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Abstract: This paper studies the consensus problem for heterogeneous multi-agent systems with
output saturations. We consider the agents to have different dynamics and assume that the agents
are neutrally stable and that the communication graph is undirected. The goal of this paper is to
achieve the consensus for leaderless and leader-following cases. To solve this problem, we propose
the observer-based distributed consensus algorithms, which consists of three parts: the nonlinear
observer, the reference generator, and the regulator. Then, we analyze the consensus based on the
Lasalle’s Invariance Principle and the input-to-state stability. Finally, we provide numerical examples
to demonstrate the validity of the proposed algorithms.
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1. Introduction

In the past decade, the consensus problem for multi-agent systems has received a lot
of attention since it has wide applications such as formation control [1], and distributed
filtering [2], cooperative control [3]. The goal of consensus is to achieve an agreement using
local interactions between agents, and the consensus is one of the most studied methods to
control the multi-agent systems in a distributed way.

Most pioneering works have considered the consensus problem for homogeneous agents,
which have identical dynamics, with single-integrator [1,2,4,5], double-integrator [6–8], high-
order linear [9–12], and nonlinear dynamics [13–15]. However, in real applications, it is
often unrealistic for all agents to have an identical model. Therefore, in recent years,
consensus for heterogeneous agents, which have nonidentical dynamics, has been widely
studied [16–19]. Specifically, the necessary and sufficient condition for heterogeneous linear
agents was studied in [16]. They showed that all agents must have a common internal
model such that they can generate the same trajectory. Then, under this assumption, the
observer-based consensus algorithm was constructed via the output regulation approach.
In [17], the dynamic consensus protocol was proposed for leaderless and leader-following
cases. In [18], the output consensus problem using the state feedback and the output feed-
back was studied. In [19], the dynamic event-triggered consensus protocol was developed
based on input-to-state stability. In [20], heterogeneous oscillator were considered and the
adaptive observer was developed.

Most actuators and sensors in real systems have saturation constraints owing to
their limited capacity. Since the saturations lead to poor performance of the system,
control problems for systems under saturations are an important issue in real applications.
Specifically, the consensus problem for agents with input saturations has been widely
studied in recent years [21–28]. For homogeneous agents with input saturations, semi-
global consensus and global consensus were studied in [21–25]. For heterogeneous agents
with input saturations, the semi-global output consensus was studied in [26–28]. Although
there are many results dealing with input saturations in the consensus problem, the
consensus problem under the output saturations has rarely been studied [29–32]. Since
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the consensus algorithm uses relative information between two agents, consensus may
not be realized when the outputs are saturated. In [29–31], the necessary and sufficient
conditions for single-integrator agents with output saturations were investigated. They
showed that the weighted average in a group should be bounded such that the consensus
trajectory can be measured. In [32], leader-following consensus for homogeneous high-
order linear agents with output saturations was studied. The authors developed an
observer-based consensus algorithm inspired by the nonlinear observer [33] and analyzed
the asymptotic convergence based on the Lyapunov stability theory. However, to the best of
our knowledge, the existing works on the consensus problem under the output saturations
have considered homogeneous agents.

Motivated by the above observations, this paper studies the consensus problem for
the heterogeneous agents with output saturations. We assume that the agents are neu-
trally stable and the communication graph is undirected. Then, we propose a distributed
observer-based consensus algorithm based on the output regulation approach. The main
contributions of this paper are summarized as follows. First, the output consensus problem
for the heterogeneous agents with output saturations is investigated, and the leaderless
and leader-following cases are considered. Therefore, this paper is a generalized version of
the previous papers, which considered homogeneous agents [29–32]. Second, we construct
the observer-based algorithm considering the output saturations. The output regulation
approach has been applied to solve the consensus problem for heterogeneous agents
in [16–18]. Then, by solving the linear matrix equations, called the regulation equations,
they developed the consensus algorithms, which consist of three parts: the first part is the
state observer, the second part is the reference generator, and the third part is the regulator.
Then, by choosing control gain matrices such that the error systems are Hurwitz, the con-
sensus is analyzed. However, in the presence of output saturations, the analysis techniques
of [16–18] cannot be applied, since the observer contains saturation nonlinearity. Therefore,
inspired by the works [32,33], this paper proposes the nonlinear observer and analyzes the
consensus based on the Lasalle’s Invariance Principle and the input-to-state stability.

The rest of this paper is organized as follows. In Section 2, the mathematical back-
ground and problem formulation are presented. In Section 3, the observer-based consensus
algorithms for the leaderless and leader-following cases are constructed. In Section 4,
numerical examples are provided, and conclusions are made in Section 5.

