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Abstract: We study properties of an infinite system of discrete nonlinear Schrödinger equations
that is equivalent to a coupled Schrödinger-elliptic differential equation with periodic coefficients.
The differential equation was derived as a model for laser beam propagation in optical waveguide
arrays in a nematic liquid crystal substrate and can be relevant to related systems with nonlocal
nonlinearities. The infinite system is obtained by expanding the relevant physical quantities in a
Wannier function basis associated to a periodic Schrödinger operator appearing in the problem.
We show that the model can describe stable beams, and we estimate the optical power at different
length scales. The main result of the paper is the Hamiltonian structure of the infinite system,
assuming that the Wannier functions are real. We also give an explicit construction of real Wannier
functions, and examine translation invariance properties of the linear part of the system in the
Wannier basis.

Keywords: optical waveguides; nonlocal media; nematic liquid crystals; Wannier functions

1. Introduction

We study properties of an infinite system of discrete nonlinear Schrödinger (DNLS)
equations that is equivalent to a coupled Schrödinger-elliptic system of partial differential
equations with periodic coefficients. The system was derived in [1] as a model for the
propagation of laser light in nematic liquid crystal substrates with a periodic structure in
one of the directions normal to the optical axis. The model was originally motivated by
experimental studies of such waveguide systems [2–4] and leads to extensions of a nonlocal
DNLS equation of Fratalocchi and Assanto [5,6].

The Fratalocchi-Assanto equation has a nonlocal nonlinearity that leads to new ef-
fects when compared to the cubic power DNLS model studied commonly in photonics
and atomic physics [7]. These effects include non-monotonic amplitude profiles of static
(breather) solutions, additional internal modes in the linearization around breathers [8,9],
and enhanced mobility of traveling localized solutions [10]. On the other hand, the mathe-
matical justification of the Fratalocchi-Assanto model, in particular the question of how
well it approximates the partial differential equations with periodic coefficients used to
describe the underlying physics, is less studied. The present paper is a step in studying
this problem.

Schrödinger-elliptic systems of differential equations with a similar nonlocal struc-
ture in the nonlinear term arise in a variety of contexts. Examples from physics in-
clude Bose-Einstein condensates [11], thermal media [12], and matter-wave microwave
systems [13]. The recent review [14] includes further examples describing laser beams in liq-
uid crystals [5,15–17]. A related area of application of such models concerns thermo-optical
interactions induced by beams in liquid crystals [18–20]. The combination of nonlocal
nonlinearity and spatial periodicity or more general inhomogeneity, and the analysis of
relevant equations is therefore a problem of wider interest.
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The Schrödinger-elliptic differential equation we study describes the coupling of the
laser field amplitude to the nematic crystal director angle. The derivation uses approx-
imations of the coupled Oseen-Frank-Maxwell system for a linearly polarized beam [1].
The periodicity of the medium in the direction transverse to the propagation of the laser
beam leads to an elliptic (Poisson-like) equation with periodic coefficients. Our approach is
to expand the laser field and director angle in a Wannier function basis. The system is sub-
sequently written as an infinite system of coupled DNLS equations for the Wannier mode
amplitudes. The Wannier functions we use are defined in terms of a periodic Schrödinger
operator appearing in the elliptic equation [1]. Note that the Wannier functions are integer
translates of an infinite set of localized functions with an increasing degree of oscillation.
Thus Wannier mode amplitudes give information on both the location and the spatial scale
of images. Wannier and the related Bloch functions are a standard tool in the analysis of
periodic Schrödinger operators [21–24], and related linear problems in theoretical physics,
e.g., solid state physics [25].

Wannier functions are increasingly used in the study of nonlinear waves in inhomoge-
neous media. The use of Wannier functions for deriving discrete Schrödinger equations
for nonlinear wave systems with periodic coefficients was first proposed in [26] for the
periodic Gross-Pitaevski equation (NLS with periodic potential). The Wannier expansion
has been used to justify the approximation of this equation by the DNLS equation in the
the tight binding approximation limit for the potential term in [23,27]. Related systems
where the theory applies are described in [11,12]. In the present problem the Wannier
basis leads to a heuristic derivation of the model of [6] and also allows us to derive more
general DNLS-type equations and systems that include additional inter- and intra-band
Wannier mode interactions [1]. However, the Wannier approach does not immediately
justify truncation to the lowest band because the linear part does not have the band gaps
assumed in [23,26,27]. Thus the question of justifying the derivation of finite systems of
(possibly a few) DNLS equations from the infinite system requires some additional analysis,
and also motivates a better understanding of the structure of the infinite system.

A first result of the paper is an outline of the global existence theory, that is the
boundedness of a suitable norm of the solutions. This type of result is a mathematical way
to describe the absence of catastrophic self-focusing (beam collapse) and the possibility
of stable localized beams [28]. The result also implies an estimate for the energy (optical
power) at different length scales and provides a heuristic justification of truncation to a
finite number of DNLS systems, corresponding to Wannier modes of the first bands.

The main result of the paper is a proof that the infinite system resulting from the Wan-
nier basis expansion is a Hamiltonian system. This fact implies the Hamiltonian structure
of the finite band truncations and can useful in analyzing discrete soliton structures, using
for instance methods from [8,9]. The proof assumes that the Wannier functions are real,
and we subsequently give examples of an explicit construction of real Wannier functions in
terms of explicit Bloch functions.

We also examine some features of the linear part of the problem, in particular we show
that it is diagonalized by the trigonometric functions. This observation implies that the
dispersion relation and the coupling between the modes can be computed with relative
ease, and that the linear part of the problem is homogenized in the Wannier basis, i.e.,
is effectively a translation invariant [29,30]. This latter property is an additional motivation
for further developing Bloch-Wannier analysis in nonlinear wave equations.

The paper is organized as follows. In Section 2 we outline the global existence theory
for the coupled Schrödinger-elliptic system and show that the system in the Wannier basis
is Hamiltonian. In Section 3 we discuss the construction of real Wannier functions. We also
discuss translation invariance properties of the linear part of the system. In Section 4 we
discuss some questions for further work.
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2. Hamiltonian Structure of Periodic Nematicon Equations

We consider the system of equations (“nematicon equations”)

∂zu =
1
2

i∂2
yu +

1
2

βiψu (1)

− ∂2
yψ + V(y)ψ + g2ψ = α|u(y)|2, (2)

with α, β, g2 positive constants, and V b−periodic and positive.
The complex amplitude u describes the electric field amplitude of a linearly polarized

laser beam through a nematic liquid crystal sample, while ψ describes the director angle
deviation of the liquid crystal due to the laser beam. The geometry of the problem is
indicated in Figures 1 and 2, see also [3,6]. In Figure 1 we show a vertical direction x,
and the laser beam propagation axis z. The y−axis is perpendicular to the plane of the
figure. The laser beam electric field is polarized along the x−axis, while the the angle ψ
is on the x, z plane. The device (medium) is periodic along the y−axis. The periodicity
can be imposed by an external electric field that is also along the x−axis, see Figure 2.
We also simplify the problem mathematically by ignoring the dependence of u and ψ in
x. Boundary effects in the directions transverse to the beam are also ignored. Equations
(1) and (2) were derived in [1] from Maxwell’s equations coupled to the Oseen-Frank
equations for the director field [16,31]. Schrödinger operator −∂2

y + V. Similar equations
with constant coefficients have been studied widely in the context of optical solitons in
liquid crystals (“nematicons”) and other nonlocal media [5,14–17].

