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Abstract: Cu@Si core–shell nanowire thin films with a Cu3Si interface between the Cu and Si were
synthesized by slurry casting and subsequent magnetron sputtering and investigated as anode
materials for lithium ion batteries. In this constructed core–shell architecture, the Cu nanowires were
connected to each other or to the Cu foil, forming a three-dimensional electron-conductive network
and as mechanical support for the Si during cycling. Meanwhile, the Cu3Si layer can enhance the
interface adhesion strength of the Cu core and Si shell; a large amount of void spaces between
the Cu@Si nanowires could accommodate the lithiation-induced volume expansion and facilitate
electrolyte impregnation. As a consequence, this electrode exhibits impressive electrochemical
properties: the initial discharge capacity and initial coulombic efficiency is 3193 mAh/g and 87%,
respectively. After 500 cycles, the discharge capacity is about 948 mAh/g, three times that of graphite,
corresponding to an average capacity fading rate of 0.2% per cycle.

Keywords: lithium ion battery; anode; silicon; core–shell structure; magnetron sputtering

1. Introduction

Silicon (Si) has the highest known theoretical capacity of 4200 mAh/g, almost ten
times that of the currently used graphite anode, and is therefore being considered as the
most promising anode material for high-energy-density lithium ion batteries (LIBs) [1,2].
Unfortunately, Si suffers from as high as 300% volume change upon full (de)lithiation,
inducing pulverization of the silicon particles and therefore losing electrical connectivity
from the current collector and the thickening of the solid electrolyte interface (SEI) layer
upon cycling; these eventually hinder the practical application of Si-based anode materials
in LIBs [3,4].

To tackle these issues, enormous attention has been directed towards the develop-
ment of Si nanostructured materials [5], of which Si nanowires (SiNWs) have attracted
considerable interest owing to its small lithium diffusion length and facile strain relaxation
during (de)lithiation [6,7]. However, the complete lithiation of Si nanowire impedes charge
transport in the longitudinal direction, limiting its rate performance [8]. Cui et al. success-
fully synthesized a core–shell structured Si nanowire with a crystallite Si (c-Si) core and
amorphous Si (a-Si) shell, in which the a-Si shell can be cycled alone as lithium ion storage
whereas the c-Si core remains intact as mechanical sturdy support and efficient electron
transport pathways by setting an appropriate cut-off potential owing to the higher lithiation
potential of a-Si than c-Si (∼220 mV vs. ∼120 mV, respectively), resulting in significant
improvement in electrochemical performance over traditional Si nanowires, such as a high
charge capacity of 1000 mAh/g and a capacity retention of 90% over 100 cycles [9]. On
the heels of this work, a series of core–shell nanowires with Si as the core and electron
conductive material as shell [10,11], or with Si as the shell and other electron conductive
materials as the core [12,13], also have been fabricated, contributing to great achievement
in Si nanowire-based anodes. However, they not only involved high temperature, complex
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steps and the use of catalysts during preparation, but also have a low tap density when
applied as an anode. Therefore, the Si core–shell nanowire-based anodes are relatively
expensive to produce and hard to scale up.

Alternatively, Si film anodes have also been studied since they are binder and conduc-
tive additive free. Ab-initio calculations suggested that the critical thickness of the silicon
film to avoid crack is about 100 nm, beyond which the silicon film would fracture and
lead to rapid capacity fading [14]. Such a thin Si-film is not able to provide sufficient Si
loading density for practical application [15]. By using a Si-based multilayer thin film, with
alternating layers of inactive materials as a buffer layer [16,17], its loading density can be
increased but only to a very limited extent.

In this study, to combine the advantage of both a Si thin film and core–shell Si nanowire,
Cu@Si core–shell nanowire thin film (Cu&Si CSNWF) electrodes were fabricated through
slurry casting, heat treatment, and magnetron sputtering. Subsequently, their electrochem-
ical properties were investigated in detail. In comparison with other core materials, the
Cu nanowire core has obvious advantage such as (1) higher electrical conductivity and
fracture toughness [18]; (2) it is inactive to lithium and thus experiences no volume change
during the lithiation/delithiation of Si; and (3) the Cu nanowires we used are commercially
available and very cheap in price, and easy to be scale up in practical application.