2. Preliminaries and Problem Formulation
2.1. Notations and Graph Theory

For a vector x ∈ Rn, x(i) denotes the ith component of x. For a matrix A ∈ Rn×n, AT

and A−1 denote the transpose and the inverse of A, respectively, and λi(A), i = 1, 2, ..., n,
are the eigenvalues of A in ascending order, i.e., λ1(A) ≤ λ2(A) ≤ · · · ≤ λn(A). We say
that A ∈ Rn×n is Hurwitz if every eigenvalue of A has strictly negative real part, and
is neutrally stable if every eigenvalue of A has non-positive real part with those on the
imaginary axis being simple. A⊗ B denotes the Kronecker product of A and B. IN ∈ RN×N

and 1N ∈ RN denote the identity matrix and the column vector with all entries equal to
1. blkdiag(Ai)

N
i=1 represents a block-diagonal matrix with matrices Ai, i = 1, ..., N, on

its diagonal.
Let G = (V , E ,A) be an undirected graph, which represents the communication

between agents, with a set of nodes (or agents) V := {1, 2, ..., N}, a set of undirected edges
E ⊆ V × V , and an weighted adjacency matrix A = [αij] ∈ RN×N . For the undirected
graph, if (i, j) ∈ E , then (j, i) ∈ E , which means the agents i and j can communicate with
each other. The weights αij = αji > 0 if and only if (i, j) ∈ E and αij = αji = 0 otherwise.

The Laplacian matrix of the graph G is denoted by L = [lij] ∈ RN×N , where
lii = ∑N

j=1,j 6=i αij, lij = −αij, i 6= j, and, thus, L is a positive semi-definite matrix with
0 = λ1(L) ≤ λ2(L) ≤ · · · ≤ λN(L). The undirected graph is connected if there exists
a path between any two distinct nodes. For the connected graph, L has a simple zero
eigenvalue that is 0 = λ1(L) < λ2(L).
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2.2. Problem Formulation

This paper considers a heterogeneous multi-agent system. The dynamics of each agent
is described by

ẋi =Aixi + Biui

yi =Cixi

zi =σ(yi), i ∈ V := {1, 2, ..., N},
(1)

where xi ∈ Rni , ui ∈ Rmi , yi ∈ Rq, and zi ∈ Rq represent the state, control input, con-
trolled(or real) output, and measured output of ith agent, respectively, and Ai, Bi, and Ci
are real constant matrices with compatible dimensions. The function σ(·) is a normalized
standard saturation function defined by

σ(yi) =
[
σ(yi(1)), σ(yi(2)), ..., σ(yi(q))

]T

σ(yi(j)) = sign(yi(j))min
{∣∣∣yi(j)

∣∣∣, 1
}

.
(2)

Then, the goal of this paper is to achieve the output consensus, that is,

lim
t→∞

∥∥yi(t)− yj(t)
∥∥ = 0, ∀i, j ∈ V . (3)

To achieve the consensus, we require some standard assumptions. We first consider
the existence of solution to the output consensus (3). It was shown in [16] that the necessary
condition for the output consensus is the existence of a common internal model such that all
agents can generate the same trajectory. This condition can be summarized as the following
assumption [16]:

Assumption 1. There exist matrices S ∈ Rn0×n0 , R ∈ Rq×n0 , Πi ∈ Rni×n0 , and Γi ∈ Rmi×n0

for the following linear matrix equations:

AiΠi + BiΓi =ΠiS,

CiΠi =R, ∀i ∈ V .
(4)

We next consider the following assumptions to control the agents under output saturations.

Assumption 2. The agents satisfy the following conditions:

1. For all i ∈ V , (Ai, Bi) is stabilizable and (Ci, Ai) is detectable.
2. The matrices Ai, ∀i ∈ V , and S are neutrally stable.

Note that Condition 1 in Assumption 2 is the standard assumption to construct an
observer-based controller. Moreover, Condition 2 requires controling the system in the
global sense, since we cannot track the exponentially growing signals in the presence of
saturation nonlinearities. Next, we suppose that the communication graph between the
agents in (1) is given by G = (V , E ,A). Then, we further consider the following assumption,
which is the necessary condition for the consensus.

Assumption 3. The communication graph G = (V , E ,A) is undirected and connected.

Before we construct the consensus algorithm, we consider the dynamics of agents
in (1). From Condition 2 of Assumption 2, there exits a non-singular matrix Ti ∈ Rni×ni

such that [32]

Āi =Ti AiT−1
i =

[
As,i 0
0 Ah,i

]
, B̄i = TiBi =

[
Bs,i
Bh,i

]
,

C̄i =CiT−1
i =

[
Cs,i Ch,i

]
, i ∈ V ,

(5)
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where Ah,i ∈ Rnh,i×nh,i , and As,i ∈ R(ni−nh,i)×(ni−nh,i) are Hurwitz and skew-symmetric ma-
trix, respectively, the pair (As,i, Bs,i) is controllable, and (Cs,i, As,i) is observable. Then, we
consider the following lemma that will be used to construct the consensus algorithm [32].