 X = d/2

X = −d/2

Z

Figure 1. View of vertical (x) and optical (z) directions. The laser and external electric fields have only
vertical components, indicated by the arrow. The red line crossing the sample represents the laser
beam, u(y, x, z) is the electric field amplitude of the beam. The nematic director (shaded ovalloids)
is assumed lie on the x, z plane. The angle ψ(y, x, z) is the deviation (from the z−axis) produced
by the laser beam. The second horizontal direction (y−axis) is perpendicular to the plane of the
figure. In (1), (2) we simplify the mathematical problem by ignoring the dependence of u and ψ on
the vertical variable x. Possible effects of the vertical boundaries of the sample are also ignored.

In model (1), (2) the transverse periodicity of the medium is captured by the b−periodic
function V, and our study involves the analysis of the periodic Schrödinger operator
−∂2 + V. More detailed models [1] involve more complicated operators with periodic
coefficients in the second equation. An example is the operator considered in [3]. The sim-
plification used here captures the fact that the periodicity of the medium appears in the
nonlinear term of the beam Equation (1).
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Z

d

Figure 2. The periodicity of the device (or medium) in the horizontal direction (y−axis) is due
to a vertical electric field applied externally. The parallel stripes represent capacitors that apply a
voltage that is uniform along the beam propagation direction (z−axis), and periodic along the y−axis,
see [3,6]. The dependence on the vertical direction is not included in model (1), (2). Horizontal
boundaries are also ignored.

Equation (2) is written in the abstract form A + V, with A = −∂2
y + g2. Assuming

V ∈ L∞(R;R), and non-negative we have that G = (A + V)−1 is bounded symmetric
operator in L2(R;R), and we can write ||G f ||L2 ≤ C|| f ||L2 , ∀ f ∈ L2. Also G maps L2(R;R)
to H2(R;R). see e.g., [31], Lemmas 2.1, 2.2.

The local and global existence theory for the initial value problem of system (1), (2)
follows from standard arguments and similar to the one in 2-D in [31–33]. This theory
implies that the solution avoids catastrophic nonlinear collapse in finite length, see [28].
This is an important feature of nonlinear beam propagation in nematic liquid crystals and
related nonlocal media, and is a prerequisite for the existence of stable nonlinearly focused
beams [17], see [33] for mathematical aspects.

The main ingredient of the global existence theory is the conservation of the Hamilto-
nian of the system (1), (2)

H =
∫
R

(
1
2
|uy|2 −

αβ

4
G(|u|2)|u|2

)
, (3)

and of the (optical) power P =
∫
R |u|

2, the squared L2−norm of u. We use the notation

|| f ||Lp =
(∫

R | f |
p)1/p, || f ||L∞ = esssupx∈R| f (x)|.

We can use these two conserved quantities to show the boundedness of some simpler
quantities. By the Cauchy-Schwarz inequality we have

∫
R

G(|u|2)|u|2 ≤
(∫

R
|G(|u|2)|2

)1/2(∫
R
|u|4

)1/2
≤ ||G(|u|2)||2L2 ||u||2L4 , (4)

and using the boundedness of G in L2 we obtain∫
R

G(|u|2)|u|2 ≤ C2||u||4L4 . (5)

We use that for all y ∈ R

(u(y))2 =
∫ y

−∞
(u2(s))′ds =

∫ y

−∞
2u(s)u′(s)ds, (6)
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therefore

|(u(y))|2 ≤ 2
∫ y

−∞
|u(s)u′(s)|ds ≤ 2

∫
R
|u(s)||u′(s)|ds ≤ 2||u||L2 ||∂yu||L2 , (7)

using the Cauchy-Schwarz inequality. We then have

||u||4L4 ≤ ||u||2L∞

∫
R
|u|2 ≤ 2||uy||L2 ||u||3L2 , (8)

and by (5) we bound the quartic part of the Hamiltonian as∫
R

G(|u|2)|u|2 ≤ 2C2||∂yu||L2 ||u||3L2 . (9)

Then

4H ≥ 2||uy||2L2 − 2αβC2||uy||L2 ||u||3L2 = 2||uy||2L2 − 2αβC2P3/2||uy||L2 , (10)

with P the power, a constant. The conservation of H and (10) imply that ||uy||L2 must
remain bounded for all z ∈ R.

Also,
∫
R V|u|2 ≤ ||V||L∞ P, thus we have a bound

H2 :=
∫
R

(
|uy|2 + V|u|2 + |u|2

)
≤ C0 (11)

for all z ∈ R, with C0 depending on H and P at z = 0.
We now consider an equivalent discrete system using expansions in Wannier functions.

We also examine some consequences of the Hamiltonian structure of system (1), (2) and of
the bound (11).

We start by defining the Wannier functions associated to the Schrödinger operator
−∂2

y + V(y), with V b-periodic, see [21,22]. Bounded solutions φn,k (Bloch functions) and
eigenvalues En,k of the periodic Schrödinger equation satisfy

− ∂2
yφn,k + V(y)φn,k = En,kφn,k, n ∈ N, k ∈ R, (12)

where
φn,k(y) = vn,k(y)eiky, with vn,k(y + b) = vn,k(y), (13)

for all y ∈ R, n ∈ N, k ∈ R. By V > 0 we have En,k > 0, furthermore

En,k+ 2π
b
= En,k, φn,k+ 2π

b
(y) = φn,k(y), (14)

for all n ∈ N, k, y ∈ R. Then we can consider k in any interval of length 2π/b. The index n
is referred to as band index (or number). For any fixed k in an interval of length 2π/b, En,k
is the n− th largest eigenvalue of (12) with boundary conditions φn,k(y + b) = eikbφn,k(y),
implied by (13).

Also, by (12), (13), the b−periodic functions vn,k satisfy

− (∂y + ik)2vn,k + V(y)vn,k = En,kvn,k, (15)

thus for any k fixed, n labels the eigenvalues En,k in an increasing order. This equation can
be also be used to compute the vn,k, En,k numerically for each k ∈ [0, 2π/b).

For n ∈ N, y ∈ R, we consider the Fourier coefficients

wm
n (y) =

√
b

2π

∫ π
b

− π
b

φn,k(y)e−imbkdk, m ∈ Z, (16)
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of φn,·(y), and we also have the inversion formula

φn,k(y) =

√
b

2π ∑
m∈Z

wm
n (y)e

imbk, n ∈ N, k, x ∈ R. (17)

The set of functions wm
n : R→ C, n ∈ N, m ∈ Z defined by (16) are known as Wannier

functions [21,22,25]. Note that the Bloch functions are not unique. One of the basic results
is that we can define the Bloch functions so that the Wannier functions form an orthonormal
basis for L2(R;C) [23,24]. We discuss the construction of Bloch and Wannier functions in
the next section.

Another property of the Wannier functions is that, by (16), (13),

wm+p
n (y) = wm

n (y− pb), ∀n ∈ N, m, p ∈ Z, y ∈ R. (18)

Thus, fixing n, the function wm
n is a translation of the function w0

n by mb.
We use expansions of ψ and u in Wannier functions wm

n as

ψ(y, z) = ∑
n∈N

∑
m∈Z

cn,m(z)wm
n (y), (19)

u(y, z) = ∑
n∈N

∑
m∈Z

un,m(z)wm
n (y). (20)

By the orthonormality of the Wannier basis, the coefficients cn,m, un,m are obtained
from the physical quantities ψ, u by

cn,m(z) =
∫
R

ψ(y, z)wm∗
n (y) dy, un,m(z) =

∫
R

u(y, z)wm∗
n (y) dy. (21)

The Wannier functions and the integrals must be evaluated numerically (or approxi-
mately).

