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Abstract: Ballasted railway track is typically constructed using sleepers that are manufactured from
a common material type within a given length of track. Timber and concrete are the two most common
sleeper materials used internationally. Evidence from historical installations of interspersed concrete
sleepers in timber sleeper track in North America has indicated inadequate performance, due largely
to the heterogeneity in stiffnesses among sleepers. Theoretical calculations reveal that interspersed
installation, assuming rigid concrete sleepers and supports, can result in rail seat forces more than
five times as large as the force supported by the adjacent timber sleepers. Recently, engineered
interspersed concrete (EIC) sleepers were developed using an optimized design and additional layers
of resiliency to replace timber sleepers that have reached the end of their service lives while maintain-
ing sleeper-to-sleeper stiffness homogeneity. To confirm that the concrete sleepers can successfully
replicate the stiffness properties of the timber sleepers installed in track, field instrumentation was
installed under revenue-service train operations on a North American commuter rail transit agency
to measure the wheel–rail vertical loads and track displacement. The results indicated that there
are minimal differences in median track displacements between timber (2.26 mm, 0.089 in.) and
EIC sleepers (2.21 mm, 0.087 in). Using wheel-load data and the corresponding track displacements
associated with each wheel load, track modulus values were calculated using the single-point load
method based on beam on elastic foundation (BOEF) fundamentals. The calculated values for the
track modulus indicated similar performances between the two sleeper types, with median values of
12.95 N/mm/mm (1878 lbs./in./in.) and 12.79 N/mm/mm (1855 lbs./in./in.) for timber sleepers
and EIC sleepers, respectively. The field results confirmed the suitability of the new EIC sleeper
design in maintaining a consistent track modulus for the location studied, thus evenly sharing loads
between and among sleepers manufactured from both concrete and timber.

Keywords: track modulus; ballasted track; field measurement; interspersed concrete sleeper; timber
sleeper; concrete sleeper; wheel–rail vertical load

1. Introduction

More than 94% of the world’s railroad track infrastructure is ballasted [1], and 94%
of the North American Class I rail network is ballasted track that is constructed with
timber sleepers [2]. The current best practices for maintaining timber-sleeper track typi-
cally include either in-kind replacement with timber sleepers or out-of-face replacement
with concrete sleepers. Each year, North American railroads undertake in-kind replace-
ment of more than 12 million timber sleepers that have reached the end of their service
lives [3]. The out-of-face replacement of timber sleepers with concrete sleepers is not regu-
larly pursued because of the associated costs [4]. When properly manufactured, concrete
sleepers have an expected lifespan of up to 45 years, several times that of the average
timber sleeper [5]. Longer lifespans reduce the number of sleepers replaced each year, thus
decreasing maintenance costs and delays due to track occupancy for maintenance activities.
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Despite the comparatively limited use of concrete sleepers in North America, they are
often used in the most demanding service conditions for high-speed or heavy axle load
(HAL) applications [6–8]. Additionally, as annual gross tonnages have increased on many
routes that have been constructed with timber sleepers, there is a quantifiable benefit from
the added strength of concrete sleepers. This is due in part to the properties of prestressed
concrete, which is commonly used to withstand the demanding loading environment
imparted by passing trains [9]. Prestressed concrete provides increased flexural strength,
ductility, and resistance to cracking [10].

As timber sleepers in ballasted track are replaced in kind by interspersing, the age and
health of sleepers varies throughout the length of any given track segment. Given the bene-
fits of concrete-sleeper track, the North American rail industry has made several attempts
to intersperse concrete sleepers with timber as an incremental step to improve the strength
of timber-sleeper track and gradually transition to concrete-sleeper track [11]. However,
interspersing concrete with timber leads to spatial variation (heterogeneity) of the track
stiffness, which leads to increases in the maximum rail stress and accelerates the rail fatigue
process, and the rail-seat load applied to a given sleeper, which accelerates the ballast and
substructure deterioration rates, which can lead to decreased track quality index (TQI) and
ride quality [12]. Therefore, any effort to intersperse sleepers of different materials should
consider the stiffness of each component and its effect on the track modulus.