Lemma 1. For the matrices Āi and C̄i in (5), there exists a positive definite matrix Pi ∈ Rni×ni

given by

Pi =

[
Ini−nh,i 0

0 Ph,i

]
, (6)

with a symmetric positive semi-definite matrix Ph,i ∈ Rnh,i×nh,i such that AT
h,iPh,i + Ph,i Ah,i < 0 .

Moreover, for any positive constant βi > 0, the matrix (Āi − βiP−1
i C̄T

i C̄i) is Hurwitz.

We next consider the following lemmas that will play a crucial role to analyze the
consensus [33,34].

Lemma 2. (LaSalle’s Invariance Principle) For the system ẋ = f (x) with x ∈ Rn, if there exists a
continuously differentiable function V(x) : Rn → R+ such that

1. V(x) is a radially unbounded, positive definite function,
2. V̇(x) ≤ 0 for all x ∈ Rn,
3. LetM = {x ∈ Rn : V̇(x) = 0}, and no solution can stay identical inM except for x = 0;

then, the origin is globally asymptotically stable.

Lemma 3. (Input-to-State Stability) If the system ẋ = f1(x, z) is input-to-state stable and
the origin of the system ż = f2(z) is globally asymptotically stable, then the origin of the
cascade connection

ẋ = f1(x, z)

ż = f2(z),
(7)

is globally asymptotically stable.

3. Main Results

In this section, we construct the consensus algorithms for heterogeneous agents with
the output saturations and consider the cases of leaderless and leader-following. The
proposed algorithms are composed of three parts, as shown in Figure 1. The first part is
the nonlinear observer to measure the state using the measured output, the second part is
the distributed reference generator to generate the common trajectory, and the third part is
the controller to track the common trajectory based on the output regulation theory.

Figure 1. Block diagram of agent i with the observer-based consensus algorithm.
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3.1. Leaderless Case

In this subsection, we consider the output consensus without the leader agent. We
propose the observer-based consensus algorithm as follows:

˙̂xi =Ai x̂i + Biui + Hi ẑi (8a)

ẇi =Swi + F

(
N

∑
j=1

αij(wj − wi)

)
(8b)

ui =Ki(x̂i −Πiwi) + Γiwi (8c)

ẑi =σ(Cixi)− σ(Ci x̂i), i ∈ V , (8d)

where x̂i ∈ Rni and wi ∈ Rn0 are the states of the observer and the reference generator of the
ith agent, respectively; Hi, F and Ki are the gain matrices with compatible dimensions that
will be determined later; and S, Πi and Γi are the constant matrices satisfying Assumption 1.
Before we present our main result, we consider the following lemma [11].

Lemma 4. Suppose that the pair (S, Q) is stabilizable. Then, there exists a symmetric positive-
definite matrix W such that

WS + STW − 2WQQTW < 0. (9)

Then, we can solve the leaderless output consensus problem from the following theorem.

Theorem 1. Consider a group of N heterogeneous agents (1), and suppose that Assumptions 1–3
hold. Then, we can achieve the output consensus using the observer-based consensus algorithm (8)
if the gain matrices satisfy the following conditions:

1. Hi = βiT−1
i P−1

i C̄T
i , where βi is any positive constant, Ti and C̄i are given in (5), and Pi is

given in Lemma 1.
2. F = τQQTW, where τ is a positive constant such that τλ2(L) > 1, and Q and W are the

solution of (9) in Lemma 4.
3. Ki is a constant matrix such that Ai + BiKi is Hurwitz.
4. wi(0) is bounded such that ‖Rw̄(t)‖∞ ≤ 1− δ, for 0 < δ < 1, ∀t ≥ 0, where w̄ is the

solution of the following dynamics:

˙̄w = Sw̄, w̄(0) =
1
N

N

∑
i=1

wi(0). (10)

Proof of Theorem 1. To prove the consensus, we investigate the asymptotic stability of the
error dynamics. Then, we first consider the reference generator (8b) and define the state
vector w = [wT

1 , ..., wT
N ]

T . Then, from (8b), we have

ẇ =(IN ⊗ S− L⊗ F)w. (11)

Since the graph is undirected and connected, there exists an orthogonal matrix
U =

[
1√
N

1N U2

]
, such that UT LU = Λ = diag(0, λ2(L), ..., λN(L)) with U2 ∈ RN×(N−1)

and UT
2 U2 = IN−1 [14]. Let ζ = (UT⊗ In0)w with ζ = [ζT

1 , ζT
2 , ..., ζT

N ]
T and ζ̄ = (UT

2 ⊗ In0)w
with ζ̄ = [ζT

2 , ζT
3 ..., ζT

N ]
T . In [12], it was shown that (wi − wj) → 0, ∀i, j = 1, ..., N, if and

only if ζ̄ → 0. Moreover, if (wi − wj)→ 0, ∀i, j = 1, ..., N, wi(t)→ w̄(t), where w̄(t) is the
solution of (10) [10]. Therefore, in what follows, we derive the asymptotic convergence of ζ̄
to the origin. After the coordinate transformation, we have