Note that the definition w0
n and the regularity of the φn,k in k can also lead to strong

localization of the w0
n in y, see [23,24,34] and the discussion of the next section. The decay

of wm
n is more pronounced for larger oscillation V and for the first n. Numerical examples

are shown in [1]. For rapidly decaying Wannier functions, the decay of the coefficients of
cn,m, un,m in m reflect the decay of the spatial profile of ψ, u respectively.

We can also use the orthonormality of the Bloch and Wannier functions to derive a
bound on the optical power of each energy band. Let

u(y, z) = ∑
n∈N

∫ π
b

− π
b

ĉn,k(z)φn,k(y) dk. (22)

By ∫
R

φn,k(y)φ∗n′ ,k′(y)dy = δn,n′δ(k− k′) (23)

and (12) we have that H2 of (11) satisfies

H2 =
∫
R
(−uyy + Vu + u)u∗ = ∑

n∈N

∫ π
b

− π
b

(1 + En,k)|ĉn,k|2dk. (24)

Let εn = mink∈[0,2π/b) En,k. We have εn > 0, ∀n ∈ N. Then

H2 ≥ ∑
n∈N

(1 + εn)
∫ π

b

− π
b

|ĉn,k|2dk. (25)
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By the orthornormality of the Bloch and Wannier functions for the n−th band and
(20), (22) we have ∫ π

b

− π
b

|ĉn,k|2 = ∑
m∈Z
|un,m|2. (26)

Combining with (25), (11) we have

∑
n∈N

(1 + εn) ∑
m∈Z
|un,m|2 ≤ C0, (27)

therefore
∑

m∈Z
|un,m|2 ≤ (1 + εn)

−1C0, (28)

for all n ∈ N. For large n we have εn ∼ n2, more precisely, there exist c, C > 0 such that
cn2 ≤ εn ≤ Cn2, ∀n ∈ N. We discuss this estimate in the next section. Therefore

∑
m∈Z
|un,m|2 ≤ (1 + cn2)−1C0, (29)

for all n ∈ N.
This bound gives us the optical power in the higher band components, e.g., we

can estimate number of modes needed to have a given high percentage of the power in
the lowest band modes. This is a heuristic justification of using a finite system where
n ∈ {1, . . . , N}, i.e., a truncation to the Wannier modes of a finite, possibly large, set of
bands. Note that (29) does not give us however an estimate for the difference between
solutions of the full and truncated systems. This question will be examined in future work.

Equations (1) and (2) in the Wannier basis, see [1], are

dun′ ,m′

dz
=

1
2

i ∑
n∈N

∑
m∈Z

Dm,m′

n,n′ un,m

+
1
2

iαβ ∑
n1,n2,n3∈N

∑
m1,m2,m3∈Z

Vm1,m2,m3,m′
n1,n2,n3,n′ un1,m1 u∗n2,m2

un3,m3 , (30)

where
Dm,m′

n,n′ =
∫
R
(wm

n )
′′(y)wm′∗

n′ (y) dy, (31)

and
Vm1,m2,m3,m′

n1,n2,n3,n′ = ∑
n∈N

∑
m∈Z

Gm,m′
n,n′ Im1,m2,m′

n1,n2,n′ Im,m3,m′

n,n3,n′ , (32)

with

Gm,m′
n,n′ =

b
2π

δn,n′

(∫ π/b

−π/b

ei(m−m′)bk

En′ ,k + g2 dk

)
, (33)

Im1,m2,m′

n1,n2,n′ =
∫
R

wm1
n1 (y)w

m2∗
n2 (y)wm′∗

n′ (y) dy, Im,m3,m′

n,n3,n′ =
∫
R

wm
n (y)w

m3
n3 (y)w

m′∗
n′ (y) dy. (34)

System (30) was obtained in [1], and we describe the steps in the Appendix A. To
show that it is a Hamiltonian system we compare (30) to Hamilton’s equations with the
Hamiltonian H of (3) expressed in the Wannier basis.

By (11) and (31)

H = −1
2 ∑

n,n′∈N
∑

m,m′∈Z
Dm,m′

n,n′ un,mu∗n′ ,m′ −
β

4 ∑
n,n3,n4∈N

∑
m,m3,m4∈Z

Im,m3,m4
n,n3,n4

cn,mun3,m3 u∗n4,m4
,

(35)
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and by (33)

H = −1
2 ∑

n,n′∈N
∑

m,m′∈Z
Dm,m′

n,n′ un,mu∗n′ ,m′

− αβ

4 ∑
n1,n2,n3,n4∈N

∑
n1,n2,m3,m4∈Z

Λm1,m2,m3,m4
n1,n2,n3,n4 un1,m1 u∗n2,m2

un3,m3 u∗n4,m4
, (36)

with
Λm1,m2,m3,m4

n1,n2,n3,n4 = ∑
n,n′∈N

∑
m,m′∈Z

Gm,m′
n,n′ Im1,m2,m′

n1,n2,n′ Im,m3,m4
n,n3,n4

. (37)

We show that Hamilton’s equations for (36) coincide with (30), provided the Wannier
basis functions are real.

We first see that the symmetry of G implies that the coefficients Gm,m′
n,n′ of (33) satisfy

Gm,m′
n,n′ = (Gm′ ,m

n′ ,n )∗, for all n, n′ ∈ N, m, m′ ∈ Z.
We use the double index notation j = (n, m), i.e., (19), (20) are written as

ψ = ∑
j

cjwj, u = ∑
j

ujwj (38)

with summation over j = (n, m) ∈ N×Z. Then Gm,m′
n,n′ = Gj,j′ with j = (n, m), j′ = (n′, m′).

Let gj,j′ =
∫
R(Gwj′)w∗j . We will show that Gj,j = gj,j′ and that the symmetry of G

implies gj,j′ = g∗j′ ,j.
We write (2) as ψ = Gv, v = |u|2, and by (38), v = ∑j′ vj′wj′ we have

cj =
∫
R

ψw∗j =
∫
R
(Gv)w∗j = ∑

j′

(∫
R
(Gwj′)w

∗
j

)
vj′ = ∑

j′
gj,j′vj′ . (39)

Then

cj = ∑
j′

gj,j′vj′ = ∑
j′

gj,j′

(∫
R
|u|2w∗j′

)
= ∑

j′
gj,j′ ∑

j1,j2

uj1 u∗j2

∫
R

wj1 w∗j2 w∗j′ , (40)

or

cj = ∑
j1,j2,j3

(
gj,j′

∫
R

wj1 w∗j2 w∗j′
)

uj1 u∗j2 . (41)

By (33) we have gj,j′ = Gj,j′ , ∀j, j′ ∈ N×Z.
Symmetry of the real bounded operator G with respect to standard L2 inner product

implies ∫
R
(G f )g∗ =

∫
R

f (Gg)∗,

for all f , g ∈ L2(R;C), therefore

gj1,j2 =
∫
R
(Gwj2)w

∗
j1 =

∫
R

wj2(Gwj1)
∗ = g∗j2,j1 , ∀j1, j2 ∈ N×Z. (42)

We now examine Hamilton’s equations. We write (36) as H = h2 + h4 with

h2 =
1
2 ∑

j,j′
Dj,j′ uju∗j′ , h4 = −αβ

4 ∑
j1,j2,j3,j4

Λj1,j2,j3,j4 uj1 u∗j2 uj3 u∗j4 . (43)

Hamilton’s equation is

dul
dz

= −i
∂H
∂u∗l

, l ∈ N×Z, (44)