In this study, we quantified the track modulus of engineered interspersed concrete
(EIC) sleepers that were installed in track to replace timber sleepers that had reached the
end of their service lives. These EIC sleepers were designed to replicate timber’s stiffness
via an optimized structural design to reduce bending stiffness and construct an innovative
engineered rail seat plate and pad system. The revenue-service vertical wheel loads and
resulting sleeper vertical displacements were measured and used to determine the track
modulus. The results provided an improved understanding of the ability of EIC sleepers
in timber-sleeper track to provide consistent stiffness to the adjacent timber sleepers,
and thus a consistent track modulus.

2. Background and Theory

Maintaining a consistent track modulus ensures that track performance meets the
standard design and maintenance specifications (e.g., International Union of Railways
(UIC) track performance evaluation criteria), and requires minimal maintenance interven-
tions [13,14]. Fröhling [15] showed that vertical stiffness variations induce differential
track settlements, resulting in accelerated deterioration of the railway track. Ensuring that
sleeper support is consistent can also contribute to improved ride quality, and can minimize
track and vehicle maintenance costs attributed to damage associated with variability in
track stiffness. In this regard, stiffness transition zones are locations where abrupt changes
in the track modulus occur due to a discontinuity in the track structure (e.g., between em-
bankments and bridges or between different track configurations) [16], and a sizeable body
of research has focused on providing a consistent track modulus to improve performance
in these areas [17,18]. For example, Korea Code 14080 (KR C-14080) provides guidance
on the maximum allowable change in the track modulus in a transition zone section [19].
In this guideline, the variance in the track modulus at the transition zone must be within
the allowable range, which is commensurate with the maximum allowable train speed
(Figure 1). This method considers the following factors: vibration acceleration of vehicle
body, wheel load fluctuation, yield stress of rail fatigue, and uplifting force [19]. While the
change in stiffness in typical transition zones is more abrupt and disruptive than sleeper-
to-sleeper variation (approximately 42% between timber and concrete sleepers, and as
much as 73% between regular track and an average bridge deck [20]), the comparison to
interspersed concrete sleepers in timber sleeper track is still applicable.
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Figure 1. The allowable ratio of the track modulus difference depending on train speed [19].

Studies conducted on a Spanish high-speed line (HSL) indicate that maintenance
at transitions to bridges or box culverts can be up to three to six times more frequent
compared to open track [21]. This discontinuity at transitions can cause abnormal vibrations
in both the vehicle and the track, which compromise ride comfort and safety due to the
difference in the track impact factor [22]. Low track-support stiffness can result in the
development of adverse track geometry. Under these conditions, the track structure is
increasingly affected by vehicle loading, leading to loads that exceed the track strength and
accelerate track deterioration [8,23,24]. Building on earlier findings in track transition areas,
we investigated the difference in the track modulus due to the interspersed installation of
EIC and timber sleepers.

To mitigate the negative effects of train operation and maintenance, careful consid-
eration should be given when designing the track with different track materials. Various
methods have been used to gradually change the track modulus (e.g., reinforcement rail,
substructure solidification, reinforced roadbed layer, and changes to the timber-sleeper
length and cross-sectional area) [25]. While the applications are quite different from the
current practice of interspersing concrete and timber sleepers (Figure 2), the objective
is the same—to maintain a consistent track modulus to minimize excessive vehicle and
track loads.
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Figure 2. Installation of timber and engineered interspersed concrete (EIC) sleepers.

Various methodologies for estimating a track’s structural behavior have been de-
veloped and documented. Pasternak’s method applies Winker’s model to consider the
foundation based on the upper and lower spring layers and the shear layer [26]. Timo-
shenko’s foundation model considers the effect of transverse shear deflection resulting
from an error in shear force and moment distribution, which can become significant in
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foundation beams with a small length-to-depth ratio in closely spaced discrete column
loads [27]. A model developed by Kerr [28], which is based on Pasternak’s method and
employs Reissner’s foundation model, has an advantage over other models because in the
upper spring layer, no concentrated reactions or infinite reaction pressure can appear [28].

