 23 different countries, we chose to cluster them 
per continent, as shown in Figure 9. Twenty-five (40%) studies took place in the USA 
alone, followed by Europe (18 studies, 29%) and Asia (13 studies, 20%). Moreover, the 
training datasets for 59 studies were collected from one country only. However, two stud-
ies collected their data from students enrolled in more than one country [45,46]. 

 
Figure 9. Distribution of studies across the continents. 

All models attempted to predict academic outcomes except for one [47], which pre-
dicted academic and non-academic outcomes. The non-academic outcomes were meas-
ured using students’ self-reports of self-esteem, satisfaction with life, and sense of mean-
ing. Thirty-seven (59.67%) experimental datasets were collected from the same environ-
ment (i.e., a single school or university). However, there are a few studies that expanded 
their data collection activities to multiple schools or universities within the same district, 
e.g., [48] collected student data from 750 schools, [49] from 113 schools, and [45] from 5 
universities. Generally, it can be observed that the studies investigating student perfor-
mance in schools collected their educational data from multiple schools, as reported in 
Table 5. In contrast, studies investigating academic performance in higher education em-
ployed data from a single university (36 articles, 58.06%). However, 12 articles did not 
specify the number of schools or universities involved in the data collection process. 

Table 5. Source of educational dataset in the studies. 

Source Number Number of Studies (Percentage of Occurrence) Studies 

School 
One 1 (1.61%) [50] 

Multiple 11 (17.74%) [47–49,51–58] 

Figure 9. Distribution of studies across the continents.

All models attempted to predict academic outcomes except for one [47], which pre-
dicted academic and non-academic outcomes. The non-academic outcomes were measured
using students’ self-reports of self-esteem, satisfaction with life, and sense of meaning.
Thirty-seven (59.67%) experimental datasets were collected from the same environment
(i.e., a single school or university). However, there are a few studies that expanded their
data collection activities to multiple schools or universities within the same district, e.g.,
ref. [48] collected student data from 750 schools, [49] from 113 schools, and [45] from 5 uni-
versities. Generally, it can be observed that the studies investigating student performance
in schools collected their educational data from multiple schools, as reported in Table 5.
In contrast, studies investigating academic performance in higher education employed
data from a single university (36 articles, 58.06%). However, 12 articles did not specify the
number of schools or universities involved in the data collection process.
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Table 5. Source of educational dataset in the studies.

Source Number Number of Studies
(Percentage of Occurrence) Studies

School
One 1 (1.61%) [50]

Multiple 11 (17.74%) [47–49,51–58]

University
One 36 (58.06%) [42,44,59–92]

Multiple 2 (3.22%) [45,93]

Not Specified 12 (19.35%) [46,94–104]

When we inspected the number of courses from which the experimental data were
drawn, we discovered that ten studies used a single course/subject, eight studies used
two courses, and three studies used four courses, amounting to 35.48% of the surveyed
articles. Moreover, 18 (29.03%) studies used between four courses (i.e., [80]) and 270 courses
(i.e., [70]) to test the correctness of their predictive models. Nonetheless, it was unclear
how many courses were used in the remaining 22 (35.48%) studies.

The experimental datasets included performance data about as little as less than
1000 students (50% of the surveyed studies). Figure 10 shows that the number of studies
using datasets including 1001 to 10,000 students, amounts to 13 (20.96%) articles. Over-
all, the studies that included data points of more than 10,000 students amounted to 11
(17.74%), three of which used a sample size greater than 100,000 students (i.e., [78,85,102]).
The remaining seven (11.29%) studies did not specify the sample size of their student
dataset. When we inspected the models’ prediction accuracy based on the size of the
dataset, we found varied results. For example, datasets containing less than 100 students
gave weak predictions (e.g., 83 students resulted in an accuracy = (48–100%) [69]; 134 stu-
dents resulted in an accuracy = 81.3% [64]) and acceptable predictions (e.g., 100 students
resulted in an accuracy = 90%, recall = 90%, and precision = 74% [59]). Similarly, datasets
of more than 100,000 students gave mixed findings. For instance, a pool of 597,692 stu-
dents gave an impressive accuracy = 98.81%, AUC = 99.73%, sensitivity = 98.46%, and
specificity = 99.20% [85]. However, a sample of 130,000 students gave an accuracy = 48–55%,
RMSE = 8.65–10.00, and MAE = 6.09–7.74 [78]. Similarly, a sample of 142,438 students gave
an RMSE = 0.34 and AUC = 0.81 [102].
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of the results is no simple matter. This is because such a division is influenced by sev-
eral intertwined factors, including the diversity of input features impacting the outcome
variable, the tolerance for errors, and the type of prediction (e.g., statistical analysis or
learning) implemented. Moreover, comparing the performance of models that were trained
on differing datasets (i.e., characteristics and sizes) might not be conclusive. There is
no disagreement that larger the sample size we have to train the predictive models, the
stronger is the predictions we obtain. However, this was not evident from our analysis of
the synthesis.