Appl. Sci. 2021, 11, 4420 9 of 18

and we have
− i

∂h2

∂u∗l
= −i

1
2 ∑

j
Dj,l uj. (45)

We have thus recovered the linear part of (30).
For the nonlinear part we have

−i
∂h4

∂u∗l
= −i

αβ

4

(
∑

j1,j2,j3

uj1 Λj1,j2,j3,luj1 u∗j2 uj3 + ∑
j1,j3,j4

Λj1,l,j3,j4 uj1 uj3 u∗j4

)

= −i
αβ

4 ∑
j1,j2,j3

(
Λj1,j2,j3,l + Λj3,l,j1,j2

)
uj1 u∗j2 uj3 . (46)

Let f = wj1 w∗j2 , g = w∗j3 wl . We omit the dependence of f , g on the indices for simplicity.
Also let f = ∑k fkwk, g = ∑k gkwk. By (37)

Λj1,j2,j3,l = ∑
k1,k2

Gk1,k2

(∫
R

wk1 g∗
)(∫

R
w∗k2

f
)
= ∑

k1,k2

Gk1,k2 g∗k1
fk2 , (47)

and

Λj3,l,j1,j2 = ∑
k1,k2

Gk1,k2

(∫
R

wk1 wj1 w∗j2

)(∫
R

w∗k2
wj3 w∗l

)
= ∑

k1,k2

Gk1,k2 f ∗k1
gk2 , (48)

so that by symmetry of G,

Λj3,l,j1,j2 = ∑
k1,k2

Gk2,k1 gk1 f ∗k2
= ∑

k1,k2

G∗k1,k2
gk1 f ∗k2

. (49)

By (47), (49) we then have

Λj3,l,j1,j2 = Λ∗j1,j2,j3,l . (50)

Clearly, the above hold for any double index j1, j2, j3, l ∈ N×Z. If the Wannier functions
are real, the coefficients Gk1,k2 and Λ∗j1,j2,j3,j4

are real. By (50), (46) yields the nonlinear part
of (30). This concludes the argument.

We remark that the Hamiltonian structure of (30) easily implies the Hamiltonian
structure of finite band truncations of the (30). The same applies to truncations where we
consider a finite set of sites m. It suffices to restrict the summations in (36) to a finite range
of n, m, also setting modes outside the desired index range to zero.

Also the Hamiltonian of (36) is invariant under the global phase change un,m 7→
eiφun,m, for arbitrary real φ and all n, m. This fact justifies the terminology coupled DNLS
for (30).

As seen in [1], the Wannier expansion leads to a natural extension of the Fratalocchi-
Assanto model [6]. The coupled mode approach of [6] can be also extended to describe more
degrees of freedom per site [7]. Generally, mode expansions have additional structure when
they arise from the solution of some spectral problem. This is the case for Bloch and Wannier
functions. This additional structure however requires substantial computational effort, e.g.
we need to compute Bloch and Wannier functions and evaluate Wannier overlap integrals.
We discuss some of the relevant issues in the next section. We emphasize however that the
general structural features of the equations, e.g., Hamiltonian structure, symmetries, form
of mode interaction terms, are key. Heuristic simplifications that preserve these features
can yield useful models. It is also seems important to be able to justify truncations to
a small number of bands. We have at the moment only a partial justification for such
truncations, relying on the rate of decay of the power in the higher bands (29).
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3. Real Wannier Functions and Dispersive Properties

The Hamiltonion structure of the infinite system for the Wannier coefficients (30)
assumed real functions. In this section we describe the construction of real Wannier
functions using explicit constructions of the Bloch functions. We also observe that the linear
part of (30) will in general couple modes from different bands. This is a main difference
between our system and the equations considered in [11,12,26,27]. We show that we can
still however diagonalize the system using trigonometric functions. In that sense, the
Wannier-Bloch analysis leads to a homogenized , i.e., effectively translation invariant,
linear part, see [29,30].

To construct the Wannier functions we examine the Schrödinger equation

− ∂2
yΨ + V(y)Ψ = EΨ, Ψ : R→ C (51)

with V nonegative and b-periodic as a second order ODE with a real parameter E ∈ R.
We assume that V is also piecewise Lipschitz. The spectrum of −∂2

y + V is given by the set
of real E for which all solutions of (51) are bounded, see e.g., [24,35]. The equations for the
real and imaginary parts of Ψ decouple, and all complex valued solutions are of the form
AΨ1(.; E) + BΨ2(.; E), A, B ∈ C, where Ψ1(.; E), Ψ2(.; E) are any two linearly independent
real solutions.

We consider solutions Ψ1(.; E), Ψ2(.; E) with initial conditions

Ψ1(0; E)= 1, Ψ′1(0; E)= 0, (52)

Ψ2(0; E)= 0, Ψ′2(0; E)= 1. (53)

By the Hamiltonian structure of (51), seen a non-autonomous ODE on the plane, the
corresponding solutions are linearly independent, i.e., [Ψ1(y; E), Ψ′1(y; E)], [Ψ2(y; E), Ψ′2(y; E)]
are linearly independent since the (linear) solution map is symplectic, ∀y ∈ R.

Given E ∈ R, a solution Ψ(.; E) is bounded if and only if there exists λ ∈ C, |λ| = 1,
for which

Ψ(y + b; E) = λΨ(y; E), ∀y ∈ R, (54)

see [21]. Then we must also have

Ψ′(y + b; E) = λΨ′(y; E), ∀y ∈ R. (55)

Let Ψ(y; E) = AΨ1(y; E) + BΨ2(y; E) for A, B complex, then (54), (55) at y = 0 and
(52), (53) imply the system

AΨ1(b; E) + BΨ2(b; E) = λA (56)

AΨ′1(b; E) + BΨ′2(b; E) = λB. (57)

Then λ must be an eigenvalue of the matrix M defined by

M =

(
Ψ1(b; E) Ψ2(b; E)
Ψ′1(b; E) Ψ′2(b; E)

)
. (58)

If λ is an eigenvalue of M, and λ = eikb, then k and E are related to

µ(E) = cos kb, (59)

where

µ(E) =
Ψ1(b; E) + Ψ′2(b; E)

2
, (60)

see [21]. The dependence of µ on the choice of Ψ1, Ψ2, i.e., the initial conditions (52), (53) is
supressed from the notation.
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We recall some properties of µ(E), and the solutions of (59), see [21–24]. The function
µ(E), µ is entire and µ′(E) = 0 implies |µ(E)| ≥ 1. Also, µ(E) → ∞ as E → −∞, and
µ(E) → cos(b

√
E) as E → ∞. Also µ(E) → ∞ as E → −∞. For V non-negative µ has no

negative critical points and an infinite set of positive critical points that become equidistant.
A band is a maximal connected interval of R where µ(E) is monotone and satisfies

|µ(E)| ≤ 1. By the above, there is an infinite number of bands Bn, n ∈ N, and a natural
way to enumerate them so that points n < n′, E ∈ Bn, E′ implies En ≤ En′ , with equality
holding for n = n + 1 and E = maxBn, E′ = minBn′ . Every E satisfying (60) must belong
to exactly one band. Also, for every n ∈ N, and k ∈ [0, π/b], there exists a unique E ∈ Bn
satisfying (60). We denote such E ∈ Bn by Ek,n. The large E behavior of µ(E) also implies
that there exist c, C > 0 such that εn = minBn satisfies cn2 ≤ εn ≤ Cn2, ∀n ∈ N.