For this study’s comparative analysis of the effect of inserting EIC sleepers in
continuous-welded rail timber-sleeper track, a beam on elastic foundation (BOEF) model
developed by Kerr [29] was employed. This method, which is well-established in the
international railway community, is known to be reasonably representative, and allows
for determination of the track modulus (i.e., the stiffness of the spring k per unit length of
track) [30].

In this model, a concrete sleeper is represented by a single spring with a constant
κ, while the timber sleepers are represented by a Winkler base with a track modulus k
(Figure 3) [31]. The adjacent wheels are not considered due to their negligible effect on the
overall behavior of the system.
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The corresponding governing equation for this model is:

EIwIV + kw(x) = q0 (1)

where w is the vertical deflection of the rail axis at x; EI is the vertical flexural stiffness
of one rail; k is the track modulus (for one rail), and uniformly distributed load; q0 is the
general solution for w is as shown in Equation (2).

Based on the above model, the corresponding force that the rail exerts on the concrete
sleeper is:

Fc−t = κw(0) = κ
q0

k

(
1−

κ
2EI

4β3 + κ
2EI

)
= κ

q0

k

(
4β3

4β3 + κ
2EI

)
, (2)

whereas the corresponding force that the rail exerts on the timber sleeper is:

Fq0 = q0 × a (3)

Therefore, the effect of the inserted concrete sleeper is:

Fc−t

Fq0

=
κ

ak

(
1

1 + βκ/(2k)

)
(4)
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Based on the previous formulations and the common track property values listed in
Table 1, the corresponding values of Fc−t/Fq0 can be determined for various values of κ
(Table 2 and Figure 4).

Table 1. The values of various parameters for calculating the effect ratio [32].

Rail Modulus of
Elasticity

Moment of
Inertia

Wood Timber
Modulus, k

Sleeper
Spacing Concrete Sleeper Modulus, κ

132RE
210,000 MPa 36,700,000 mm4 20.69 N/mm/mm 508 mm

Variable30,000,000 psi 88.2 in.4 3000 lbs./in./in. 20 in.

Table 2. The calculation result of Fc−t/Fq0 for various values of κ.

κ
1.75 kN/mm
10 kips/in.

17.51 kN/mm
100 kips/in.

43.78 kN/mm
250 kips/in.

87.56 kN/mm
500 kips/in.

175.13 kN/mm
1000 kips/in.

Fc−t/Fq0 0.160 1.204 2.124 2.851 3.440
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The above analysis reveals that when a concrete sleeper replaces a timber sleeper,
the higher stiffness of the concrete sleeper will result in that sleeper supporting propor-
tionally higher rail-seat loads due to the difference in sleeper stiffness. According to this
analysis, when a concrete sleeper is adjacent to a timber sleeper, the concrete sleeper can
receive as much as five times more load than the adjacent timber sleepers (Kerr’s calcu-
lations are as follows: lim

κ→∞

(
Fc−t/Fq0

)
= 2

βa = 5.076). However, Kerr’s analysis assumes

that the concrete sleeper and its supporting structure are rigid. The typical track mod-
ulus value for mainline concrete-sleeper track is 41.38 N/mm/mm (6000 lbs./in./in.),
which is twice as stiff as the typical timber-sleeper track modulus of 20.69 N/mm/mm
(3000 lbs./in./in.) [32]. Considering this, and employing the same analysis methodology
by Kerr, the load supported by the concrete sleeper can be approximately 1.37 times higher
than the load supported by the timber sleepers. Regardless, the concrete sleeper will
accept a greater magnitude vertical load, and will transfer a higher pressure to the ballast.
These higher demands could lead to localized sleeper structural damage, ballast crushing,
and/or substructure damage that would result in an overall poor track condition after the
accumulation of tonnage.
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The EIC sleeper used in this study attempts to reduce the differential stiffness be-
tween sleeper material types through an optimized structural design that reduces bending
stiffness, and an innovative engineered rail seat plate and pad system.