4.3. Learning Outcomes as Indicators of Student Performance

As stated earlier, we considered only the research articles that predicted student
outcomes as a representative of student performance and success. It is worth noting that
the articles that define the learning outcomes as their outcome variable were considered
in our analysis, irrespective of the form of the learning outcomes. However, other studies
that referred to student academic achievements using in-class assessment metrics, such
as GPA or grades, without any reference to the learning outcomes were excluded from
the survey. Overall, 56 (90.32%) studies attempted to forecast course outcomes, while
three studies looked at the feasibility of predicting program outcomes. Only two studies,
(i.e., [103,104]), calculated student performance at both the course and program levels.
Furthermore, most of the predictive models estimated the learning attainment of students
individually (55 studies, 88.70%) rather than collectively (i.e., cohorts of students) (4 studies,
6.45%). However, three studies (i.e., [52,77,94]) predicted the performance of individual
students as well as student cohorts.

The prediction of student performance was achieved in two ways, formative and sum-
mative. In the formative prediction of learning outcomes, student features are considered
throughout different points of the academic semester, in a bid to inform the instructors
about the expected achievements of their students. This formative prediction empowers
instructors to implement the necessary interventions early enough in the course. However,
in the summative prediction, the learning outcomes are predicted at the end of the semester.
Thirty-eight (61.29%) models provided summative predictions, while 19 (30.64%) models
provided formative predictions (e.g., weekly or monthly) of student performance. Only
five studies calculated both formative and summative predictions of student performance,
i.e., [46,68,76,84,88].

Typically, the attainment of student outcomes, whether at the course or program level,
might be assessed and measured via direct or indirect methods. The direct methods use
various types of course-level assessments, such as assignments and examinations, to obtain
insights about student achievements. However, the indirect methods of assessment depend
mainly on student opinions and feedback about their learning experiences. In our survey,
most studies (50 studies, 80.64%) predicted student learning using direct measures. Nine
(14.51%) studies used self-reports of students on their learning experience (i.e., indirect
measures) to predict their performance. However, three notable studies [56,57,97] provided
learning outcomes predictions using direct and indirect assessment.

Furthermore, we inspected the form in which the learning outcomes were forecasted
in the surveyed studies. Table 6 shows the results of the thematic analysis, revealing six
distinctive types. The learning outcomes were predicted mostly in the form of performance
classes (34 occurrences), achievement scores (20 occurrences), perceived competence (5 oc-
currences), self-reports of educational aspects (3 occurrences), and failure/graduation rates
(3 occurrences).

Figure 11 depicts that 80% of the models predicting academic performance stand-
ings classified the outcomes into two to four classes. The remaining 20% of the models
forecasted more than 4 class labels of learning outcome performance. Examples of binary
(dichotomous) classes are ‘pass’ and ‘fail’ [86,87], ‘certification’ and ‘no certification’ [85],
and ‘on-time graduation’ and ‘not on-time graduation’ [60]. A 4-class outcome example
predicted students with variable risks [101], e.g., high risk (HR), medium risk (MR), low
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risk (LR), and no risk (NR). Ordinal performance ranks were also predicted; for instance,
student outcomes were classified into five performance ranks, specifically fail, satisfactory,
good, very good, and excellent [93].

Table 6. Distribution of studies based on the type of learning outcomes predicted.

