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Abstract: The main objective of the current work is to determine meshless methods using the ra-
dial basis function (RBF) approach to estimate the elastic strain field from energy-resolved neutron
imaging. To this end, we first discretize the longitudinal ray transformation with RBF methods
to give us an unconstrained optimization problem. This discretization is then transformed into a
constrained optimization problem by adding equilibrium conditions to ensure uniqueness. The
efficiency and accuracy of this approach are investigated for the situation of 2D plane stress. In addi-
tion, comparisons are made between the results obtained with RBF collocation, finite-element (FEM)
and analytical solution methods for test problems. The method is then applied to experimentally
measured continuous and discontinuous strain fields using steel samples for an offset ring-and-plug
and crushed ring, respectively.

Keywords: energy-resolved neutron imaging; radial basis function; meshless method; finite-element
methods; strain tomography; time-of-flight

1. Introduction

Consider a solid material sample composed of similar crystals with a uniform dis-
tribution of directions. There are three times as many crystallographic planes in each
crystal as there are Miller indices. The sample if subject to a narrow neutron beam with
a known distribution of kinetic energy. The neutrons behave as waves with the energy
inversely proportional to the wavelength, and this wavelength is a similar magnitude to the
crystallographic planes [1,2]. Parallel crystallographic planes with d separation scatter an
incident wave if the wavelength is a multiple of 2d sin θ. If we detect only the transmitted
neutrons, the scattered neutrons will be lost. If we look the number of transmitted neutrons
as a function of wavelength, then at the wavelength 2d the transmission leaps dramatically.
This jump is labelled as the Bragg edges. If the material is subjected to a ε linear elastic
strain, the separation between planes with a normal n vector is in proportion to the strain
component n · ε · n. For more information and additional sources, see [3–5]. If the strain
were consistent along the neutron path, the Bragg edge would be shifted. Within ideal
conditions, a linear wavelength function multiplied by the unit step function can model
the Bragg edges. Abbey et al. [6] had previously explored whether strain could be recon-
structed from the average of each ray shifts of a Bragg edge. Lionheart and Withers [7]
noted that the transverse ray transformation is feasible for X-ray strain measurements.

Given the longitudinal ray transformation (LRT) data plane by plane, an attempt could
be made to recover the strain from the ray measurements in that plane using appropriate
additional a priori information [8]. The Lamé system could be represented by finite-element
or finite difference methods provided that the Lamé coefficients are known. A linear system
could be developed, and the least square solution determined together with a discretization
of the LRT and prior knowledge. This method has been adopted by Gregg et al. [5] for
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axisymmetric objects, Wensrich et al. [9] for synthetic data, and Henriks et al. [10] for a
generic case experimentally.

We consider here the measurement of the Bragg edges based on the calculation of
the propagation spectrum using flight time or energy-resolved technologies. We note that
other approaches exist [3,11–13]. The major contribution of neutron transmission strain
tomography is the optimal use of the incident beam flux to reduce the data collection
time. Recent developments in detector technology allow the acquisition of high-resolution
strain images with Bragg neutron transmission [14]. The sample is placed on a rotating
plate between the source and a micro-channel plate detector (MCP) [15,16]. This detector is
pixelated with a spatial resolution of up to 512× 512 pixels of up to 55 µm. This imaging
raises the possibility of strain tomography, and efforts have been made over the past
few years to solve the resulting tensor reconstruction challenge—special cases such as
axial symmetry revolved around reconstruction techniques [5,17]. A well-known fact
about this inverse problems is that it is not well-posed. Therefore it is not possible to
reconstruct the strain without the inclusion of additional conditions or without easing
assumptions [10]. The question of how to better execute these additional criteria was
discussed and various approaches were used in the literature [5,9]. Recently, reconstruction
has been accomplished by incorporating either equilibrium or compatibility conditions.
The main distinction between these approaches is the set of basis functions representing
the strain field [6,10].