The solutions of (60) can be then parametrized as En,k, k ∈ [0, π/b], n ∈ N, and Bn =
[En,π/b, En,0]. Also, we let E(−k, n) = Ek,n and extend En,k to k ∈ R by 2π/b−periodicity.
This notation is consistent with (60). For V non-negative all bands belong to R+. By the
implicit function theorem, given n ∈ N, En,k is real analytic for k ∈ (0, π/b), and is continu-
ous in [0, π/b]. The even and 2π/b−periodic extension of En,k to real k is continuous in
R, and real analytic at all points outside the lattice Zπ

b , for all n ∈ N. Regularity of En,k at
points Zπ

b for given n follows under gap conditions for the edges of the band Bn.
Consider now E = En,k as above a solution of (60) for some n ∈ N, k ∈ [0, π/b],

and the corresponding real solutions Ψ1(·; E), Ψ2(·; E). Solving (56), (57) we have

A
B

=
Ψ2(b; E)

λ−Ψ1(b; E)
, (61)

and we obtain

Ψ(y; E) = A
(

Ψ1(y; E) +
Ψ2(b; E)

λ−Ψ1(b; E)
Ψ2(y; E)

)
, (62)

with λ = eikb, E = En,k, n ∈ N, k ∈ (0, π/b). The expression can be extended to the
endpoints k = 0, π/b, under conditions we discuss below. Also, the complex coefficient A
is free, e.g., it can be also chosen to normalize Ψ(y; E). In general it may depend on n, k,
and we write A = An,k.

Denote Ψ(·; E) = Ψ(·; En,k) by Ψn,k, n ∈ N, k ∈ [0, π/b]. Clearly Ψ∗n,k is also a solution
of (51). We then let

φn,k =

{
Ψn,k if 0 < k < π

b ,
Ψ∗n,−k if −π

b < k < 0
. (63)

The functions φn,k are extended by 2π/b−periodicity for k ∈ R \ Zπ
b and are Bloch

functions, see (12), (13), (14).
We check that the corresponding Wannier functions are real. By (18), it suffices to

show that the w0
n are real. By (16)

w0
n(y) =

√
b

2π

∫ π
b

− π
b

φn,k(y) dk, (64)

and by (63)

∫ π
b

− π
b

φn,k(y)dk =
∫ 0

− π
b

Ψ∗n,−k(y) dk +
∫ π

b

0
Ψn,k(y)dk = 2Re

∫ π
b

0
Ψn,k(y) dk, (65)

∀y ∈ R. It is assumed that the last integral is well defined.
We now give a condition that makes the above construction well defined, leading to

w0
n ∈ L2(R,R), for all n ∈ N. In particular, assume that the limits

lim
k→0+

dEn,k

dk
, lim

k→π/b−

dEn,k

dk
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exist (and are finite). Then the corresponding limits of the fraction Ψ2(b; E)/(λ−Ψ1(b; E))
also exist, and Ψn,k given by the right hand side of (62), with A = 1, is well defined for
all n ∈ N, k ∈ [0, π/b]. We further see that the Ψn,·(·) are continuous in [0, π/b] × R,
∀n ∈ N. Defining φn,k by (63), the integrals in (64), (65) are finite for all y ∈ R. It follows
that φn,·(y) ∈ L2([−π/b, π/b];C), for all n ∈ N, y ∈ R. Then by Percival and (18) we see
that ∫

R
|w0

n(y)|2 dy = 2π
∫ b

0

(√
b

2π

∫ π
b

− π
b

φn,k(y) dk

)
dy,

i.e., finite, for all n. Thus the Wannier functions constructed this way are square-summable.
Normalized Wannier functions are obtained by choosing a suitable coefficient An,k = An
for each n ∈ N.

Note that the condition we used is always satisfied if both En,0, En,π/b belong to the
boundary of the spectrum for some n. In such band gap situations, En,· is real analytic in R,
and we obtain an exponentially decaying Wannier function w0

n [23,24].
The above suggest that several qualitative features of the Wannnier functions can be

deduced by theoretical arguments. The main input is information on the energy band
structure. This information is obtained by solving (59) numerically. The function µ(E)
must be computed numerically from (60). The functions Ψ1(y; E), Ψ2(y; E) are computed
by numerical integration of (51) in the interval y ∈ [0, b] for different values of E, using
the initial conditions (52), (53) respectively. Explicit expressions for the Ψ1(b; E), Ψ2(b; E)
are known for a piece-wise constant potential V with two steps, see [1,23,36], but are
cumbersome in the general case. This calculation also yields En,k, k ∈ [−π/b, π/b], for the
lowest n, numerical plots can be found in several sources, see e.g., [1,26].

Wannier functions are obtained numerically from (62)–(64), see [1,23,26] for some ex-
amples indicating the decay of the Wannier functions (for small n) as V is varied. The eval-
uation of mode interaction coefficients (33), (34) also uses quadrature, see [1]. The main
difficulty here is the large number of coefficients, and the combinatorial nature of their
enumeration. At this stage we need some efficient cut-off criteria, and we typically opt for
some heuristic truncation to a few mode interactions, e.g., with a few nearest neighbors,
justified by the decay of Wannier functions. This part of the analysis is still not as developed.
In the case where we consider truncation to the first band modes, the main question is
distinguishing between a power (on-site-only) and a nonlocal nonlinearity [6], see [1] for
some results. As we already mentioned the two models have properties the can distinguish
them [8–10]. The possibility of long range linear mode interactions, e.g., as in [37], was also
considered. It would be desirable to have a similar study for a model with two or three
bands, inter-band mode interactions could be a more important feature of the problem.

We now examine the linear part of the nematicon system (1), (2). Generally the
Wannier modes of different bands interact, and we want to examine the effect of these
interactions for finite band truncations of the general discrete system (A8).

In what follows we will consider expansions in real Wannier functions and use the
Hamiltonian structure of the linear systems. The linear coefficients of (31), (35) are then
Dm,m′

n,n′ = Dm,m′
n,n′ with

Dm,m′
n,n′ =

∫
R
(wm

n )
′′(y)wm′

n′ (y) dy

=
∫
R
(w0

n)
′′(y−mb)w0

n′(y−m′b) dy

=
∫
R
(w0

n)
′′(ỹ)w0

n′(ỹ− (m−m′)b) dỹ. (66)

Let Dn1,n2(m) = D0,m
n1,n2 , then by (66) we have the symmetries

Dm1,m2
n1,n2 = Dn1,n2(m1 −m2) = Dn2,n1(m2 −m1) = Dm2,m1

n2,n1 , (67)
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for all n1, n2 ∈ N, m1, m2 ∈ Z. Linear interaction coefficients for n1 = n2 = n depend on
|m1 −m2|. In general, the linear interactions between bands n1 6= n2 do not vanish.

The linear coefficients Dm1,m2
n1,n2 are contrasted to those of the periodic or perturbed

periodic Schrödinger equation

∂zu =
1
2

i∂2
yu +

1
2

i[V(y) + Ṽ(y)]u, (68)

with Ṽ a perturbation of the b−periodic potential V used to define the Wannier functions.
For Ṽ ≡ 0 the Hamiltonian is

h2,V =
1
2

∫
R

u(−∂2
y + V)u∗, (69)

and we use expansion in the Bloch functions and (12), (13) and the definition of the Wannier
functions to compute

h2,V =
1
2

√
b

2π ∑
n∈N

∑
m1,m2∈Z

Ên(m1 −m2)un,m1 u∗n,m2
, (70)

with

Ên(m) =

√
b

2π

∫ π
b

− π
b

En,ke−imbk dk, m ∈ Z. (71)

Also, En,k real and even in k, implies Ên(−m) = Ê∗n(m) = Ên(m), for all n ∈ N, m ∈ Z.
The interaction between different bands therefore vanishes.