Learning Outcome Type Number of Occurrences Studies

Performance classes
(Categorical; Binary, nominal and ordinal) 34 [45,46,55,59–70,73–77,79,80,83–

89,91,93,94,100,101,103]

Achievement/grade scores
(Continuous; Interval) 20 [43,44,50–57,78,81,82,84,90,92,96–99,102]

Perceived competence and achievements
(Continuous; Interval scale) 5 [47,57,71,72,97]

Self-reports about educational aspects
(Continuous; Interval scale) 3 [56,81,97]

Failure/dropout/graduation rates
(Continuous; Ratio) 3 [48,49,95]

Other (e.g., college enrollment, careers, time to
graduate, attendance, . . . etc.) 6 [45,48,49,56,58,66]

NS 1 [104]
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4.4. Predictive Models of Learning Outcomes

In learning analytics, predictive modeling focuses primarily on improving the ac-
curacy of student performance predictions. In contrast, explanatory modeling focuses
on identifying and explaining the factors that lead to the predicted achievements of stu-
dents [105]. The intelligent models suggested for predicting learning outcomes were mainly
predictive in nature (52 studies, 87.09%), with only ten models (16.12%) trying to explain
the predictions by linking them to the exact features leading to the observed performance,
i.e., [46–48,62,77,82,85,87,95,102].

Fifty-four (87.70%) studies employed single intelligent models for predicting the attain-
ment of learning outcomes. Remarkably, only eight studies (i.e., [60,65,66,80,84,93,96,101])
explored the use of hybrid intelligent models to improve the accuracy of academic perfor-
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mance predictions. Hybrid or ensemble classifiers involve the integration of heterogeneous
learning techniques to boost the predictive performance [106].

Table 7 categorizes the 62 articles according to the intelligent learning genre they
implemented to predict academic performance. Overall, five types of predictive analytics
emerged with statistical models appearing the most (28 studies, 45.61%), followed by
supervised learning models (25 studies, 40.32%). The use of unsupervised learning alone
appeared only in one study [67].

Table 7. Distribution of student outcomes predictive models per learning type.

Learning Type Number of Studies
(Percentage of Occurrence (%)) Studies

Statistical analysis 28 (45.16%) [43–45,47–50,52–54,56–58,64,71–
73,75,76,81–83,90–92,97–99]

Supervised machine learning 25 (40.32%) [46,51,55,59–62,65,68–70,74,78,80,84–
89,95,96,101–103]

Data mining 5 (8.06%) [63,77,94,100,104]

Supervised and unsupervised learning 3 (4.83%) [66,79,93]

Unsupervised machine learning 1 (1.61%) [67]

We delved into the types of intelligent methods and algorithms that are used to
forecast the attainment of student outcomes, and clustered the proposed models into six
categories. Table 8 shows that regression analysis was the most frequently used (51.61%)
prediction techniques. Artificial neural networks and tree-based models came into the
second position, making together a total of 29.02%. Bayesian approaches made only 8% of
the predictive models. Notably, support vector machines were employed in two studies
(i.e., [59,60]).

Table 8. Distribution of intelligent predictive algorithms per category.

Learning Model Number of Studies
(Percentage of Occurrence (%)) Studies

Statistical models
(Correlation and Regression) 32 (51.61%) [43–47,49,50,52–54,56–58,64,67,69,71–73,76,81–83,88–92,97–99]

Neural networks 9 (14.51%) [51,68,70,74,78,86,95,96,102]

Tree-based models
(Decision trees) 9 (14.51%) [55,63,65,66,75,77,85,101,104]

Bayesian-based models 5 (8.06%) [61,62,79,93,94]

Support Vector Machines 2 (3.22%) [59,60]

Instance-based models 1 (1.62%) [103]

Other 4 (6.45%) [48,80,84,100]

The literature postulates several metrics to evaluate the proposed machine learning
models [2,3,5]. Accuracy is probably the most popular metric employed to judge the
effectiveness of a predictive model. Accuracy refers to the ratio between the correctly
predicted outputs over the total predictions. Other evaluation metrics include precision,
recall, ROC-AUC, R Square, F1-score, among others. The surveyed papers used multi-
ple performance metrics to evaluate the quality of their student performance predictions.
Twenty-one (33.87%) studies used a single metric to evaluate the prognosis of learning
outcomes. Seven studies (11.29%) used two metrics, while seven other studies (11.29%)
used three performance metrics. Notably, two studies used five evaluation metrics, includ-
ing accuracy, kappa, AUC, sensitivity, specificity, relative absolute error (RAE), relative
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squared error (RSE), and R-squared [66,85]. However, 21 (33.87%) studies did not specify
the metrics they used, so the quality of their predictions was inconclusive.