Recently, considerable attention has been given in the science and engineering com-
munity to the concept of using meshfree methods as a modern tool for numerical solution
for partial differential equations. As stated in [18,19], the growing interest in these methods
is due partly to their high versatility, particularly in the case of high-dimensional problems.
Conventional grid-based approaches such as finite difference (FDM) [20] and finite-element
(FEM) [21] methods have inherent problems, namely a mesh generation requirement. Mesh
generation is not a simple job, particularly for domains with irregular and complex geome-
tries requiring additional mathematical transformations that can be as costly as solving
the problem. Meshfree avoid this problem since the conventional definition of the concept
does not include the meshing procedure. This makes it easy to understand the behavior
of complex solids, structures and stress and strain fields arbitrarily distributed in the
domain without any constraints. Moreover, we do not need to consider the connectivity
between the nodes while applying the meshfree process. For a survey of various meshless
approaches and underlying findings, we refer the reader to [22–25].

The paper describes a meshless process by which the elastic strain of a series of
Bragg-edge strain measurements can be reconstructed tomographically. Because of the
attractive properties of radial basis functions (RBF), the approach has some advantages
over previous approaches. Especially its ability to represent extremely spatially varying
functions accurately. The proposed algorithm is evaluated on a two-dimensional simulated
beam data for which a thorough comparison of the FEM and RBF methods is shown. It is
shown to be able to reconstruct a tensor field, after [26,27] imposed equilibrium conditions.
The framework is then extended to real experiment measurements for the steel geometry
of an offset ring-and-plug and a crushed ring.

The paper has the following structure: Section 2 discusses strain measurement through
the Longitudinal Ray Transformation. Section 3 offers an overview and algorithm of the
meshless method for strain field reconstruction and presents the proposed algorithm struc-
ture and the finite-element approach. Section 4 addresses the validation of the algorithm
using a cantilevered beam and the key difference between the FEM and the solution being
suggested. Finally, the experimental findings with the ring-and-plug and crushed ring steel
samples are addressed in Section 5. Section 6 summarizes the work in this paper and lists
the work to be done in the future.
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2. Strain Measurement

Here we discuss the recent experimental method that provides information on the
average strain component for the set of incident neutron beam [11]. This approach can
have a significant influence in several experimental fields in mechanics. Bragg-edge strain
tomography guarantees a unique structured approach for the study of materials with
residual stress field over practical scales. The Bragg edges, as mentioned above, are
generated by backscattering radiation. As a result, relative shifts in their position calculate
the average normal strain of the sample towards the ray [28]. This challenge revolves
around the LRT inversion, which represents an effective measurement process model.
Although this is a three-dimensional problem in general, for convenience, this article
takes only two dimensions into account. The average strain within the body measured by
Bragg-edge neutron transmission is often idealized as a longitudinal line integral, namely
LRT, which captures the average strain component along the line towards the normal unit
direction n = (n1, n2)

T . Γε is a form of ray transform specifically known as LRT. Hence,
LRT shown in Figure 1 with reference to the coordinate system and geometry is defined as

Γε(x, y, ϑ) =
1
L

[
2

∑
i=1

2

∑
j=1

∫ L

0
ni εij(x(s, a), y(s, a)) nj ds

]
, (1)

where εij is the (i, j)th component of tensor strain field ε ∈ R2×2, which is mapped to
an average normal component of a strain in the direction of n̂. A ray projection enters
the sample at the location xa = (x(s, a), y(s, a)), where s is the ray propagation distance
coordinate and L is the length of the ray within the sample at the particular angle. Every
pixel of a strain image measures the average normal strain in the ray direction through the
thickness of the domain, say Γε. It is based on the overall change of the gauge distance
within that ray [6,7]. Measurements are taken in each orientation, ϑi, where the profile is
calculated in the form Γε(x, y, ϑi).

Figure 1. Coordinate system and geometry of Longitudinal Ray transform with the node set.

3. Meshless Approach Overview

One of the most common techniques among meshfree methods is the Radial Basis
Functions (RBF). The formal definition of a radial function is given below.

Definition 1. A function Φ : Rd × Rd → R is called radial provided there exists a univariate
function ψ : [0, ∞]→ R such that Φ(x− y) = ψ(r), where r = ||x− y||, where we choose || · ||
to be the Euclidean norm on Rd.