The effect of the perturbation Ṽ is described adding to the Hamiltonian the part

hṼ =
1
2

∫
R

uṼu∗. (72)

We have
hṼ =

1
2 ∑

n1,n2∈N
∑

m1,m2∈Z
Ṽm1,m2

n1,n2 un1,m1 u∗n2,m2
, (73)

with
Ṽm1,m2

n1,n2 =
∫
R

wm1
n1 (y)Ṽ(y)wm2

n2 (y) dy. (74)

The coefficients will in general couple modes from different bands. In the case where
Ṽ is also b−periodic the Ṽm1,m2

n1,n2 have the symmetries that are similar to the ones in (67), i.e.,
Ṽm1,m2

n1,n2 = Ṽm2,m1
n2,n1 = Ṽ0,m1−m2

n1,n2 and will also couple modes from different bands. In the case
where V + Ṽ is periodic a new set of Wannier functions may be defined so that the new
bands decouple.

We remark that the Hamiltonian of the linear part of is denoted by h2, see (43). Clearly,
h2 = h2,V − hV , with the notation of (70), (73). Thus the coefficients Dm1,m2

n1,n2 of (66) can be
expressed in terms of the Ên(m), Vm1,m2

n1,n2 of (71), (74), as

Dm1,m2
n1,n2 = −

√
b

2π
δn1,n2 Ên1(m1 −m2)−Vm1,m2

n1,n2 . (75)

(In the case n1 6= n2, the first term vanishes.) Comparing (66), (75) we thus see that can
then avoid computation of the derivative of the Wannier functions at the cost of computing
the Fourier transform of En,k.

Consider now a truncation of the general discrete system (A8) to the first N bands.
The linear part is

duj,m

dz
=

i
2

N

∑
n1=1

∑
m1∈Z

un1,m1 Dm1,m
n1,j =

i
2

N

∑
n1=1

∑
m1∈Z

Dn1,j(m1 −m)un1,m1 . (76)
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To find the dispersion relation we look for solutions uj,m = Aje−i(mbκ+ωκz), j ∈
{1, . . . , N}, m ∈ Z, κ ∈ R. Then (76) becomes

ωκ Aj = −
1
2

N

∑
n=1

(
∑
l∈Z

Dn,j(l)e−ilbκ

)
An, j = 1, . . . , N. (77)

Thus ωκ is an eigenvalue of the matrix Tκ defined by

Tκ(j, n) = −1
2 ∑

l∈Z
Dn,j(l)e−ilbκ , j, n ∈ {1, . . . , N}. (78)

For instance, truncation up to the second band yields

ωκ =
1
2

(
Tκ(1, 1) + Tκ(2, 2)±

√
(Tκ(1, 1)− Tκ(2, 2))2 + 4Tκ(1, 2)Tκ(2, 1)

)
, (79)

κ ∈ R.
By the symmetries (67) Tκ is Hermitian, ∀κ ∈ R, so that the eigenvalues ωκ are real.
Note that the solutions uj,m and Tκ are 2π−periodic in κ so that we may consider only

κ ∈ [0, 2π). Varying κ ∈ [0, 2π) for each of the N eigenvalues ωκ,j, j = 1, . . . , N of Tκ will
produce N intervals.

We finally note that substitution of (31), (67) into (78), and use of (17) leads to some-
what simpler expressions that involve the Bloch functions

Tκ(j, n) =
1
2

√
b

2π

∫
R
(w0

n)
′′(y)φ∗j,κ(y)dy = −1

2

√
b

2π

∫
R

w0
n(y)(φ

∗
j,κ)
′′(y)dy. (80)

The linear part of the evolution equation is therefore diagonalized by plane wave
(trigonometric) solutions, and is thus effectively translation invariant in the Wannier
basis. This is expected as the periodicity of the medium is absorbed in the nonlinear term.
The range of the ωκ,j, κ ∈ [0, 2π), j = 1, . . . , N, will produce N intervals that must be
computed numerically. These intervals may overlap or have gaps, although in the limit
N → ∞ we expect that their union is the positive real axis, i.e., the spectrum of −∂2

y.
The computation of these intervals involves the computation of linear mode interaction
coefficients and will be considered in future work.

4. Discussion

We have examined some properties of a coupled Schrödinger-elliptic system modeling
optical waveguide arrays in a nematic liquid crystal substrate. The system is studied
by first passing to an equivalent infinite system of discrete describing the interaction
of Wannier mode amplitudes of the relevant physical quantities [1]. The Wannier basis
functions are defined in terms of a periodic Schrödinger operator appearing in the system
and must be computed numerically. The Wannier mode amplitudes are related to the
observed quantities by quadrature formulas (21) that may be evaluated numerically or
using approximations. The Wannier basis approach leads to the derivation of systems of
discrete nonlinear Schrödinger (DNLS) equations by truncation to the mode amplitudes of
the first bands of the periodic Schrödinger operator. We have shown that these systems are
Hamiltonian. The proof uses the reality of Wannier functions, and we have also described
an explicit construction of real Wannier functions. Finally we show that the linear part of
the system of discrete equations is diagonalized by (trigonometric) plane waves.

Bloch-Wannier analysis is a classical subject in theoretical physics, with well-known
applications in classical and quantum mechanics [24,25]. Recently it is increasingly applied
to the study of nonlinear waves in inhomogeneous media [23,26], and in the theory of
homogenization [29,30]. The paper considers a problem in nonlinear waves where the
periodicity appears in the nonlinear interaction. The system includes a natural operator
that allows the use of Bloch-Wannier analysis, but differs from the more commonly stud-
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ied systems [7] where the linear part of the beam propagation equation is the periodic
Schrödinger operator. In that case the band gap structure of the periodic Schrödinger
operator allows us to justify the truncation to a model for the lowest band modes through
a non-resonance argument [23]. In the present case the the most likely justification of
DNLS models will involve truncation to a finite (possibly small) system of DNLS equations.
This fact is also suggested by experimental results of [3]. Note that [3] consider a more
complicated periodic operator in the director field equation that also includes the second
(vertical) direction of the plane perpendicular to the optical axis. The present paper uses a
simplification of the director field equation and takes advantage of the more developed
Bloch analysis of the periodic Schrödinger operator. The idea is that the nonlinear effect of
the transverse periodicity is already present in the simpler version. In addition, the more
tractable Wannier-Bloch analysis of the simpler problem has allowed us to derive multi-
band DNLS systems and to analyze their structure. This a first towards further analysis of
such systems, e.g., along the lines of earlier studies of the Fratalocchi-Assanto model [8,9].
While the paper considers a problem arising from nonlinear optics in liquid crystals, the
combination of nonlocal nonlinearity and periodicity we consider may appear in other
areas where similar systems are studied [14,15].