When we counted the frequency of performance metrics utilized in the studies, we
found that 28 (45.16%) intelligent models used ‘accuracy’ to measure the prediction quality,
followed by the root mean square error (RMSE) (10 studies, 16.12%), ROC-AUC (8 studies,
12.90%), R square (8 studies, 12.90%), and mean absolute error (MAE) (7 studies, 11.29%).
Table 9 summarizes the top and worst-performing prediction models of learning outcomes.
Accordingly, the hybrid random forest [101] demonstrated the best classification accuracy,
while the linear regression gave the worst predictions [88].

Table 9. Summary of top and worst prediction models based on the accuracy of predictions.

Top 5 Performing Prediction Models
(Accuracy %)

Worst 5 Performing Prediction Models
(Accuracy %)

Hybrid Random Forest [101]: 99.25–99.98% Linear Regression [88]: 50%
Feedforward 3-L Neural Networks [74]: 98.81% Bagging [78]: 48–55%
Random Forest [85]: 98% Mixed-effects Logistic Regression [76]: 69%
Naive Bayes [93]: 96.87% Discriminant Function Analysis [45]: 64–73%
Artificial Neural Network [86]: 95.16–97.30% Logistic Regression [89]: 76.2%

Figure 12 shows that 38 (61.29%) studies did not benchmark the performance of their
intelligent models against any baseline competitors. Fifteen (24.19%) studies compared
their models with one to three competitor models. The remaining studies (14.51%) made a
performance comparison with four or more baseline classifiers. The most compared against
techniques included the Decision Tree (9 times), K-Nearest Neighbor (9 times), Support
Vector Machines (8 times), Naïve Bayes (8 times), and Random Forest (6 times).
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Only 5 (8.06%) studies reported using multiple datasets to verify the performance
of their predictive models to check the consistency and validity of the learning outcomes
predictions [65,80,86,96,102]. The remaining studies (91.93%) used only one dataset. With
respect to the software used to analyze the datasets, statistical tools (e.g., SPSS, R, and
Mplus) appeared in 14 studies, followed by data mining tools (e.g., WEKA), and machine
learning frameworks (e.g., Keras, TensorFlow, and Scikit-learn). Other tools used included
numerical computation (e.g., Octave) and in-house developed software (6 studies). It is
worth noting that 29 articles did not specify the software tools they used to develop their
predictive models.
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4.5. Dominant Factors Predicting Student Learning Outcomes

Our survey revealed that 23 (37.09%) studies explored the impact of one to three factors
on the attainment of student outcomes. However, 32 (51.61%) studies used more than three
features to forecast student performance. The range of features varied between 4 (e.g., [53])
to 263 (e.g., [55]). Seven studies did not indicate the number of factors used to forecast
student success. However, the dominant factors that were demonstrated to influence the
attainment of student outcomes were substantially fewer. The strength of the evidence was
grouped into three classes, namely strong, medium, and weak. Thirty-one (50%) studies
reported finding strong evidence (i.e., statistical evidence or high prediction accuracy) about
the predictive power of their factors. Six models showed medium evidence of the effects of
the factors, while seven models reported a weak significance of the predictive factors they
inspected. However, 18 studies were inconclusive about the strength of their findings.