Appl. Sci. 2021, 11, 391 4 of 16

The proposed approach is similar to the three-layer feed-forward RBF neural
network [29,30]. The first layer is the network inputs, the second a hidden layer con-
sisting of a collection of nonlinear RBF activation units, and the third corresponds to the
final network output. In Radial Basis Function Networks (RBFN), activation functions are
usually implemented as Gaussian functions. An overview of RBFN structure is shown in
Figure 2. To illustrate how the RBFN works, assume that we have a set of D data with N
patterns of (xp, yp) in which xp is the input of the set of data and yp is the actual output.
The ith activation function in the hidden network layer can be determined from the gap
between input pattern x and centers i based on Equation (2)

φi(||x− ci||) = exp

(
− ||x− ci||2

r2
i

)
, (2)

Figure 2. Radial basis function model network architecture.

Here, || · || is the Euclidean norm, ci and ri are the center and width of the hidden
neuron i, respectively. Then the contribution of the k node from the network output layer
can be computed with Equation (3)

yk =
n

∑
i=1

wik φi(x). (3)

3.1. Methodology

The addition of polynomials to the radial basis functions will ensure consistency and
guarantees the approximation properties of the scheme. However, it complicates the system
of equations making them difficult to enforce and contribute extra to computational cost
and time. In the proposed method, 2× 2 symmetric strain tensor field ε(x) is composed of
two parts: radial basis functions Ri(x) and polynomial basis functions Pj(x) [25,31]. Hence,
the local approximation is given by

ε lk(x) =
n

∑
i=1

ai Ri(x) +
m

∑
j=1

bj Pj(x), l, k = {1, 2}, (4)

where m is the number of polynomial terms and n is the number of nodes in the local
support domain Ω. Unknown vectors to be calculated are a and b. The addition of
polynomial terms is an additional prerequisite. The following conditions are generally
imposed to ensure a unique approximation [32]

n

∑
i=1

Pj(xi) bi = 0, j = 1, 2, ..., m, (5)
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where m is a number of augmented multivariate polynomial basis functions, see Table A1.
We assume Pj(x) = 1 + x + y + xy + x2 + y2 and Ri(x) = exp(−α2||x− ci||2) where α is
the shaping parameter. Hence, above Equation (4) is expressed in the matrix form

U = Ra + Pb, (6)

where U is the vector of function values: U = [ε1
lk, ε2

lk, · · · , εn
lk]

T , R is the matrix of RBFs, P
is the matrix of polynomial basis function and a, b are the values of unknown coefficients
(Radial and polynomial respectively). We note that to obtain the unique solution of
Equation (4), the constraint condition (5) should be combined with Equation (6) as follows

U1 =

[
U
0

]
=

[
R P

PT 0

][
a
b

]
= Fa0, (7)

The unknown vector in Equation (7) is obtained by the inversion of the matrix F =[
R P

PT 0

]
.

3.1.1. Weak Form for Longitudinal Ray Transform Integral

Let us consider a two-dimension strain reconstruction problem in domain Ω whose
strong form is given by Equation (1) and generalized weak form is obtained as

Γε =
1
L

∫ L

0
n2

1 ε11 + 2n1 n2 ε12 + n2
2 ε22 ds, (8)

Enforcing (8) to pass through all node values in the domain Ω, the following equations
are obtained

C U = Γ, (9)

where C is the coefficient matrix; U is the vector of unknowns and Γ is the vector of integral
values. Now, rewriting (4) in a matrix form to find weights[

(A)N×N (P)N×3
(PT)3×N (0)3×3

][
(U1)N×1
(U2)3×1

]
=

[
(ε11(xi, yi))N×1

(0)3×1

]
,

[
(A)N×N (P)N×3
(PT)3×N (0)3×3

][
(V1)N×1
(V2)3×1

]
=

[
(ε12(xi, yi))N×1

(0)3×1

]
,[

(A)N×N (P)N×3
(PT)3×N (0)3×3

][
(W1)N×1
(W2)3×1

]
=

[
(ε22(xi, yi))N×1

(0)3×1

]
, (10)

where N is the total number of nodes in the domain Ω,

A =


φ(||x1, x1||) φ(||x1, x2||) · · · φ(||x1, xN ||)
φ(||x2, x1||) φ(||x2, x2||) · · · φ(||x2, xN ||)

...
...