2. Materials and Methods
2.1. Cu@Si Core–Shell Nanowire Thin Film (CSNWF) Preparation

Cu nanowires were purchased from Hongwu Nanometer Material CO., LTD.,Xuzhou
China. Cu&Si CSNWFs were prepared by three steps as schematically illustrated in
Figure 1. Firstly, 2 mg Cu nanowires (CuNWs), as received without any pretreatment, were
uniformly dispersed into 10 mL isopropanol (IPA), and then the slurry was casted onto
50 µm-thick Cu foil, followed by heating at 280 ◦C for 2 h under the reductive atmosphere
of 5 v% H2 + 95 v% Ar to evaporate IPA and reduce the oxide on the surface of the CuNWs.
As a result, the Cu foil was coated with a layer of cross-linked CuNW sediment. Finally,
the Si layer was deposited onto them without intentional heating or cooling to obtain
Cu@Si core–shell nanowire thin films by direct current magnetron sputtering of the Si
target. The sputtering power is about 120 W, the distance of the target to the substrate is
about 50 mm and the work pressure is about 0.4 Pa. For comparison, pure Si film was
simultaneously deposited on Cu foil and glass substrate, respectively, under the same
sputtering parameter. The thickness of the pure Si films is determined as 456 nm through
observing its cross-section thickness using SEM. The loading density of the as-deposited
pure Si thin films was calculated under the assumption that the density of Si thin film is
2.33 g cm−3, as reported in literature [19], which is the highest density achievable for the
as-deposited films and will give the most conservative estimate for the specific capacity of
our electrode materials.
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Figure 1. Schematic diagram of the preparation procedure for the Cu@Si core–shell nanowire thin
films (CSNWFs).

2.2. Characterization and Electrochemical Measurement

The crystal structure of the Cu nanowire and as-deposited pure Si and Cu&Si CSNWF
were characterized, respectively, by X-ray diffraction (XRD, Rikagu Smart Lab) with Cu Kα

radiation (λ = 1.541 Å). The surface morphology and structure of the films were observed
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by field-emission gun scanning electron microscopy (FEG-SEM, Zeiss Ultra-Plus) and
scanning transmission electron microscopy (STEM, FEI Titan). The samples for STEM
were made by the dual-beam focused ion beam (FIB) technique. A Swagelok-type two-
electrode cell was constructed in an argon-filled glove box with a high-purity metallic
lithium disk (Ø = 12 mm) as the counter electrode and reference electrode, Whatman
filter paper (Ø = 13 mm) as the separator, and the Cu&Si core–shell nanowire thin film on
copper foil (Ø = 10 mm) as the working electrode, without addition of any binder and
conductive additive. The electrolyte was 1 mol L−1 LiPF6 in a 1:1 (volume ratio) mixture
of ethylene carbonate (EC) and dimethyl carbonate (DMC). Electrochemical impedance
spectroscopy (EIS) and cyclic voltammetry (CV) tests were carried out on a PAR Versastat-2
electrochemistry system. EIS was measured over the frequency range from 0.01 to about
106 Hz with an AC amplitude of 10 mV. Cyclic voltammetry (CV) was recorded in the
voltage range of 0.01–1 V (vs. Li/Li+) at a scan rate of 0.2 mV s−1. Discharge/charge
capacities were tested in an Arbin BT 2000 multichannel battery tester by galvanostatic
cycling the half cells over the potential range between 0.01 and 1.5 V vs. Li/Li+ at a 0.1 C
rate. C rates were calculated on the basis of a theoretical capacity of 4200 mAh/g. After the
cycling test, the working electrode was taken out through disassembling the Swagelok-type
cell at first and then rinsing it in dimethyl carbonate (DMC) and acetone, finally dried, and
subsequently put in a glove box for further examination. All the electrochemical properties
were measured at room temperature.