˙̄ζ = (IN−1 ⊗ S− Λ̄⊗ F)ζ̄, (12)

where Λ̄ = diag(λ2(L), λ3(L), ..., λN(L)).
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We next consider the observer (8a) and the regulator (8c) and define the observer error
and the regulation error as ei = Ti(xi − x̂i) and εi = x̂i −Πiwi, respectively. Then, from (5),
the observer error dynamics can be written as

ėi =Ti(ẋi − ˙̂xi)

=Ti Ai(xi − x̂i)− Ti Hi ẑi

=Āiei − Ti Hi ẑi,

(13)

and, from Assumption 1, the regulation error dynamics is given by

ε̇i = ˙̂xi −Πiẇi

=Ai x̂i + Bi(Ki(x̂i −Πiwi) + Γiwi) + Hi ẑi −ΠiSwi −ΠiF

(
N

∑
j=1

αij(wj − wi)

)

=Ai x̂i + Bi(Kiεi + Γiwi) + Hi ẑi − AiΠiwi − BiΓiwi −ΠiF

(
N

∑
j=1

αij(wj − wi)

)

=(Ai + BiKi)εi + Hi ẑi −ΠiF

(
N

∑
j=1

αij(wj − wi)

)
.

(14)

Let e = [eT
1 , ..., eT

N ]
T , ε = [εT

1 , ..., εT
N ]

T , x̂ = [x̂T
1 , ..., x̂T

N ]
T , ẑ = [ẑT

1 , ..., ẑT
N ]

T ,
w = [wT

1 , ..., wT
N ]

T , T = blkdiag(Ti)
N
i=1, A = blkdiag(Ai)

N
i=1, B = blkdiag(Bi)

N
i=1,

K = blkdiag(Ki)
N
i=1, H = blkdiag(Hi)

N
i=1, Π = blkdiag(Πi)

N
i=1, and Ā = blkdiag(Āi)

N
i=1.

Then, from (12), (13), and (14), the overall error dynamics can be written as

˙̄ζ =(IN−1 ⊗ S− Λ̄⊗ F)ζ̄,

ė =Āe− THẑ

ε̇ =(A + BK)ε + Hẑ + Π(L⊗ F)w.

(15)

It is clear that we can achieve the consensus if the error dynamics (15) is asymptotically
stable, i.e., if (ζ̄, e, ε)→ (0, 0, 0), then yi − yj = 0, ∀i, j ∈ V . Then, to prove the consensus,
we first analyze the asymptotic convergence of ζ̄ and e to the origin, applying Lemma 2.
We define the continuously differentiable functionV as follows:

V = ζ̄T(IN−1 ⊗W)ζ̄ + eT Pe, (16)

where W is the solution of (9) in Lemma 4 and P = blkdiag(Pi)
N
i=1 with Pi given in Lemma 1.

Let β = diag(β1, ..., βN) and C̄ = blkdiag(C̄i)
N
i=1. Then, the time-derivative of V is given by

V̇ =2ζ̄T(IN−1 ⊗W) ˙̄ζ + 2eT Pė

=2ζ̄T(IN−1 ⊗W)(IN−1 ⊗ S− Λ̄⊗ F)ζ̄ + 2eT P(Āe− THẑ)

=ζ̄T(IN−1 ⊗WS + STW − 2Λ̄⊗ τQQTW)ζ̄ + eT(PĀ + ĀT P)e

− 2eT PTβT−1P−1C̄T ẑ

=ζ̄T(IN−1 ⊗WS + STW − 2τΛ̄⊗WQQTW)ζ̄ + eT(PĀ + ĀT P)e− 2βeTC̄T ẑ

=
N

∑
i=2

ζT
i (WS + STW − 2τλi(L)WQQTW)ζi +

N

∑
i=1

eT
i (AT

s,i + As,i + AT
h,iPh,i + Ph,i Ah,i)e

− 2
N

∑
i=1

βi(Cixi − Ci x̂i)
T(σ(Cixi)− σ(Ci x̂i)).

(17)
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Then, from Lemma 1 and 4, and the fact that τλ2(L) > 1, the time-derivative of V can
be rewritten as

V̇ ≤
N

∑
i=2

ζT
i (WS + STW − 2WQQTW)ζi − 2

N

∑
i=1

βi(Cixi − Ci x̂i)
T(σ(Cixi)− σ(Ci x̂i))

≤0,

(18)

where we have used the fact that, for any a, b ∈ R, sign(a − b) = sign(σ(a) − σ(b)).
Then, we have shown that V ≥ 0 is radially unbounded and V̇ ≤ 0, which implies that
Conditions 1 and 2 in Lemma 2 hold. Then, to prove Condition 3, we defineM := {(e, ζ̄) :
V̇ = 0}. V̇ = 0 implies ζ̄ = 0, i.e., (wi − wj) = 0, ∀i, j ∈ V , and (L ⊗ In0)w = 0, and
ẑi = (σ(Cixi)− σ(Ci x̂i)) = 0, ∀i ∈ V . Then, in the setM, the error dynamics in (15) can be
rewritten as