...
φ(||xN , x1||) φ(||xn, x2||) · · · φ(||xn, xN ||)

, (11)

(ε lk(xi, yi))N×1 = (ε lk(x1, y1), ε lk(x2, y2), ..., ε lk(xN , yN))
T , l, k = 1, 2, (12)

and

P =


1 x1 y1 · · · Pm(x1, y1)
1 x2 y2 · · · Pm(x2, y2)
...

...
...

1 xN yN · · · Pm(xN , yN)

. (13)



Appl. Sci. 2021, 11, 391 6 of 16

Hence, [
(U1)N×1
(U2)3×1

]
=

[
(A)N×N (P)N×3
(PT)3×N (0)3×3

]−1[
(ε11(xi, yi))N×1

(0)3×1

]
(14)

[
(V1)N×1
(V2)3×1

]
=

[
(A)N×N (P)N×3
(PT)3×N (0)3×3

]−1[
(ε12(xi, yi))N×1

(0)3×1

]
(15)

[
(W1)N×1
(W2)3×1

]
=

[
(A)N×N (P)N×3
(PT)3×N (0)3×3

]−1[
(ε22(xi, yi))N×1

(0)3×1

]
(16)

and
U = [(U1)N×1, (U2)3×1, (V1)N×1, (V2)3×1, (W1)N×1, (W2)3×1]

T (17)

Now, using Equations (14)–(17) in the previous system (9), we get

B ε = Γ, (18)

which lead to an optimization problem as follows

min ‖B ε− Γ‖2. (19)

To ensure uniqueness, equilibrium equations are imposed as follows:

x

Ω

(
∂

∂x
(ε11 + νε22) +

∂

∂y
(1− ν)ε12

)
Ri(x) = 0, i = 1, 2, ..., n, (20)

x

Ω

(
∂

∂y
(ε22 + νε11) +

∂

∂x
(1− ν)ε12

)
Ri(x) = 0, i = 1, 2, ..., n, (21)

This will give us another system of equations

Cε = 0. (22)

The least square algorithm, described in [33], is well suited to this task. In general,
least square computes a solution ε to problems of the following form

min
Cε=0
‖Bε− Γ‖2, (23)

which is solved using least square optimization intrinsic function “lsqlin” in MATLAB.

3.1.2. Shape Parameter

For the precise implementation of the framework, the shape parameter evaluation
is important [34]. Therefore, careful attention should be given for determining shape
parameter value. Detailed discussions regarding values for the shape parameter can
be found in Fasshauer [35], Franke [36], and Hardy [37]. Most formulations for shape
parameters depend on the distance, d, and node numbers, N. Other formulations display a
changing shape parameter depending on the location of the node. In general, the shape
parameter depends upon several variables such as the data point distribution, the basis
function, and a computer precision (see [38]). The effect of the RBF Gaussian shaping
parameter α mentioned above is shown in Figure 3.

3.1.3. Algorithm

Here, we discuss the difference between two methods; namely FEM and RBF. Detailed
pseudo-code algorithm is given below Algorithms 1 and 2 for both the methods, respectively.
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Algorithm 1: Pseudo-Code for the FEM algorithm
Result: Reconstructed tensor strain field (R∗)
Initialization: Number of nodes (NoD) and elements (elem)
(Triangular/Quadrilateral), Smoothing parameter (λ) for Tikhonov
regularization, Number of projections per direction (NoR);

Data: Generate nodal and element data set in the domain Ω and projections
passing through sample from different orientations (9 projection in each
orientation from 0 to 180◦);

for i = 1 : NoR do
Find intersection with the sample geometry and each element discretization
(entry and exit points in each Quadrilateral/Triangle);

for j = 1 : elem do
[Γ]← Solve LRT for each projection in an element;
[S][ε] = [Γ]← Assemble all the matrices for each element (Note: at least
one node will always be shared between elements neighborhood);
[Eq] = [Eq1; Eq2]← use equilibrium equations and assemble;
R← lsqlin (S, Γ, [ ], [ ], Eq, zeros(), [ ], [ ])← Solve linear optimization;
RS← Find FEM stiffness matrix;
Rsti f ← [RS, zeros, zeros; zeros, RS, zeros; zeros, zeros, RS];
R∗ ← lsqlin ([S; λ ∗ Rsti f ], [Γ; zeros], [], [], Eq, zeros, [], [])← Solve linear
optimization again with Tikhonov Regularization for smoothing effects.