3. Results and Discussion
3.1. Characterization of Cu@Si CSNWFs

Figure 2a shows the XRD pattern of the as-received Cu nanowires, Cu nanowire
coated Cu foil after thermal treatment, and Cu&Si CSNWFs. The diffraction patterns of the
as-received Cu nanowire can be well assigned to Cu and Cu oxides (CuO and Cu2O) [20],
suggesting the oxidation of the Cu nanowire surface during storage. After heat treatment
at 280 ◦C for 2 h in the reductive atmosphere of 5 v.% H2 + 95 v.% Ar, diffraction peaks
corresponding to the Cu oxides disappear completely, indicating that this heat treatment
is an effective way to remove Cu oxides. After heat treatment and Si deposition, four
new peaks are observed; these peaks match well with Si and Cu3Si [21–24], respectively,
demonstrating that the sputter-deposited Si is crystalline and there is formation of the
crystalline Cu3Si phase. It is noteworthy that Chen et al. also found the formation of Cu3Si
during sputtering of a Cu layer on the surface of Si nanowires [25]. Figure 2b,c exhibit the
SEM images of the Cu nanowire-coated Cu foil before and after Si deposition, respectively.
It is clearly seen that the Cu nanowires connect either to each other or to the Cu foil substrate,
forming a continuous electron-conductive pathway. After Si deposition, there is an apparent
increase in diameter of the Cu nanowires, and meanwhile a large number of void spaces
could be observed in between them (Figure 2c). Based on Figure 2b,c, the corresponding
diameter distribution of the Cu nanowire before and after Si deposition was statistically
analyzed and exhibited in Figure 2d,e. The diameter of the Cu nanowire ranges from 50 to
300 nm, mainly between 150 and 200 nm. After Si deposition, the diameter is increased
to 300–650 nm, and mainly lies in the range of 400–500 nm, suggesting the formation
of a Cu@Si core–shell nanowire. The formation of voids was ascribed to the shadowing
effect of the Cu nanowires during Si deposition. Figure 2f exhibits the STEM image of an
individual core–shell nanowire, in which the core and shell can be distinguished by the
obvious contrast in the image. The brighter inner part is the Cu core, which is covered by a
continuous uneven gray Si shell. In order to further confirm the elemental composition, we
have performed an EDS test in the mode of linear scanning along the straight line from A
to B, as shown in Figure 2g. It can be recognized that this single Cu@Si core–shell nanowire
has a Cu core of ~200 nm in diameter and a Si shell of 125 nm in thickness, with only trace
amounts of oxygen. Furthermore, an obvious mixed layer of Cu and Si is also observed,
corresponding to a thin layer of Cu3Si, as confirmed by the XRD in Figure 2a, which is
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beneficial for the enhancement of adhesion strength between the Cu core and Si shell.
Based on the above, it is concluded that the Cu@Si CSNWFs were successfully fabricated.
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3.2. Electrochemical Performance of Cu@Si CSNWFs