3. Field Experimentation Methods
3.1. Engineered Interspersed Concrete (EIC) Sleeper

The EIC sleeper installed at the commuter-rail field test site (Figure 5a) had a smaller
cross-sectional area, and consequently a smaller flexural rigidity, than the two typical
concrete sleepers used for either heavy axle load (HAL) freight (Figure 5b) or light-rail
transit (Figure 5c) applications in North America. The EIC sleeper featured a ductile
plate and resilient pad positioned in the vertical load path, which reduced the sleeper’s
stiffness. This reduced stiffness was engineered to be comparable to a timber sleeper,
with the goal of preventing the various problems with stiffness heterogeneity that were
mentioned previously.
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3.2. Field Site and Instrumentation

A field test zone was selected in a tangent track in which the timber sleepers had
recently been replaced with EIC sleepers. A visual assessment showed evidence of ballast
fouling in the test zone location, although drainage still appeared to function properly, as
there was no standing water, and appropriate shoulders were still present. This selection of
a single zone limited the variability in data due to substructure differences, while capturing
various installation conditions, including different permutations of interspersed timber
and EIC sleepers (Figure 6). The instrumentation was deployed to quantify both vertical
wheel–rail input loads and vertical track displacements.

Vertical wheel–rail forces were quantified using strain-gauge-based industry-standard
circuits as described by Edwards [33]. The installation of strain gauges on the rail required
the welding of gauges to the rail using a portable strain-gauge welding unit. This process
involved grinding the web and base of the rail to remove rust and expose pure metal,
clamping a ground wire to the base of the rail, and placing the strain gauge and using the
welding electrode to send current through the material, which welded the strain gauge to
the rail. These gauges were subsequently calibrated using a loading frame with calibrated
load cell, allowing strains to be used to quantify vertical wheel–rail loads. During the
calibration, vertical loads of up to 200 kN (45,000 lbf) were applied to the rail while the
voltage from the strain bridge was simultaneously recorded.



Appl. Sci. 2021, 11, 261 7 of 13

Appl. Sci. 2021, 11, x FOR PEER REVIEW 6 of 13 
 

3. Field Experimentation Methods 
3.1. Engineered Interspersed Concrete (EIC) Sleeper 

The EIC sleeper installed at the commuter-rail field test site (Figure 5a) had a smaller 
cross-sectional area, and consequently a smaller flexural rigidity, than the two typical 
concrete sleepers used for either heavy axle load (HAL) freight (Figure 5b) or light-rail 
transit (Figure 5c) applications in North America. The EIC sleeper featured a ductile plate 
and resilient pad positioned in the vertical load path, which reduced the sleeper’s 
stiffness. This reduced stiffness was engineered to be comparable to a timber sleeper, with 
the goal of preventing the various problems with stiffness heterogeneity that were 
mentioned previously. 

 
(a) 

 
(b) 

 
(c) 

Figure 5. A comparison of (a) an EIC sleeper; (b) a typical North American freight HAL concrete 
sleeper; (c) a typical North American light rail transit concrete sleeper. 

3.2. Field Site and Instrumentation 
A field test zone was selected in a tangent track in which the timber sleepers had 

recently been replaced with EIC sleepers. A visual assessment showed evidence of ballast 
fouling in the test zone location, although drainage still appeared to function properly, as 
there was no standing water, and appropriate shoulders were still present. This selection 
of a single zone limited the variability in data due to substructure differences, while 
capturing various installation conditions, including different permutations of 
interspersed timber and EIC sleepers (Figure 6). The instrumentation was deployed to 
quantify both vertical wheel–rail input loads and vertical track displacements. 

 
Figure 6. The test zone, with the timber and EIC sleepers shown with the instrumentation layout. 

Vertical wheel–rail forces were quantified using strain-gauge-based industry-
standard circuits as described by Edwards [33]. The installation of strain gauges on the 
rail required the welding of gauges to the rail using a portable strain-gauge welding unit. 

Figure 6. The test zone, with the timber and EIC sleepers shown with the instrumentation layout.