The paper shows that the Wannier basis expansion is an effective tool for elucidating
the structural features of simplified DNLS equations. We also saw that the Wannier-
Bloch approach requires the numerical computation of several intermediate quantities.
For instance, the computation of Wannier functions uses numerically computed Bloch
functions and numerical integration over Bloch functions, while the nonlinearity of DNLS
systems, as well as the linear interaction between bands also involves the evaluation of
Wannier overlap integrals. Possible simplifications may arise for some limits of V [1],
and there are general ideas such a eliminating non-resonant interactions [23,26] that can
be examined further in this problem. but possibly less practical. Our view is that a good
understanding of the structure of the Wannier coupled mode systems may allow us to
analyze their dynamical properties without computing everything. It is possible that
heuristic simplifications lead to models that capture significant features of the dynamics,
and that a better theoretical understanding can bridge the gap between the simplified and
fuller models. These questions will be addressed in future work.
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Appendix A

We present the steps from the Schrödinger system (1), (2) for the variables u, ψ to the
infinite system (30) for their Wannier coefficients, see also [1],

We first consider the second nematicon Equation (2). We multiply (2) by φ∗n′ ,k′(y),
integrate over y ∈ R, and use the Schrödinger Equation (12) to obtain∫

R
ψ(y)(E∗n′ ,k′ + g2)φ∗n′ ,k′(y) dy = α

∫
R
|u(y)|2φ∗n′ ,k′(y) dy, (A1)

hence ∫
R

ψ(y)φ∗n′ ,k′(y) dy = α(En′ ,k′ + g2)−1
∫
R
|u(y)|2φ∗n′ ,k′(y) dy. (A2)
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We then multiply (A2) by eimk′b and integrate both sides over k ∈ [−π/b, π/b]. Inter-
changing the order of integration in k, y, and using the definition of Wannier functions we
obtain that ψ is given by (19) with

cn,m = α

√
b

2π ∑
n1,n2∈N

∑
m1,m2∈Z

Km1,m2,m
n1,n2,n un1,m1 u∗n2,m2

, (A3)

where

Km1,m2,m
n1,n2,n =

∫
R

wm1
n1 (y)w

m2∗
n2 (y)

{∫ π/b

−π/b

φ∗n,k(y)e
imbk

En,k + g2 dk

}
dy. (A4)

Expanding φn,k in the Wannier basis as in (17) we have

Km1,m2,m
n1,n2,n =

√
b

2π

∫
R

wm1
n1
(y)wm2∗

n2
(y)

{
∑

m′∈Z

(∫ π/b

−π/b

ei(m−m′)bk

En,k + g2 dk

)
wm′∗

n (y)

}
dy

=

√
b

2π

∫
R

wm1
n1
(y)wm2∗

n2
(y)

{
∑

n′∈N
∑

m′∈Z
δn,n′

(∫ π/b

−π/b

ei(m−m′)bk

En′ ,k + g2 dk

)
wm′∗

n′ (y)

}
dy

= ∑
n′∈N

∑
m′∈Z

√
b

2π
δn,n′

(∫ π/b

−π/b

ei(m−m′)bk

En′ ,k + g2 dk

) ∫
R

wm1
n1
(y)wm2∗

n2
(y)wm′∗

n′ (y) dy. (A5)

By (A2), (A5) we then have

cn,m = α ∑
n1,n2,n′∈N

∑
m1,m2,m′∈Z

Gm,m′
n,n′ Im1,m2,m′

n1,n2,n′ un1,m1 u∗n2,m2
, (A6)

with

Gm,m′
n,n′ = b

2π δn,n′

(∫ π/b
−π/b

ei(m−m′)bk

En′ ,k+g2 dk
)

, Im1,m2,m′

n1,n2,n′ =
∫
R wm1

n1 (y)w
m2∗
n2 (y)wm′∗

n′ (y) dy. (A7)

To expand the first nematicon Equation (1) in coefficients of Wannier functions, we sub-
stitute the series expansions (19), (20) into (1), multiply (1) by wm′∗

n′ (y), and integrate over
y ∈ R. We obtain

dun′ ,m′

dz
=

1
2

i ∑
n∈N

∑
m∈Z

Dm,m′
n,n′ un,m +

1
2

iβ ∑
n,n3∈N

∑
m,m3∈Z

Im,m3,m′

n,n3,n′ cn,mun3,m3 . (A8)

where

Dm,m′

n,n′ =
∫
R
(wm

n )
′′(y)wm′∗

n′ (y) dy, Im,m3,m′

n,n3,n′ =
∫
R

wm
n (y)w

m3
n3 (y)w

m′∗
n′ (y) dy (A9)

Substitution of (A3) into (A8) leads to the system

dun′ ,m′

dz
=

1
2

i ∑
n∈N

∑
m∈Z

Dm,m′

n,n′ un,m

+
1
2

iαβ ∑
n1,n2,n3∈N

∑
m1,m2,m3∈Z

Vm1,m2,m3,m′
n1,n2,n3,n′ un1,m1 u∗n2,m2

un3,m3 , (A10)

where by (A4), (31), and (A8), (31)

Vm1,m2,m3,m′
n1,n2,n3,n′ =

√
b

2π ∑
n∈N

∑
m∈Z

Km1,m2,m
n1,n2,n Im,m3,m′

n,n3,n′ = ∑
n∈N

∑
m∈Z

Gm,m′
n,n′ Im1,m2,m′

n1,n2,n′ Im,m3,m′

n,n3,n′ . (A11)

This is the system of (30), with the coefficients (31)–(34).



Appl. Sci. 2021, 11, 4420 17 of 18

References
1. Velez Perez, J.A.; Panayotaros, P. Wannier functions and discrete NLS equations for nematicons. Math. Eng. 2019, 1, 309–326.
2. Fratalocchi, A.; Assanto, G.; Brzda̧kiewicz, K.A.; Karpierz, M.A. Discrete propagation and spatial solitons in nematic liquid

crystals. Opt. Lett. 2004, 29, 1530–1532. [CrossRef] [PubMed]
3. Fratalocchi, A.; Assanto, G.; Brzda̧kiewicz, K.A.; Karpierz, M.A. Discrete light propagation and self-trapping in liquid crystals.

Opt. Express 2005, 13, 1808–1815. [CrossRef] [PubMed]
4. Rutkowska, K.A.; Assanto, G.; Karpierz, M.A. Discrete light propagation in arrays of liquid crystalline waveguides. In Nematicons:

Spatial Optical Solitons in Nematic Liquid Crystals; Assanto, G., Ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2012; pp. 255–277.
5. Assanto, G.; Fratalocchi, A.; Peccianti, M. Spatial solitons in nematic liquid crystals: From bulk to discrete. Opt. Express 2007, 158,

5248–5529. [CrossRef] [PubMed]
6. Fratalocchi, A.; Assanto, G. Discrete light localization in one-dimensional nonlinear lattices with arbitrary nonlocality. Phys. Rev.

E 2005, 72, 066608. [CrossRef] [PubMed]
7. Lederer, F.; Stegeman, G.I.; Christodoulides, D.N.; Assanto, G.; Segev, M.; Silberberg, Y. Discrete solitons in optics. Phys. Rep.

2008, 463, 1–126. [CrossRef]
8. Ben, R.I.; Cisneros, A.L.; Minzoni, A.A.; Panayotaros, P. Localized solutions for a nonlocal discrete NLS equation. Phys. Lett. A

2015, 379, 1705–1714. [CrossRef]
9. Ben, R.I.; Borgna, J.P.; Panayotaros, P. Properties of some breather solutions of a nonlocal discrete NLS equation. Comm. Math. Sci.

2017, 15, 2143–2175. [CrossRef]
10. Kartashov, Y.V.; Vysloukh, V.A.; Torner, L. Soliton modes, stability, and drift in optical lattices with spatially modulated

nonlinearity. Opt. Lett. 2008, 33, 1747–1749. [CrossRef]
11. Abdullaev, F.K.; Brazhnyi, V.A. Solitons in dipolar Bose–Einstein condensates with a trap and barrier potential. J. Phys. B At. Mol.