ė =Ā

ε̇ =(A + BK)ε.
(19)

Since (Ai + BiKi) is Hurwitz, ∀i ∈ V , we have

lim
t→∞
‖εi‖ = lim

t→∞
‖x̂i −Πiwi‖ = lim

t→∞
‖Ci x̂i − CiΠiwi‖ = lim

t→∞
‖Ci x̂i − Rwi‖ = 0. (20)

Moreover, ζ̄ = 0 implies wi = w̄, and, thus, from Condition 4 in Theorem 1, we have
‖Rwi‖∞ = ‖Rw̄‖∞ < 1 inM. Therefore, there exists a finite time t1 such that σ(Ci x̂i) =
Ci x̂i, ∀t ≥ t1, which gives, for t ≥ t1, ẑi = (σ(Cixi)− σ(Ci x̂i)) = (Cixi − Ci x̂i) = C̄iei = 0
inM. Then, for t ≥ t1, the observer error dynamics can be rewritten as

ė = Āe = (Ā− βP−1C̄TC̄)e. (21)

Since (Ā− βP−1C̄TC̄) is Hurwitz from Lemma 1, e converges to 0.
In summary, we have shown that V̇ ≤ 0 and e = ζ̄ = 0 is a unique, asymptotically

stable equilibrium point inM. Therefore, according to Lemma 2, we have limt→∞‖ei‖ = 0
and limt→∞

∥∥ζ̄i
∥∥ = 0, ∀i ∈ V . Moreover, since (A + BK) is Hurwitz, the regulation error

dynamics is input-to-state stable. Then, from Lemma 3, we have limt→∞‖εi‖ = 0. Finally,
we can conclude that (ζ̄, e, ε) → (0, 0, 0) and limt→∞

∥∥Cixi − Cjxj
∥∥ = 0, ∀i, j ∈ V , which

completes the proof.

3.2. Leader-Following Case

In this subsection, we consider the leader agent, which generates the reference trajec-
tory. The dynamics of the leader is given by

ẋ0 =Sx0

y0 =Rx0,
(22)

where x0 ∈ Rn0 and y0 ∈ Rq are the state and output, respectively, of the leader. S and R are
the constant matrices satisfying Assumption 1. Then, to achieve the consensus, we consider
the following assumption to control the follower agents into the leader’s trajectory.

Assumption 4. The leader agent (22) satisfies the following conditions:

1. (R, S) is detectable.
2. For the leader agent, there exists 0 < δ < 1, satisfying

x0(0) ∈ X0 ⇒ ‖Rx0(t)‖∞ ≤ 1− δ, ∀t ≥ 0. (23)
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Then, to achieve the consensus, we propose the following consensus algorithm:

˙̂xi =Ai x̂i + Biui + Hi ẑi (24a)

ẇi =Swi + F

(
N

∑
j=1

αij(wj − wi) + αi0(x0 − wi)

)
(24b)

ui =Ki(x̂i −Πiwi) + Γiwi (24c)

ẑi =σ(Cixi)− σ(Ci x̂i), i ∈ V , (24d)

where x̂i ∈ Rni and wi ∈ Rn0 are the states of the observer and the reference generator of the
ith follower, respectively; Hi, F and Ki are the gain matrices with compatible dimensions
that will be determined later; and Πi and Γi are the solution of linear matrix equations in
Assumption 1. We next consider the following lemma [10], which is the dual problem of
Lemma 4:

Lemma 5. Suppose that the pair (R, S) is detectable. Then, there exists a symmetric positive-
definite matrix W such that

WS + STW − 2RT R < 0. (25)

Then, we can solve the leader-following output consensus from the following theorem.

Theorem 2. Consider a group of N follower agents (1) with the leader (22). Suppose that
Assumptions 1–4 hold, and there exists at least one follower that can receive the information from
the leader. Then, we can achieve the leader-following output consensus using the observer-based
consensus algorithm (24) if the gain matrices satisfy the following conditions:

1. Hi = βiT−1
i P−1

i C̄T
i , where βi is any positive constant, Ti and C̄i are given in (5), and Pi is

given in Lemma 1.
2. F = τW−1RT R, where τ is a positive constant such that τλ1(L̄) > 1, where L̄ = L +

diag(α10, ..., αN0), and the positive definite matrix W is the solution of (25) in Lemma 5.
3. Ki is a constant matrix such that Ai + BiKi is Hurwitz.