Vertical track displacements were measured to quantify the track modulus on both EIC
sleepers and timber sleepers. Displacement transducers, which are linear potentiometers
(Figure 7), were used to measure the track displacement at the rail base relative to the
ground. This was accomplished by driving support rods 40 mm (5/8 in.) in diameter to
refusal in the field-side crib between the sleepers. The potentiometers had a maximum
stroke length of 25 mm (1 in.), and were accurate to ±0.002 mm (7.9 ×10−5 in.). The cali-
bration factors were provided by the manufacturer and further checked before installation
using a calibration height gauge.
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All data were recorded using a National Instruments (NI) Compact Data Acquisition
System (cDAQ) via a LabVIEW virtual instrument (VI) developed for the instrumentation
used in this experiment. The data were collected at a sampling rate of 2.5 kHz to ensure
the maximum wheel–rail load was captured.

3.3. Single-Point Load Method for Track Modulus Calculation

The track modulus values were calculated using the single-point load method, which
was developed and documented by Selig and Waters [34]. This method requires knowledge
of the rail’s sectional properties, the wheel load, and the track deflection. Using these inputs,
and based on the BOEF fundamentals, the track modulus was computed. The equation
used to calculate track modulus is shown below:

k =

(
P

wm

)4/3

(64EI)1/3 (5)
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where k is the track modulus (kN/mm, lb./in./in.); wm is the maximum track deflec-
tion (mm, in); P is the wheel load (kN, lb.); E is the modulus of elasticity of steel (MPa,
psi) = 210, 000 MPa, 30× 106 psi; I is the moment of inertia of rail (mm4, in4) = 36,700,000 mm4,
88.2 in4 (132RE Rail); EI is the flexural rigidity of the rail.

Other methods to calculate the track modulus require additional knowledge of the
entire deflection basin and its area, which is more complicated to quantify analytically.
For this study, the single-point load method was deemed appropriate. This study required a
deviation from the traditional single-point load method for determining the track modulus
because of the interaction between the wheels applying loads adjacent to the point in
which the peaks were extracted, so there was no true single point that applied the load.
For the rolling stock used, this interaction effect of the adjacent wheels was negligible
(approximately 0.8% based on the BOEF analysis). Additionally, the interaction influenced
both the EIC sleepers and timber sleepers in the same manner, which mitigated its potential
negative impact on the results, which were largely comparative in nature.

For the single-point load method, there is typically no adjustment for potential slack
in the system due to gaps beneath the sleepers. While this could lead to errors based
on visual deflection observations that appeared to indicate gaps were present, the large
number of sleepers for which data were collected (23 total) increased our confidence in the
data, and quantified the representative behavior of each sleeper type while mitigating the
presence of gaps below any given crosstie.

4. Results and Discussion

The data were collected from a total of 10 revenue-service train passes at approximately
64 km/h (40 mph). The trains included a combined 12 locomotives and 116 passenger
coaches, totaling 512 axle passes. A total of 23 rail-base displacement channels were
recorded (the sensor placed on sleeper 11 malfunctioned), and the corresponding data
(11,236 data points) were used to generate the figures below. The data were found to have
high signal-to-noise ratios and were considered clean (Figure 8). As expected, the peaks
in the two data streams were generated when a wheel was directly above each sleeper
(in the case of displacements) and in the center of the crib (in the case of the wheel-load
bridge). The peaks from the load and displacement channels were extracted from the data
primarily through manual peak selection, with some assistance provided using developed
MATLAB algorithms.
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Wheel Load and Displacement Comparison Results

The distribution of wheel loads measured at the field site for both passenger coaches
and locomotives matched the expected loads based on the nominal static load ratings that
were acquired previously (Figure 9).
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Figure 9. The distribution of the wheel loads measured at site.

The data showed a minimal difference in track displacements between the two sleeper
types (Figure 10) independent of load source (passenger coach or locomotive). The ob-
served median displacement values under the passenger coaches were 2.26 mm (0.089 in.)
and 2.21 mm (0.087 in.) for timber and EIC sleepers, respectively. The observed median dis-
placement values under the locomotives were 2.70 mm (0.1062 in.) and 2.74 mm (0.1078 in.)
for timber and EIC sleepers, respectively. The locomotive data were also useful because
they provided a proxy for the expected behavior of these sleeper types under loaded HAL
freight-train loads.
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Figure 10. Comparison of the track displacement between the timber and EIC sleepers.