end
end

Algorithm 2: Pseudo-Code for the proposed RBF algorithm
Result: Reconstructed tensor strain field (R)
Initialization: Number of nodes(NoD) (random/uniform), Shaping parameter
(α), Number of projections per direction (NoR);

Data: Generate nodal data set on the boundary and in the inner domain of Ω and
projections passing through sample from different orientations (9 projection in
each orientation from 0 to 180◦);

for i = 1 : NoR do
Find intersection with the sample geometry (entry and exit points);
for j = 1 : NoD do

[Γ]← Solve LRT for each projection;
[S][ε] = [Γ]← Assemble all the matrices;
[Eq] = [Eq1; Eq2]← Solve equilibrium equations and assemble;
R← lsqlin (S, Γ, [ ], [ ], Eq, zeros(), [ ], [ ])← use linear optimization solver

end
end

Figure 3. Effect of Shaping Parameter for α =1, 5 10, and 40, respectively.

The complicated meshing rules are not required while performing RBF, and here lies
the advantage of the proposed method over the framework of finite elements. The use
of meshless methods over the finite-element approach for reconstruction tensor strain
field [39–41] has many other benefits. We can quickly increase the support domain, change
basis functions, adopt nodal densities, and many more. Those characteristics can be useful
in the case of irregularities like sharp discontinuations or other situations in complex
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simulations. In the next section, we talk about this difference between methods with a
simulated example.

4. Cantilevered Beam

Here we illustrate the practical performance of the proposed algorithm, starting
with the well-known two-dimensional cantilevered beam problem that was previously
successfully determined by other authors [9]. In this case, we take the [0, 20]× [−5, 5] a
two-dimensional strain domain into account with a 2 kN load over the beam. The beam’s
material properties reflect common steel, while other parameters are listed below.

The data consist of 9 projections evenly spaced in [0, 170]◦ with 200 lines each, yielding
a total of 1800 measurements. Figure 4 shows two types of nodal mesh (uniform and
non-uniform) used for beam strain field reconstruction using RBF. Both nodal mesh consist
of 400 nodes including boundary points. Figure 5 shows the reconstruction of strain field
using RBF, whereas Figure 6 shows the analytical solution of the cantilevered beam. The
plane stress Saint-Venant approximation to the strain field is [42]:

εxx =
P(L− x)y

EI
, εxy = − (1 + ν)P

2EI

(h2

y
− y2

)
, εyy = −νP(L− x)y

EI
,

where I represents the second moment of area, L the beam length, h the beam height, t is
the thickness, E is Young’s modulus, ν is the Poisson ratio, and the dimensions are shown
in Table A2.

Figure 4. Uniform node set containing N = 400 versus non-uniform nodal domain containing N = 400 randomly
spaced nodes.

Figure 5. RBF Beam solution (Reconstructed solution εxx, εxy, εyy).

Figure 6. Beam solution (True solution εxx, εxy, εyy).
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Error Analysis through Simulation Results for RBF Methods

A L2 error analysis of strain field associated with both FEM and RBF methods is shown
in Figure 7. Started with 9 projections evenly spaced in [0, 170]◦ with 10 lines each and
ended with 700 lines each 9 projections. Both RBF case results shows better agreement than
FEM in the final stage. However, faster convergence is seen in the case of uniform RBF.
Figure 8 shows the RMS error between the reconstructed and analytical strain field as we
change Gaussian function shaping parameter value.

Figure 7. L2 error.

Figure 8. Rms error.

The numerical rms error with different shaping parameter values are calculated using
the root-mean-square error and shown in Figure 8

Error =

√
∑N

i=1(Ti − Ri)
2

N
,

where N is the total number of nodes, Ti is the true strain value and Ri is the reconstructed
strain value at the particular node i. We found out the proposed reconstruction algorithm
extremely useful for the reconstruction of the strain field. The simulation results imply
that the reconstruction algorithm will converge to an appropriate reconstruction provided
measurements over 180◦ of a sample are calculated. Discretization problems and numer-
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ical errors will undoubtedly lead to noisy reconstruction. As the number of projections
increased, rapid convergence to the analytic solution was observed. The constrained opti-
mization problem (23) can be solved using a variety of approaches. Our algorithm uses the
“lsqlin” inbuild function in MATLAB. This convergence gives us confidence that in the face
of real experimental uncertainties, the algorithm will converge to an analytic solution.