We coded the factors (100 occurrences with 14 studies not reporting the influential
factors) that were found to impact the performance of students into themes. Overall,
six primary themes emerged from our qualitative analysis. Figure 13 shows that online
learning activities and patterns (19 times) were the key predictors of student learning
outcomes. This was mainly relevant to virtual or blended learning studies, where all
or part of the student learning occurs online. Examples of online learning behavior in-
cluded resource access time [84], site engagement [62], and time and number of online
sessions [76]. The next prominent predictor of student performance was the assessment
data during the semester (17 times), such as assignment [102] and quiz scores [44,82], and
exam grades [69]. A surprising dominant factor of student achievements that prevailed
was student academic emotions, which refer to student interests and enthusiasm [83],
intrinsic motivations [92], and professor–student rapport [71]. The next influential fea-
tures were grouped under previous academic achievements [45,46,48,66] and the teaching
environment and style [81,98,99].
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4.6. Quality Assessment of Reviewed Models

To assess the quality of the synthesized studies, we applied eight guidelines suggested
in [3]. These guidelines were developed to evaluate the data analytics models. The guide-
lines assessed the clarity of the research questions and thoroughness of the methodology,
and the use of a second dataset for validating the performance prediction models, among
other vital aspects. Moreover, we took the liberty to add two quality assessment criteria,
specifically (1) the practical implications of the student performance prediction model and
(2) limitations of the model. Table 10 shows the overall quality assessment results of our
62 articles. Each study was carefully inspected and rated as to whether it satisfied each of
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the ten guidelines. Studies that did not report information about a specific guideline were
assumed to not fulfill the criterion.

Table 10. Quality assessment of surveyed studies; Yes = Condition satisfied, No = Condition not
satisfied.

Assessment Criterion Yes (%) No (%)

1. Verification of predictive model with a second dataset 8.06% 91.94%

2. Threats to validity reported 12.90% 87.10%

3. Research implications and recommendations 20.96% 79.04%

4. Well-defined research questions 33.87% 66.13%

5. Use of separate training and testing datasets 35.48% 64.52%

6. Research limitations and challenges 37.09% 62.91%

7. Results detailed sufficiently 56.45% 43.56%

8. Predictor variables clearly described 77.42% 22.58%

9. Predictions being made are clear 82.25% 17.75%

10. Data collection instruments stated 82.25% 17.75%

11. Sound research methodology 83.87% 16.13%

12. Clear research contributions 90.32% 9.68%

Strikingly, only 21 studies (33.87%) posited clear research questions to motivate the
learning analytics model development. While many studies described their contributions
and research methodology clearly, they suffered from serious drawbacks. Only five (8.06%)
studies stated verifying their predictive models using a second dataset. The majority of
studies (87.10%) did not discuss the threats to the validity of their student performance
predictions. Moreover, 49 articles (79.04%) did not draw any practical implications of their
research findings, which considerably restricted the usefulness of the results for learning
analytics and higher education. Finally, the models that discussed their limitations and
challenges were limited to only 23 (37.09%).

5. Discussion
5.1. Key Findings

Outcome-based education has become pivotal for higher education leaders and accred-
itation organizations [12]. Moreover, learning analytics has gained tremendous momentum
in the past decade to overcome the barriers hindering student learning [107]. Learning ana-
lytics and educational data mining (i.e., EDM) are proclaimed to improve the attainment of
student learning outcomes [108]. There are also several calls for automating the assessment
of student outcomes, which represent a proxy for student performance and success [9,29].
However, it is unclear how student outcomes are modeled and predicted at the course and
program level using data mining and machine learning models. The current survey was
carried out as an attempt to bridge this research gap.

The choice for surveying the last decade was motivated by the recent technological
advances in artificial intelligence and data mining, coupled with the prominence of the
outcome-based theory in education. The closest study to ours was the survey reported
in [36], which explored 39 studies predicting learning outcomes in learning analytics
between 2002 and 2016. Although the survey tried to summarize the main techniques used
for predicting the learning outcomes, it failed to detail the results of the predictions. Our
findings confirmed some previous observations. For instance, there seemed to be a growing
interest in understanding student performance in learning management systems (LMS).
The sample size of the datasets remained small to train the predictive models sufficiently.
The predicted variable (i.e., learning outcome) evolved from a binary term to take a multi-
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rank form; however, student grades are still used to refer to the learning outcomes. Lastly,
the accuracy of the supervised learning models improved to reach unprecedented levels.