Opt. Phys. 2012, 45, 085301. [CrossRef]
12. Efremidis, N.K. Nonlocal lattice solitons in thermal media. Phys. Rev. A 2008, 77, 063824. [CrossRef]
13. Qin, J.; Dong, G.; Malomed, B.A. Matter-wave—Microwave solitons produced by the local-field effect. Phys. Rev. Lett. 2015, 115,

023901. [CrossRef]
14. Paredes, A.; Olivier, D.N.; Michinel, H. From optics to dark matter: A review on nonlinear Schrödinger–Poisson systems.

Physica D 2020, 403, 132301. [CrossRef]
15. Assanto, G.; Smyth, N.F. Self-confined light waves in nematic liquid crystals. Physica D 2020, 402, 132182. [CrossRef]
16. Peccianti, M.; De Rossi, A.; Assanto, G.; De Luca, A.; Umeton, C.; Khoo, I.C. Electrically assisted self-confinement and waveguiding

in planar nematic liquid crystal cells. Appl. Phys. Lett. 2000, 77, 7–9. [CrossRef]
17. Peccianti, M.; Assanto, G. Nematicons. Phys. Rep. 2012, 516, 147–208. [CrossRef]
18. Assanto, G.; Khan, C.; Smyth, N.F. Multi-hump thermo-reorientational solitary waves in nematic liquid crystals: Modulation

theory solutions. Phys. Rev. A 2020, submitted.
19. Laudyn, U.A.; Piccardi, A.; Kwasny, A.; Karpierz, M.A.; Assanto, G. Thermo-optic soliton routing in nematic liquid crystals.

Opt. Lett. 2018, 43, 2296–2299. [CrossRef]
20. Alberucci, A.; Laudyn, U.A.; Piccardi, A.; Kwasny, A.; Klus, B.; Karpierz, M.A.; Assanto, G. Nonlinear continuous-wave optical

propagation in nematic liquid crystals: Interplay between reorientational and thermal effects. Phys. Rev. E 2017, 96, 012703.
[CrossRef]

21. Kohn, W. Analytic properties of Bloch waves and Wannier functions. Phys. Rev. 1959, 115, 809–821. [CrossRef]
22. Kramers, H.A. Das Eigenwertproblem im eindimensionalen periodischen Kraftfelde. Physica 1935, 2, 483. [CrossRef]
23. Pelinovsky, D.E. Localization in Periodic Potentials: From Schrödinger Operators to the Gross-Pitaevskii Equation; Cambridge Univ.

Press: Cambridge, UK, 2011.
24. Reed, M.; Simon, B. Methods of Modern Mathematical Physics IV; Academic Press: New York, NY, USA, 1978.
25. Ziman, J.M. Principles of the Theory of Solids, 2nd ed.; Cambridge Univ. Press: Cambridge, UK, 1972.
26. Alfimov, G.L.; Kevrekidis, P.G.; Konotop, V.V.; Salerno, M. Wannier functions analysis of the nonlinear Schrödinger equation with

a periodic potential. Phys. Rev. E 2002, 66, 046608. [CrossRef] [PubMed]
27. Pelinovsky, D.; Schneider, G. Bounds on the tight-binding approximation for the Gross-Pitaevskii equation with a periodic

potential. J. Diff. Eq. 2010, 248, 837–849. [CrossRef]
28. Fibich, G. The Nonlinear Schrödinger Equation: Singular Solutions and Optical Collapse; Springer: New York, NY, USA, 2015.
29. Dohnal, T.; Lamacz, A.; Schweizer, B. Bloch-wave homogenization on large time scales and dispersive effective wave equations.

Multiscale Model. Simul. 2014, 12, 488–513. [CrossRef]
30. Du, Q.; Engquist, B.; Tian, X. Multiscale modeling, homogenization and nonlocal effects: Mathematical and computational issues.

arXiv 2019, arXiv:1909.00708v1.
31. Borgna, J.P.; Panayotaros, P.; Rial, D.; Sánchez de la Vega, C. Optical solitons in nematic liquid crystals: Model with saturation

effects. Nonlinearity 2018, 31, 1535. [CrossRef]
32. Borgna, J.P.; Panayotaros, P.; Rial, D.; Sánchez de la Vega, C. Optical solitons in nematic liquid crystals: Large angle model.

Physica D 2020, 408, 132448. [CrossRef]
33. Panayotaros, P.; Marchant, T.R. Solitary waves in nematic liquid crystals. Physica D 2014, 268, 106–117. [CrossRef]

http://doi.org/10.1364/OL.29.001530
http://www.ncbi.nlm.nih.gov/pubmed/15259736
http://dx.doi.org/10.1364/OPEX.13.001808
http://www.ncbi.nlm.nih.gov/pubmed/19495060
http://dx.doi.org/10.1364/OE.15.005248
http://www.ncbi.nlm.nih.gov/pubmed/19532777
http://dx.doi.org/10.1103/PhysRevE.72.066608
http://www.ncbi.nlm.nih.gov/pubmed/16486079
http://dx.doi.org/10.1016/j.physrep.2008.04.004
http://dx.doi.org/10.1016/j.physleta.2015.04.012
http://dx.doi.org/10.4310/CMS.2017.v15.n8.a3
http://dx.doi.org/10.1364/OL.33.001747
http://dx.doi.org/10.1088/0953-4075/45/8/085301
http://dx.doi.org/10.1103/PhysRevA.77.063824
http://dx.doi.org/10.1103/PhysRevLett.115.023901
http://dx.doi.org/10.1016/j.physd.2019.132301
http://dx.doi.org/10.1016/j.physd.2019.132182
http://dx.doi.org/10.1063/1.126859
http://dx.doi.org/10.1016/j.physrep.2012.02.004
http://dx.doi.org/10.1364/OL.43.002296
http://dx.doi.org/10.1103/PhysRevE.96.012703
http://dx.doi.org/10.1103/PhysRev.115.809
http://dx.doi.org/10.1016/S0031-8914(35)90118-5
http://dx.doi.org/10.1103/PhysRevE.66.046608
http://www.ncbi.nlm.nih.gov/pubmed/12443350
http://dx.doi.org/10.1016/j.jde.2009.11.014
http://dx.doi.org/10.1137/130935033
http://dx.doi.org/10.1088/1361-6544/aaa2e2
http://dx.doi.org/10.1016/j.physd.2020.132448
http://dx.doi.org/10.1016/j.physd.2013.10.011


Appl. Sci. 2021, 11, 4420 18 of 18

34. Bruno-Alfonso, A.; Nacbar, D.R. Wannier functions of isolated bands in one-dimensional crystals. Phys. Rev. B 2007, 75, 115428.
[CrossRef]

35. Kapitula, T.; Promislow, K. Spectral and Dynamical Stability of Nonlinear Waves; Springer: New York, NY, USA, 2013.
36. Allen, G. Band structures of one-dimensional crystals with square-well potentials. Phys. Rev. 1953, 91, 531–533. [CrossRef]
37. Fec̆kan, M.; Rothos, V.M. Travelling waves of discrete nonlinear Schrödinger equations with nonlocal interactions. Appl. Anal.

2010, 89, 1387–1411. [CrossRef]

http://dx.doi.org/10.1103/PhysRevB.75.115428
http://dx.doi.org/10.1103/PhysRev.91.531
http://dx.doi.org/10.1080/00036810903208130

	Introduction
	Hamiltonian Structure of Periodic Nematicon Equations
	Real Wannier Functions and Dispersive Properties
	Discussion
	
	References