5. Experimental Demonstration

The RBF approximation methods presented above have been tested on synthetic and
real data sets. We are now testing the algorithm on the experimental data previously stud-
ied for the offset ring-and-plug, and the crushed ring sample [26]. The crushed ring sample
was 14 mm thick with 23 mm outer diameter and, 10 mm inner diameter. To test the algo-
rithm for continuous and discontinuous stress fields, specific samples were selected. The
ring-and-plug sample is designed to test the discontinuous strain field and the crushed ring
for continuous strain field testing. The offset ring-and-plug sample geometry is shown in
Figure 9, and the crushed ring is shown on the left side of Figure 10. The sample described
included a total interference of 40± 2µm generated by cylindrical grinding. Although the
plastic deformation of the crushed ring sample by 1.5 mm on the diameter was achieved
using 8.4 kN rigid steel plates. A brief description of the model and experimental settings
is provided below and can be found in [26]. Two EN26 steel bars have been heated to
relieve stress and provide a uniform structure before assembly. The final test hardness of
the sample was 290 HV for both models. The strain profile was calculated on RADEN along
with an MCP detector (512× 512 pixels, 55 µm per pixel) at 17.9 m from the beam source of
power 409 kW (January 2018). In the Japan Proton Accelerator Research Complex J-PARC,
Japan, the neutron-energy-resolved imaging instrument was used to obtain the relative
shifts of the Bragg edges corresponding to the lattice plane of the samples. Neutron strain
scanning was performed on KOWARI, a residual stress diffractometer at the Australian Nu-
clear Society and Technology Organization (ANSTO), Australia, to verify our reconstruction
independently. This strain-scan provide measurements of the three in-plane components
of strain over a mesh of points within the sample using a 0.5× 0.5× 14 mm gauge volume.
Sampling times on KOWARI were based on the providing of strain uncertainty around
7× 10−5, which required about 30 h of beam time per component. The RADEN sampling
times, however, were based on the 1× 10−4 statistical uncertainty. A total of 50 profiles
were measured at golden angle increments in the angle with a sampling time of two hours
per projection.

A two-dimensional scattered data point net is used to discretize the domain of the sam-
ple, as shown in Figure 9. Two different types of node discretization have been considered:
uniform and non-uniform (random). Nodal set can be seen in Figure 11 and reconstructed
strain fields can be seen with each discretization in Figures 12 and 13 respectively. As
stated earlier, for the simulated problem, the reconstructed strain field did contain noise
which can be from either experimental measurement or numerical discretizations.

Figure 9. Offset-Ring-and-Plug sample geometry.
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Figure 10. Crushed Ring Sample. The figure on the left shows the sample geometry for crushed ring steel sample before
and after applying force (all dimensions are in mm). The figure on the right shows a node set containing N = non-uniform
spaced nodes on the crushed ring sample.

Figure 11. Offset-Ring-and-Plug Sample. The figure on the left shows a uniform data points set containing N = 260. The
figure on the right shows a scattered data points set containing N = 261 non-uniform spaced nodes on the sample geometry.

Figure 12. The reconstructed full-field two-dimensional strain components (εxx, εxy, and εyy) with non-uniform node distribution.
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Figure 13. The reconstructed full-field two-dimensional strain components (εxx, εxy, and εyy) with uniform node distribution.

To summarize, we proposed a meshless approach using RBF. They are the natural
generalization in a multivariate sense of univariate polynomial splines. It works well for
high-dimensional arbitrary structures, and no mesh requirement is the main benefit of this
form of approximation. A RBF is a function, the value of which depends only on the distance
between the points. Due to the use of distance functions, one can conveniently deploy RBFs
to recreate the surface using data points in 2D, 3D or higher-dimensional spaces.