Our survey showed that developing models that forecast student learning outcomes
is on the rise since 2017, with a significant portion of the articles published in computing
and IT venues. Approximately half of the surveyed studies predicted learning outcomes of
traditional classroom learning, while the other half focused on online and blended learning,
due to its ever-increasing importance. More emphasis is directed toward undergraduate
university courses and the STEM specialties (i.e., science, technology, engineering, and
mathematics). The developed countries (e.g., the USA and Europe) are taking the lead
in researching learning analytics of student outcomes. Below, we revisit each research
question separately and highlight the main findings.

• RQ1-Learning Outcomes Prediction. How is student academic performance measured
using learning outcomes?

Here our analysis focused on understanding the forms in which the learning outcomes
were measured in the selected studies. Our first observation was that the synthesized
literature used the term ‘student outcomes’ or ‘learning outcomes’ incautiously, without
adopting or linking them to any formal definition. The rather vague definition of the
predicted variable (i.e., learning outcomes) by the predictive models was considered a
major weakness that raises concerns about the usefulness and validity of the learning
analytics results. Therefore, it is important for the researchers to clearly define the student
learning outcomes variable that their intelligent models would estimate.

Our next observation was that most experimental datasets came from a single ed-
ucational entity, and 35% of studies predicted the learning outcomes for no more than
four courses. The datasets used to train the predictive models were relatively small in
many studies, with a sample size less than 1000 students. Notably, most surveyed models
attempted to predict outcomes at the course level (90%). The academic performance was
mostly measured for individual students instead of cohorts. Only a few studies modeled
program-level outcomes. The predictions of educational outcomes were made both during
and at the end of the semester. However, the projections focused on the direct measures of
student performance more than the student perceptions of the learning process.

Generally, the developed models analyzed student data to predict the learning out-
comes in their variant forms, including student achievements, dropout and at-risk rates,
and feedback and recommendation. Approximately 34 studies forecasted student per-
formance in the form of academic standing classes (majority from two to four academic
classes). Education program assessment is the epicenter activity undertaken to achieve a
myriad of strategic goals [17], such as the improvement of program quality and realization
of outcome-based education. Usually, student performance, whether assessed directly (e.g.,
examinations) or indirectly (e.g., student self-reports) is measured using rubrics. Rubrics
can be considered the equivalent of academic performance classes to evaluate whether the
learning outcomes fulfill certain thresholds or attainment levels.

• RQ2-Academic Performance Prediction Approaches. What intelligent approaches and
techniques are devised to forecast student academic performance using learning outcomes?

Although the number of publications in the field of educational data mining is growing
yearly [109,110], the research efforts focused on developing models that can estimate
learning outcomes are still unsatisfying. For instance, many outcome assessment tools lack
sufficient intelligence to predict student performance [15]. In our survey, we found that the
performance prediction models were developed, in most cases, as stand-alone modules
and not part of a program assessment software. About 87.70% of the devised models relied
on a single intelligent technique, even though the ensemble techniques are well-known to
boost the prediction accuracy [3]. Moreover, fewer models were augmented to explain and
justify the prediction of learning outcomes, despite their importance [111].

Nearly 86% of the synthesized models fall within the statistical modeling and super
machine learning. Only a few models tried to forecast student outcomes using unsu-
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pervised learning techniques. We used the taxonomy presented in [109] to classify the
predictive techniques emerging from our synthesis. Regression, neural network, and tree-
based models were the most used classification techniques for predicting the attainment
of student learning outcomes. Accuracy was the most calculated metric for evaluating
the performance of the predictive models. Other evaluation metrics reported included
RMSE, ROC-AUC, R square, and MAE. The best performing predictive models were the
Hybrid Random Forest, Feedforward 3-L Neural Network, and Naïve Bayes, while the
worst-performing models were the Linear Regression and Mixed-effects Logistic Regres-
sion. Remarkably, 61% of the proposed models did not benchmark their performance
against other baseline classifiers. Finally, five studies re-examined the validity of their
models on multiple datasets.

• RQ3-Academic Performance Predictors. What dominant predictors of student perfor-
mance using learning outcomes are reported?

Learning analytics insights about student outcomes in the domain of education ne-
cessitate the investigation of features impacting academic performance [107]. Such under-
standing empowers the implementation of personal recommendations by the concerned
education stakeholders [112]. However, our systematic survey demonstrated a lack of
explanatory models that go beyond predicting the student performance to pinpointing the
features that genuinely impact the attainment of course and program-level outcomes.