The field results (Figure 11) showed that the sleepers’ positional variability exceeded
that of the observed variability between sleeper types. For example, the displacement
results of the first ten sleepers ranged from 1.22 mm (0.048 in.) to 3.02 mm (0.119 in.).
Within this range, both the minimum and maximum peak values were recorded for timber
sleepers. The highest median values were measured in sleepers 21 to 24, ranging from
3.81 mm (0.150 in.) to 4.32 mm (0.170 in.), and included both sleeper types. When we
compared sleeper-displacement results alone, it was difficult to distinguish variability
between timber and EIC sleepers, a finding that was also documented in prior research [9].

Using both the loading data and the corresponding track displacements, the track-
modulus values for all axles were determined using the single-point load method (Figure 12).
As discussed in Section 3, any potential contribution for slack in the system was miti-
gated by capturing many replicate sleepers (23 in total). The timber-sleeper and EIC-
sleeper median track-modulus values were 12.95 N/mm/mm (1878 lbs./in./in.) and
12.79 N/mm/mm (1855 lbs./in./in.), respectively. The five-sleeper moving-average track
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modulus result showed a minimal difference in track response to load when the rail was
supported by either a timber sleeper or an EIC sleeper (Figure 13). The calculated results are
not independent measurements; they are dependent on the specific site conditions and in-
terspersed arrangement, so the modulus of the EIC sleepers was dependent on the adjacent
sleepers, and vice versa. Nevertheless, the obtained results indicated that the EIC sleepers
provided a similar stiffness response to the timber sleepers in this interspersed installation.
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5. Conclusions

This study assessed a section of track with interspersed timber sleepers and EIC
sleepers that were designed to replicate timber-sleeper stiffness, and provided an analyt-
ical evaluation of the expected stiffness variation between traditional concrete sleepers,
which can lead to an accelerated deterioration of the railway track and its components.
Based on Kerr’s structural-analysis method, the conducted theoretical analysis demon-
strated that the expected variation in the track-modulus value between sleeper types caused
a difference in the load-support distribution. A field investigation was used to evaluate
the performance of an interspersed sleeper structure composed of EIC and timber sleepers.
Based on this background, the field experimentation results, and the evaluation of each
rail-seat performance, the findings and conclusions were:

• The theoretical analysis showed that interspersed standard concrete sleepers placed
within a timber-sleeper track can experience a load up to five times greater than the
load supported by the adjacent timber sleepers.

• Based on measurements of sleeper displacement, both timber sleepers and EIC sleepers
presented a similar track response. For timber sleepers, the median displacement
value was 2.26 mm (0.089 in.), and for EIC sleepers, it was 2.21 mm (0.087 in.).

• The track-displacement results from the field instrumentation ranged from 1.22 mm
(0.048 in.) to 4.32 mm (0.170 in.) for all timber sleepers.

• The track-modulus results indicated a median modulus of 12.95 N/mm/mm
(1878 lbs./in./in.) for the timber sleepers, and 12.79 N/mm/mm (1855 lbs./in./in.)
for the EIC sleepers.

• The variance in performance for the two sleeper types cannot be clearly distinguished
with track-displacement or modulus results, which provides a favorable indication for
future field performance.

Based on the results, the desired performance of the EIC sleepers in maintaining
consistent track modulus was demonstrated for this application and set of track conditions.
This homogeneity in modulus is crucial to ensure a smooth ride quality and minimize
track maintenance due to geometry deviations. The principal design characteristics that
contributed to the EIC sleeper’s performance were the reduced cross-sectional area and
resulting reduction in flexural rigidity, and the resilient rail-seat plate system, with the latter
providing most of the stiffness reduction. This study showed that properly engineered
concrete sleepers can be interspersed in timber-sleeper track to achieve a similar track
response. Nevertheless, the exact results for the track modulus obtained in this study are
not entirely independent, and should not be extrapolated to other applications/locations
without further study. Future work should include field experimentation in locations with
a higher overall track modulus and different arrangements of the sleeper installation.
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