The Least square solution was found for 3790 nodes for the non-uniform and 3795 nodes
for uniform ring-and-plug discretization from 22,678 projections. Figures 12 and 13 shows
the reconstructed field of ring-and-plug with uniform and non-uniform node distribution
respectively in terms of three Cartesian strain components namely; εxx, εxy and εyy. The re-
constructed strain field was found for 1352 nodes and 1086 quadrilateral elements via FEM

approach and 1352 nodes for crushed ring discretization via RBF approach from 20,664 pro-
jections. Figures 14 and 15 shows the reconstructed strain field of crushed ring with FEM

and RBF respectively in terms of three Cartesian strain components. Figures 16 and 17
show the corresponding validated strain field from KOWARI data. The effectiveness of the
suggested approach is not based solely on sample structures and can, thus, be extended
to three-dimensional sample bodies. Due to radial basis function computation, the real
challenge is the computational cost and time since the size of the problem is quite large.

Figure 14. The reconstructed full-field two-dimensional strain components (εxx, εxy, and εyy) with FEM.
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Figure 15. The reconstructed full-field two-dimensional strain components (εxx, εxy, and εyy) with RBF.

Figure 16. Two-dimensional strain components εxx, εxy, εyy respectively with KOWARI Data.

Figure 17. Two-dimensional strain components εxx, εxy, εyy respectively with KOWARI Data.

6. Conclusions

From Bragg-edge neutron images, an elastic strain tensor field reconstruction al-
gorithm has been presented. Unlike previous algorithms such as FEM, our suggested
methodology is capable of reconstructing residual strain field as no elastic strain com-
patibility is assumed. Simulated and experimental data from KOWARI and RADEN have
shown this process. The analysis revealed a strong agreement with the strain maps mea-
sured using the constant diffractometer Kowari. A complete strain field tomography can
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now be achieved using physical constraints as an equilibrium without thinking about
two-dimensional mesh. This approach opens up more study, including three dimensions,
for future studies. The framework taken allows us to concentrate on the highly stressed
region of the sample using adaptive node discretization, which can be accomplished by
calculating the gradient over the sample.
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Appendix A

The LRT measurements for Bragg-edge neutron transmission with respect the sample
geometry and coordinate system Figure 1 is shown below:

Γε =
1
L

∫ L

0
ni εij(xa + s n) nj ds, (A1)

where xa = (xa, ya) is the entry points of the ray to the sample.

Γε = d f rac1L

[ ∫ L

0
n2

1 ε11(xa + s n) ds +
∫ L

0
2 n1 n2 ε12(xa + s n) ds +

∫ L

0
n2

2 ε22(xa + s n) ds

]
(A2)

Now, substituting radial basis function expression for ε11, ε12, and ε22 determined
previously in Equation (4) in terms of linear combination of Ri and Pj we get a closed
form of line integral as: assuming, Ri as the Gaussian function and Pj as the second order
polynomial written as

Ri = exp(−α2||x− ci||2); α = shaping parameter

Pj = 1 + x + y + x2 + y2 + x y

Hence,
1
L

∫ L

0
εij(xa + s n)ds =

Dij + Eij + Fij

3
−

πφij ψij

3Aij
, (A3)

where

Aij = L a
√

n2
i + n2

j , bij =
a2

n1
i + n2

j
,

φij = exp(−bij(δyani + δxanj)
2); δia = ia − ci,
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Bij = (δyani + δxanj)
2)
√

b, Cij = Aij + Bij,

ψij = erf(Bij)− erf(Cij), Dij = L2(n2
i + ninj + n2

j ),

Eij = 3L/2((2xa + ya + 1)ni + (xa + 2ya + 1)nj), Fij = 3(y2
a + x2

a + xa ya + xa + ya + 1)

Appendix A.1 Polynomial Basis Functions

Table A1. Number of polynomial terms based on the degree of polynomial.

Polynomial Degree (Pd) Polynomial Basis m =
(Pd + 2)!

2!Pd!

0 1 1
1 1, x, y 3
2 1, x, y, x2, y2, xy 6
3 1, x, y, x2, y2, xy, x2y, xy2, x3, y3 10
4 . . . 15
...

...
...

Appendix A.2 Parameter Used for Cantilevered Beam Simulation

Table A2. Beam Problem Parameters.

Parameter Symbol Value

Young’s Modulus E 200 GPa
Edge Load P 2 kN

Beam Length L 12 mm
Beam height W 10 mm

Beam thickness t 3 mm
Poisson’s ratio ν 0.3
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