Approximately a third of the studies listed no more than three dominant factors to
be influencing the accuracy of the academic outcome predictions. Similarly, nearly 30% of
the studies were inconclusive about the effects of the features they explored. The thematic
analysis revealed that student online learning patterns, term assessment scores, and student
academic emotions are the top three predictors of learning outcomes.

The sample size of the synthesized studies differed significantly, as well as the number
of courses used for understanding the impact of some features on the student learning
outcomes. What works for one course might not work for another, and what works for
one batch of students might behave adversely for another. In fact, student performance
predictive models are known to work well, particularly for the datasets on which they were
trained (i.e., model overfitting) and therefore have limited generalizability to new students
and disciplines [111].

5.2. Challenges and Weaknesses of Existing Predictive Models

In our survey quest, we were enlightened about several challenges and underexplored
areas prevailing in the existing learning outcomes prediction models. Future studies
implementing machine learning models to prognosticate the attainment of student learning
outcomes should pay close attention to the research challenges below and take necessary
actions to mitigate them.

• Research challenge one: The prediction of academic performance of student cohorts
to assist in the automation of course and program-level outcomes assessment.

• Research challenge two: The use and availability of multiple datasets from various
disciplines to strengthen the validity of the predictive model. The datasets should
comprise a large sample size of students to draw any meaningful conclusions.

• Research challenge three: The inspection of the effects of different features on the
attainment of student outcomes to contribute to academic corrective interventions in
higher education, i.e., the shift from predictive analytics to explanatory analytics.

• Research challenge four: The use of multiple performance evaluation metrics to assess
the quality of the learning outcomes predictions.

• Research challenge five: The lack of unsupervised learning techniques devised to
forecast student attainment of the learning outcomes.

• Research challenge six: The application of automated machine learning (i.e., AutoML)
to the problem of student outcomes prediction was rarely conducted, except in [84].
Addressing this challenge would enable the development of ML models that automate
the machine learning pipeline tasks, making the tasks of featurization, classification,
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and forecasting efficient and accessible to the non-technical audience (e.g., education
leaders and course instructors) in different disciplines.

5.3. Threats to Validity

In software engineering, validity assessment incorporates four types, namely inter-
nal, external, construct, and conclusion validity [113]. In this survey, we followed the
recommended protocols to reduce the threats to validity and improve the quality of our
conclusions. As such, we have:

• Defined the methodology, including search key terms and phrases, publication venues
. . . etc., to enable the replicability of the survey.

• Used the manual search to incorporate any missing articles in the synthesis.
• Applied the appropriate inclusion and exclusion criteria to focus on student perfor-

mance modeling using learning outcomes. These constituted the selection criteria of
the survey.

• Selected all studies that meet the inclusion criteria irrespective of the researchers’
background or nationality to eliminate any culture bias.

• Ensured that the primary studies are not repeated in the synthesis by removing the
duplicates.

• Defined the quality assessment criteria based on previous surveys and recommenda-
tions [3].

However, the validity of our findings was largely influenced by the quality of the mod-
els we synthesized. We noticed that most studies focused on highlighting the models and
factors that succeeded in forecasting student performance, thus, introducing a publication
bias. Negative results were seldom published in the selected articles, which might have
affected the results of our review. Indeed, this limits the practicality of the implications
and recommendations.

Among the critical threats that hinder conducting valid surveys is missing any primary
studies during the search process. To minimize this risk, we followed the best practices
for conducting survey literature reviews in software engineering [10,11]. We also varied
the critical search phrases for each electronic bibliographic database to retrieve as many
relevant papers as possible. To reduce any subjective interpretation, we reviewed the
extracted data and classification.

Concerning external validity, it is dangerous to assume the same observations for
different disciplines (e.g., economics, history, . . . etc.), since most surveyed studies modeled
student performance in a single discipline. Furthermore, the results ought to be treated with
caution, especially with respect to generalization to other educational systems worldwide.
Around 70% of studies were conducted in the USA and Europe alone, restricting the
applicability of the results to the developing countries.