Proof of Theorem 2. We apply the same procedure as in the proof of Theorem 1. We define
the tracking error of the reference generator, the observer error and the regulation error
as ζi = wi − x0, ei = Ti(xi − x̂i), and εi = x̂i −Πiwi, respectively. Then, the tracking error
dynamics is given by

ζ̇i =Swi + F

(
N

∑
j=1

αij(wj − wi) + αi0(x0 − wi)

)
− Sx0

=Sζi + F

(
N

∑
j=1

αij(ζ j − ζi)− αi0ζi

)
,

(26)

and, from (13) and (14), the observer error dynamics and the regulation error dynamics are
given by

ėi =Āiei − Ti Hi ẑi (27a)

ε̇i =(Ai + BiKi)εi + Hi ẑi −ΠiF

(
N

∑
j=1

αij(ζ j − ζi)− αi0ζi

)
, (27b)

where we have used the fact that (wj − wi) = (ζ j − ζi).
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Let ζ = [ζT
1 , ..., ζT

N ]
T and L̄ = L + diag(α10, ..., αN0), and define e, ε, T, H, A, B, K, and

Π as in the proof of Theorem 1. Then, the overall error dynamics can be written as

ζ =(IN ⊗ S− L̄⊗ F)ζ

ė =Āe− THẑ

ε̇ =(A + BK)ε + Hẑ + Π(L̄⊗ F)ζ.

(28)

It is clear that we can achieve the leader-following output consensus if the error
dynamics (28) is asymptotically stable; i.e., if (ζ, e, ε) → (0, 0, 0), then yi − y0 = 0,
∀i ∈ V . Then, to prove the consensus, we define the continuously differentiable functionV
as follows:

V = ζT(IN ⊗W)ζ + eT Pe, (29)

where W is the solution of (25) and P = blkdiag(Pi)
N
i=1 with Pi given in Lemma 1. Let

β = diag(β1, ..., βN) and C̄ = blkdiag(C̄i)
N
i=1. Then, the time-derivative of V is given by

V̇ =2ζT(IN ⊗W)ζ + 2eT Pė

=2ζT(IN ⊗W)(IN ⊗ S− L̄⊗ F)ζ + 2eT P(Āe− THẑ)

=ζT(IN ⊗WS + STW − 2L̄⊗ τRT R)ζ + eT(PĀ + ĀT P)e− 2βeTC̄T ẑ

≤
N

∑
i=1

ζT
i (WS + STW − 2τλ1(L̄)RT R)ζi + eT(PĀ + ĀT P)e

− 2
N

∑
i=1

βi(C̄iei)
T(σ(C̄ixi)− σ(Ci x̂i))

≤
N

∑
i=1

ζT
i (WS + STW − 2RT R)ζi − 2

N

∑
i=1

βi(C̄ixi − C̄i x̂i)
T(σ(C̄ixi)− σ(Ci x̂i))

≤0,

(30)

where we have used the fact that τλ1(L̄) > 1. Then, we have shown that V ≥ 0 is radially
unbounded and V̇ ≤ 0, which implies that conditions 1 and 2 in Lemma 2 hold. Then,
to prove Condition 3, we define M := {(e, ζ) : V̇ = 0}. V̇ = 0 implies ζ = 0 , i.e.,
(wi − x0) = 0, ∀i ∈ V , and ẑi = (σ(Cixi)− σ(Ci x̂i)) = 0, ∀i ∈ V . Then, inM, the error
dynamics (28) can be rewritten as

ė =Āe

ε̇ =(A + BK)ε.
(31)

Then, since (A + BK) is Hurwitz and ‖Rx0‖∞ < 1, we have

lim
t→∞
‖εi‖ = lim

t→∞
‖Ci x̂i − Rx0‖ = 0, ∀i ∈ V , (32)

and, thus, there exists a finite time t1 such that σ(Ci x̂i) = Ci x̂i, ∀t ≥ t1. Therefore, following
the proof of Theorem 1, we can prove that e converges to 0.

In summary, we have shown that V̇ ≤ 0, and e = ζ = 0 is a unique, asymptotically
stable equilibrium point inM. Therefore, according to Lemma 2, we have limt→∞‖ei‖ = 0
and limt→∞‖ζi‖ = 0, ∀i ∈ V . Moreover, since (A + BK) is Hurwitz, the regulation error
dynamics is input-to-state stable. Then, from Lemma 3, we have limt→∞‖εi‖ = 0. Finally,
we can conclude that (ζ, e, ε) → (0, 0, 0) and limt→∞‖Cixi − Rx0‖ = 0, ∀i ∈ V , which
completes the proof.

Remark 1. Note that Theorems 1 and 2 give the sufficient conditions to achieve the output
consensus. The existence of control gains follows from Assumptions 1–4, which are the standard
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assumptions to achieve the consensus for the heterogeneous agents. Moreover, the control gains
can be constructed from the knowledge of the system matrices except τ, which requires the global
information, i.e., λ2(L) in Theorem 1 and λ1(L̄) in Theorem 2. However, by choosing τ as an
arbitrarily large constant, the conditions can be satisfied.

4. Simulations

In this section, we present two numerical examples to demonstrate the theoretical results.