Figure 3a exhibits the charge/discharge curves of the Cu@Si CSNWF electrode after the
1st, 2nd, 5th, and 10th cycle at a current rate of 0.1 C between 0.01 and 1.5 V. The potential
window is 0.23–0.01 V during discharging and 0.23–0.55 V during charging, respectively.
The voltage profiles exhibit a typical sloping and smooth curve without appearance of
a distinct potential plateau. Figure 3b demonstrates the specific discharge capacity and
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charge efficiency of the Cu@Si CSNWFs electrode as a function of cycle number. The initial
discharge capacity is 3193 mAh/g. After 500 cycles, the discharge capacity is still as high
as 948 mAh/g, corresponding to an average capacity fading rate of only 0.2% per cycle. As
for the charge efficiency, the initial efficiency is close to 87%, and then quickly increases
and lies between 96% and 99.8% during subsequent cycling. These suggest a good cycling
stability of the Cu@Si CSNWF electrodes. In contrast, the specific discharge capacity
of 456 nm-thick pure Si films fades rapidly with cycling, which is typical for a thick Si
film electrode [26]. The higher initial charge efficiency and better cycling performance of
Cu@Si CSNWF electrodes than pure Si film could be attributed to the improved electric
conductivity and special core–shell structure. The electrical conductivity of Cu3Si was
about 2 × 104 S cm−1, a little lower than the Cu nanowire but much higher than pure
silicon of about 10–5 S cm−1 [27]. Indeed, it has been reported that increasing the electronic
conductivity of Si films could improve the initial coulombic efficiency significantly [28,29].
Moreover, the Cu3Si layer between the Si shell and Cu core functions as an adhesive
layer, and could enhance the adhesion strength between the Cu nanowire core and Si
shell and therefore improve the cycling stability of the Cu@Si CSNWF electrodes in spite
of a little sacrifice in capacity due to the electrochemical inactivity of Cu3Si to Li [24].
Kim et al. [30] also attributed the enhanced cycling stability of a Si–Cu–graphite composite
to the formation of copper silicide in the interface between Cu and Si. Figure 3c exhibits the
rate capability of the Cu@Si CSNWF electrode. The discharge capacity is about 2060 mAh/g
at 0.2 C and exhibits a decreasing trend with the increase in current density. As the current
density is increased to 0.5 C, 1.5 C, 3 C, and 6 C, the discharge capacity dropped down to
~1900 mAh/g, ~1600 mAh/g, ~1200 mAh/g, and~700 mAh/g, respectively. When the
current density was returned to 0.2 C, the discharge capacity was increased to 2025 mAh/g,
almost the same value as that in the beginning, demonstrating a good rate capability of
our Cu@Si CSNWF electrodes. In addition, the coulombic efficiency at different current
densities is beyond 90%, with the exception of the first cycle at 0.2 C, 3 C, and 6 C rates,
further confirming the good rate performance of the Cu@Si CSNWF electrodes.
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Figure 3. (a)Voltage profile of the Cu@Si CSNWFs at the 1st, 2nd, 5th, and 10th cycle at a current rate
of 0.1 C between 0.01 and 1.5 V; (b) the specific discharge capacity and coulombic efficiency of the
Cu@Si CSNWFs and pure Si films as a function of cycle number at a rate of 0.16 C between 0.01 and
1.5 V; (c) the specific discharge capacity of Cu@Si CSNWFs as a function of the cycle number and
current rate; (d) cyclic voltammetry curves of the Cu–Si core–shell nanowires embedded Si thin films
(CSNEFs) in the potential range of 0.01–1.2 V at a scan rate of 0.2 mV s−1.
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The good rate performance can be understood by the fast and efficient electron transfer
of the Cu nanowire core and by the decrease in diffusion length of the lithium ions, as
schematically illustrated in Figure 4, in that the diffusion length of the lithium ion in pure
Si films is much longer than in our Cu@Si CSNWF. Figure 3d exhibits CV curves for the
Cu@Si CSNWF electrode in the potential range of 0.01–1.2 V at a scan rate of 0.2 mV s−1.
It is clearly seen that the CV curve of the first cycle is distinct from those of subsequent
cycles, especially for the cathodic branch. In the first cathodic scan, the current increases
gradually as the potential is decreased from 0.76 V to around 0.23 V, which is ascribed
to the formation of a solid electrolyte interface (SEI) film [31,32]. Thereafter, it starts to
increase rapidly, leading eventually to the formation of a broad peak between 0.05 V and
0.20 V and corresponding to the lithiation of Si. In the first anodic scan, a distinct peak
at 0.31 V and a weak and broad peak at 0.48 V were observed, which could be assigned
to the transformation between the Li–Si alloy to Si. Since the second cycle, the cathodic
current was kept almost unchanged in the potential range of 0.72 to 0.23 V; the current
is substantially lower than that in the first cycle. These data imply that the electrolyte
decomposition during the second cycle is substantially suppressed. Instead, two new
peaks located at 0.15 and 0.05 V appear, which could be assigned to the formation of
the Li–Si alloy [33]. As of the third cycle, the cathodic and anodic current peaks settled
rapidly and maintained a stable pattern, eventually resulting in the peaks superimposing
on each other, suggesting a good cycling performance in the following cycles. In contrast,
Cui et al. reported that the current peak intensities increased gradually in the first few to
ten cycles for the Si nanowire electrodes because the more active materials are activated to
react with the lithium during cycling [7,34]. These results indicate that there is no gradual
activation process of the active materials in our electrode; i.e., all active materials can be
fully lithiated within two cycles, owing to the superior electrical conductivity of the Cu
core in the core–shell structure and the void space for electrolyte impregnation, therefore
reducing the diffusion length of the lithium ion.
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Figure 4. (a,b) Schematic diagram of the lithium ion diffusion in pure Si film and CSNEFs, respectively.