5.4. Survey Limitations

This work suffers from several qualifying limitations that are worthwhile to acknowl-
edge herein. As with all types of reviews, there is a probability that we missed some works
predicting student learning outcomes because of our selected search keywords and phrases,
or during the screening process. Moreover, it was not possible to perform a meta-analysis
of the previous findings to confirm the statistical significance of the synthesized predictive
models, due to the unavailability of the datasets and the diverse techniques used to forecast
student outcomes. We deliberately restricted our search of the intelligent predictive models
of learning outcomes to the last decade only (i.e., 2010–2020), which witnessed a significant
boost in machine learning on the one hand, and outcome-based education on the other
hand. Therefore, we might have missed some critical works published before 2010. It was
also observed that some studies did not report all experimental and prediction details,
e.g., dataset characteristics, type of predictive models, and the factors influencing student
academic success. For instance, 21 studies did not specify the performance metrics of
the predictive models they devised. This eventually affected the quality of our synthe-
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sis analysis. Unfortunately, many studies did not follow a detailed methodology, which
made the assessment more challenging. Our survey was motivated by three research
questions, which could have framed the review process, and thereby, the conclusions
we reached. Other research questions might be asked and answered differently, leading
to different results. Our search was restricted to peer-reviewed journals and conference
articles, which could have overlooked valuable studies reported in dissertations, as well as
in the unpublished literature.

6. Practical Implications and Recommendations

Based on the above challenges and limitations, we suggest the subsequent recommen-
dations for research exploring the predictive learning analytics of student outcomes.

• Recommendation one: Formalize a clear definition of the variable ‘learning outcomes’
before embarking on the development of predictive models that measure the attain-
ment of learning outcomes.

• Recommendation two: Build predictive models for non-technical majors, e.g., hu-
manities, and for supporting teaching and learning in developing countries. These
educational settings and contexts have different characteristics and features; therefore,
specialized analytics models ought to be developed to work correctly in these settings.

• Recommendation three: Produce and share educational datasets for other researchers
to explore and use after anonymizing any sensitive student data.

• Recommendation four: Build intelligent models that predict program-level outcomes
as well as cohort academic performance. This would assist educational leaders in
undertaking the activities of assessment and improve the quality of their programs.

• Recommendation five: Devise machine learning models that endeavor to explain
and justify the attainment levels of student outcomes and explore the effectiveness of
hybrid models in improving the accuracy of student outcomes predictions.

7. Future Directions

We strongly encourage the research community to conduct further work in the area of
modeling the attainment of student outcomes, which is evidently still in its infancy, espe-
cially at the program level. The accuracy of the existing models ought to be improved and
tested on multiple datasets to judge their validity and generalizability. More efforts should
be dedicated toward understanding the impact of various factors on student performance
and how these factors profoundly drive decision making at the course and program-level
outcomes. In other words, the new efforts should work on developing explanatory predic-
tions rather than models that merely forecast student performance. There is an overarching
need to explain the relationship between possibly significant predictors and the observed
attainment of learning outcomes, i.e., defining causal relationships and explanations that
serve the learning analytics. Moreover, predicting learning outcomes should extend to
other majors, such as humanities. Future work should consider reporting results regarding
the intelligent models and factors that do not forecast student learning outcomes, i.e.,
negative results, besides publishing the positive results.

8. Conclusions

This systematic survey applied the SLR research recommendations to investigate the
prediction of student outcomes, which is considered a proxy for student performance, using
data mining and machine learning models. In particular, we applied the PRISMA protocol
and SLR guidelines to produce the review. The exhaustive search of seven bibliographic
databases yielded a synthesis of 62 primary articles. These articles presented intelligent
models to forecast student performance using learning outcomes. The predictive models
were published in peer-reviewed venues, spanning from 2010 till November 2020. To the
best of our knowledge, this was the first published work that summarized the outstanding
efforts of other researchers who studied the attainment of student outcomes. The prominent
challenges included the prediction of academic performance at the program level and
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student cohorts, the lack of explanatory analytics of the learning outcomes, the validation
of performance prediction models to minimize the inherent underspecification problem of
intelligent models, and the automation of the learning analytics tasks. We call upon the
research community to implement the recommendations concerning (1) the prediction of
program-level outcomes and (2) validation of the predictive models using multiple datasets
from different majors and disciplines.
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