4.1. Leaderless Case

In this subsection, we consider the leaderless case with 10 agents modeled by harmonic
oscillators. The dynamics of each agent is of the form (1) with, for i ∈ V = {1, 2, ..., 10},

Ai =

[
0 1
−ψi 0

]
, ψi = 0.5× i, Bi = B =

[
0
1

]
, Ci = C =

[
0 1

]
. (33)

Then, we can choose the non-singular matrix Ti as follows:

Ti =

[ √
ψi 0
0 1

]
, (34)

which gives, from (5),

Āi =

[
0

√
ψi

−√ψi 0

]
, B̄i = B̄ =

[
0
1

]
, C̄i = C̄ =

[
0 1

]
, Pi = P = I2. (35)

We next consider the linear matrix equations (4) in Assumption 1. The analytic solution
of (4) is given in [20] as follows:

S =

[
0 1

− 1
N ∑N

i=1 ψi 0

]
=

[
0 1
−2.75 0

]
, Πi = Π = I2,

Γi =
[

1
N ∑N

j=1(ψi − ψj) 0
]
, R =

[
0 1

]
.

(36)

In this simulation, we assume that the communication between agents is as ring
topology given in Figure 2. We consider αij = 1, if (i, j) ∈ E and αij = 0 otherwise. Then,
the Laplacian matrix is given by

L =



2 −1 0 · · · 0 0 −1
−1 2 −1 · · · 0 0 0
0 −1 2 · · · 0 0 0
...

. . . . . . . . . . . . . . .
...

0 0 0 · · · 2 −1 0
0 0 0 · · · −1 2 −1
−1 0 0 · · · 0 −1 2


, (37)

and λ2(L) = 0.3820. We next construct the observer-based consensus algorithm (8) apply-
ing Theorem 1. From the condition 1, we choose

Hi = βiT−1
i P−1

i C̄T
i = βi

[
1√
ψi

0
0 1

][
0
1

]
=

[
0
5

]
. (38)
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Figure 2. Communication topology between 10 agents.

We next choose W = Q = I2 such that (S, Q) is stabilize and Lemma 4 is satisfied.
Then, from the condition 2, we choose

F = τQQTW = 10× I2, (39)

where τ = 10 such that τλ2(L) = 3.82 > 1. Finally, we choose Ki = −[100 10] such that
Condition 3 is satisfied, i.e., Ai + BiKi is Hurwitz. We conduct the simulation with the
initial conditions satisfying Condition 4 as follows:

x1(0)=
[

7
−7

]
, x2(0)=

[
3
9

]
, x3(0)=

[
−8
3

]
, x4(0)=

[
5
−8

]
, x5(0)=

[
6
−6

]
,

x6(0)=
[

10
0

]
, x7(0)=

[
−4
5

]
, x8(0)=

[
0
1

]
, x9(0)=

[
−10
−3

]
, x10(0)=

[
4
7

]
,

w1(0)=
[

2
−1

]
, w2(0)=

[
0
−0.5

]
, w3(0)=

[
−1
−2

]
, w4(0)=

[
0.1
2

]
, w5(0)=

[
−2
2

]
,

w6(0)=
[

1.5
−0.5

]
, w7(0)=

[
1.4
−1

]
, w8(0)=

[
−2
2

]
, w9(0)=

[
−1
1.5

]
, w10(0)=

[
−1
−2

]
,

x̂i(0)=
[

0
0

]
, ∀i ∈ V .

(40)

The simulation results using the proposed algorithm are shown in Figures 3–6.
Figure 3 shows the state trajectories of the reference generators. As we can see from
Figure 3, the reference generators converge to the common trajectory. Figure 4 shows
the square norms of the observer errors, which converge to zero. Thus, the states of the
agents can be measured under the proposed nonlinear observer (8a). Figure 5 depicts
the controlled and the measured output trajectories of agents. Although the measured
outputs are saturated, the agents achieve the consensus under the proposed algorithm.
Moreover, to investigate the effect of the control gain βi, we conduct the simulation with
βi = β = 1, 5, 10, 100, and the square norms of the output errors between agents are shown
in Figure 6. The simulation result shows that, as the control gain βi increases, the agents
achieve a fast convergence speed.
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Figure 3. The state trajectories of the reference generators using the proposed algorithm (8).

Figure 4. The observer errors using the proposed algorithm (8).
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Figure 5. The trajectories of the controlled outputs and the measured outputs using the proposed
algorithm (8).

Figure 6. The output errors between agents using the proposed algorithm (8) with β = 1, 5, 10, 100.