In order to clarify the mechanism of the enhanced electrochemical performance of the
Cu@Si CSNWF in comparison with pure Si films, EIS, SEM, and STEM measurements were
performed after the cycling test. Figure 5a,b exhibit the EIS spectra of the Cu@Si CSNWFs
and pure Si films, respectively, after the cycling test in the state of full de-lithiation. As can
be seen, for both electrodes the obtained Nyquist plots consisted of a high-frequency (HF)
depressed semicircle and a low-frequency (LF) inclined line. It is accepted that in the fully
delithiated state, the diameter of the HF-depressed semicircle is mainly ascribed to the
intrinsic electronic resistance and the contact resistance (materia–material and material–
current collector) while the LF inclined line is attributed to the lithium ion diffusion within
the electrode [35,36]. The diameter of the HF semicircle for the pure Si film electrode is
about 310 Ω after the first cycle, larger than that of the Cu@Si CSNWF (about 100 Ω),
indicating that the electronic conductivity of the Cu@Si CSNWFs is much better than
pure Si films. As the cycle proceeds, the HF semicircle diameter for the Cu@Si CSNWF
increase to about 110 Ω after 30 cycles whereas that for pure Si films is increased up
to about 530 Ω after 20 cycles, demonstrating the better microstructure stability of the
Cu@Si CSNWFs than pure Si films. Figure 6a exhibit the surface morphology of the Cu@Si
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CSNWF after 30 cycles; the core–shell nanowires still preserve their shape and integrity
with a diameter distribution ranging between 400 and 850 nm (Figure 6b) larger overall
than those before cycling, as a result of the lithiation-induced volume expansion upon the
cycled discharge–charge processes. Furthermore, after 500 cycles, the core–shell nanowire
shape is hard to discern because the Cu@Si core–shell nanowires expand enough to make
contact with each other and form a continuous film (Figure 6c). A more detailed analysis
by cross-sectional STEM (Figure 6d) illustrates that the Si shell still adheres well to the
Cu-core and the Cu nanowires remain as efficient electron transport pathways, securing
a good rate capability of the Cu@Si CSNWF anode. In contrast, a large amount of cracks
are observed on the surface of the pure Si film after 20 cycles, separating the Si film into
1–5 µm islands (Figure 6e) and resulting in poor cycling performance.
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4. Conclusions

Cu@Si CSNWFs were fabricated through slurry casting and subsequent magnetron
sputtering and investigated as anode materials for lithium ion batteries. Both the silicon
shell and copper nanowire core are in the crystal state and they are adhered by an interface
layer of Cu3Si, which could enhance the Cu/Si interface strength; the Cu nanowire network
functions well as an electron conductive path. These endow Cu@Si CSNWFs with a
superior electrochemical performance with a high discharge capacity of about 948 mAh/g
after 500 cycles, corresponding to a capacity fading rate of 0.2% per cycle. This work
demonstrates that Cu@Si CSNWF is a promising anode material for high-energy-density
lithium ion batteries.
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