4.2. Leader-Following Case

In this subsection, we consider a group of four agents (1), i.e., V = {1, 2, 3, 4}, and a
leader agent (22) with [18]

A1=

[
0 1
−2 −0.8

]
, A2=

[
0 1
−1.5 −1

]
, A3=

[
0 1
−1 −1.2

]
, A4=

[
0 1
−0.5 −1.4

]
,

B1=

[
0
1

]
, B2=

[
0

0.5

]
, B3=

[
0

1.2

]
, B4=

[
0

1.4

]
, Ci =C=

[
0 1

]
,

S=
[

0 1
−1 0

]
, R=

[
1 0

]
,

(41)
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which satisfies Assumption 2 and Condition 1 in Assumption 4. Then, we can choose
the non-singular matrix Ti = I2, ∀i ∈ V and the positive semi-definite matrix Pi satisfying
Lemma 1 as follows:

P1=

[
1.00 0.27
0.27 0.60

]
, P2=

[
1.03 0.41
0.41 0.97

]
, P3=

[
0.88 0.53
0.53 1.52

]
, P4=

[
0.50 0.47
0.47 2.30

]
. (42)

Moreover, by solving the linear equations in Assumption 1, we have

Πi =Π=

[
0 −1
1 0

]
, ΓT

1 =

[
0.8
−1

]
, ΓT

2 =

[
1
−0.5

]
, ΓT

3 =

[
1.2
0

]
, ΓT

4 =

[
1.4
0.5

]
. (43)

In this simulation, we consider the communication topology between the agents given
in Figure 7. We consider αij = 1, if (i, j) ∈ E and αij = 0 otherwise. Then, the Laplacian
matrix is given by

L =


3 −1 −1 −1
−1 2 0 −1
−1 0 1 0
−1 −1 0 2

, α10 = α20 = 1, α30 = α40 = 0, (44)

and λ(L) = {0, 1, 3, 4} and λ(L̄) = {0.4, 1.2, 3.6, 4.9}. We next construct the observer-
based consensus algorithm (24) applying Theorem 2. From Condition 1, we choose
Hi = βiT−1

i P−1
i C̄T

i with βi = β = 20, Ti = I2, and Pi given in (42). We next choose
W satisfying Lemma 5 as

W =

[
6.49 −0.50
−0.50 6.49

]
. (45)

Then, from Condition 2, we choose F = τW−1RT R with τ = 3 such that τλ1(L̄) =
1.2 > 1. Finally, we choose the gain matrix Ki = −[100 100], ∀i ∈ V such that Ai + BiKi
is Hurwitz

Figure 7. Communication topology between four agents, labeled by 1, 2, 3, 4, and a leader, labeled by 0.

In this simulation, we choose the initial conditions of the followers as follows:

x1(0)=
[

7
−7

]
, x2(0)=

[
3
9

]
, x3(0)=

[
−8
3

]
, x4(0)=

[
5
−8

]
, x̂i(0)=

[
0
0

]
, ∀i ∈ V ,

w1(0)=
[

2
−1

]
, w2(0)=

[
0
0

]
, w3(0)=

[
−1
−2

]
, w4(0)=

[
0
2

]
.

(46)

The initial condition of the leader is chosen as x0(0) = [0.5,−0.5]T such that Assump-
tion 4 is satisfied. The simulation results are given in Figures 8–10. In Figure 8, the solid
line shows the trajectories of the reference generators, while the dashed line shows the
trajectory of the leader. It can be observed from Figure 8 that the reference generators
track the leader’s trajectory. In Figure 9, we can see that the observer errors converge
to zero, which means the proposed nonlinear observer (24a) performs well. Moreover,
the controlled and measured output trajectories of the followers in solid line are given in
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Figure 10. It is clear that the followers track the leader’s trajectory in the dashed line, and,
thus, the proposed algorithm solves the leader-following consensus problem.

Figure 8. The state trajectories of the reference generators (solid line) and the leader (dashed line)
using the proposed algorithm (24).

Figure 9. The observer errors using the proposed algorithm (24).
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Figure 10. The trajectories of the controlled outputs (solid line), the measured outputs (solid line),
and the leader’s output (dashed line) using the proposed algorithm (24).

5. Conclusions

In this paper, the output consensus problems for heterogeneous agents were studied
under the output saturations. Applying the output regulation approach to solve the con-
sensus problem, we have proposed the observer-based consensus algorithms considering
leaderless and leader-following cases. Specifically, the proposed algorithm consists of three
parts: the nonlinear observer, the reference generator, and the regulator. By defining the
error dynamics, we have transformed the consensus problem into the stability problem
of the error dynamics. Then, based on the Lasalle’s Invariance Principle and the input-to-
state stability, the stability of error dynamics and the existence of the control gains have
been derived under the standard assumptions for the consensus. Finally, two numerical
examples have been given to demonstrate the theoretical results. Although the effect of
the control gain βi has been investigated by simulation, the performance in a group has
not been addressed. Thus, the consensus control with the performance analysis would
be worthwhile for a further study. Moreover, as mentioned in Remark 1, the proposed
algorithm requires global information, i.e., λ2(L) and λ1(L̄). To solve this problem, the
fully distributed algorithm has been widely used [14]. By using the state dependent control
gain, the consensus can be solved without global information. Therefore, it would be
interesting to extend the results of this paper to fully distributed consensus.
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