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Abstract: The fast and accurate identification of apple leaf diseases is beneficial for disease control
and management of apple orchards. An improved network for apple leaf disease classification
and a lightweight model for mobile terminal usage was designed in this paper. First, we proposed
SE-DEEP block to fuse the Squeeze-and-Excitation (SE) module with the Xception network to get
the SE_Xception network, where the SE module is inserted between the depth-wise convolution
and point-wise convolution of the depth-wise separable convolution layer. Therefore, the feature
channels from the lower layers could be directly weighted, which made the model more sensitive to
the principal features of the classification task. Second, we designed a lightweight network, named
SE_miniXception, by reducing the depth and width of SE_Xception. Experimental results show that
the average classification accuracy of SE_Xception is 99.40%, which is 1.99% higher than Xception.
The average classification accuracy of SE_miniXception is 97.01%, which is 1.60% and 1.22% higher
than MobileNetV1 and ShuffleNet, respectively, while its number of parameters is less than those of
MobileNet and ShuffleNet. The minimized network decreases the memory usage and FLOPs, and
accelerates the recognition speed from 15 to 7 milliseconds per image. Our proposed SE-DEEP block
provides a choice for improving network accuracy and our network compression scheme provides
ideas to lightweight existing networks.

Keywords: apple leaf disease; disease identification network; Xception; channel attention; lightweight net-

work

1. Introduction

Automatic identification of apple leaf diseases is extremely helpful to improve the
management of apple orchard and provides a good indication for the early warning and
prevention of apple diseases. Traditional expert diagnosis on apple leaf disease takes high
cost and has subjective misjudgment risk. Therefore, with the development of computer
vision technology, scholars start to sue image processing technology to carry out researches
on plant disease identification based on image feature extraction and modelling. However,
image feature extraction used in image processing mainly relies on manual selection and
design [1-4], which is time-consuming and laborious and the accuracy of image recognition
needs to be improved. In addition, models for such methods are designed and trained
with a specific dataset so it is hard to transfer to new tasks. In recent years, deep learning
technology has developed rapidly. Especially, Convolutional Neural Networks (CNN)
has been widely applied to plant leaf disease recognition [5-20]. Its end-to-end property
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exempts it from the need for complex image preprocessing and manual feature selection,
thus it is more efficient than traditional methods and has better generalization ability.

Classic CNN models have been trained and fine-tuned on large dataset, so some
studies used transfer learning for plant disease identification. Some of them applied minor
modification on the classical CNN network structure. For example, Sun et al. [21] improved
the AlexNet and collected an experimental data set composed by PlantVillage dataset [22]
and some images collected from the Internet. Their dataset was divided into a training
set and a test set after data augmentation. The average classification accuracy on the test
set is 99.56%. Wang et al. [23] trained an AlexNet model for tomato disease classification
based on transfer learning. The model could quickly and accurately classify 10 categories
of tomato leaf diseases, with an average classification accuracy of 95.62% on the validation
set. In 2018, Long et al. [13] trained AlexNet and GoogleNet networks by using transfer
learning technology for Camellia oleifera diseases identification. On the dataset with four
kinds of diseases and healthy leaves, the recognition rate was 96.53%, and their results
indicated that transfer learning could accelerate the network convergence and improve
the classification performance. Ferentinos [11] compared the existing CNN to conduct
experiments on the extended version of PlantVillage dataset by using transfer learning.
Experiment results proved that VGG had the best classification and recognition accuracy,
up to 99.53%. In addition, the experimental results showed that the recognition rate of
model trained with images of laboratory background was 32.42% lower than those trained
by images with natural growing background on the test set with both natural growing
background and laboratory background images. There are also some studies that improve
the CNN models for plant leaf disease identification. For example, Liu et al. [12] proposed
a CNN model based on AlexNet to identify four common apple leaf diseases and healthy
leaves in 2018, and the model could achieve an average recognition accuracy of 97.62%.
In 2019, Baranwal et al. [14] designed a convolutional neural network structure based on
LeNet-5 architecture, which was used to identify three kinds of apple leaf diseases and
healthy leaves. The recognition rate reached 98.54%. In 2019, Jiang et al. [18] proposed
a network for real-time detection of apple leaf diseases, and the disease recognition rate
of the proposed VGG-INCEP model reached 97.14%. In 2020, Chao et al. [24] proposed a
CNN model by fusing dense blocks of Densenet into Xception, the model could identify
five apple leaf diseases and healthy leaves, and the average recognition rate was 98.35%.
Their experimental results showed that compared with using laboratory background as
the training set, using images with complex background as the training set could greatly
improve the disease identification accuracy of the model (about 14%).

CNN networks have a global receptive field when extracting features, giving more
attention to the principle features of a given task could improve the model performance.
This is one of the major studies in the field of computer vision research [25]. The study
shows that the spatial attention of the models can be improved by integrating the learning
mechanism into CNNs, so as to improve the performance of the CNNs [26-30]. Hu et al.
proposed the SE module [25] to add channel attentions to CNNs and it has been widely
used. The SE module has a simple structure and only a few parameters. It can be used as
an additional module of any CNN network to introduce channel attention to the network,
thus improving the network feature extraction ability. There are a few works that use an SE
module to add channel attentions to CNN models to improve network feature extraction
ability. In 2020, Li et al. [31] proposed the SE-Inception model by integrating the SE
(Squeeze and Excitation) module with the Inception to classify Solanaceae diseases with an
average recognition accuracy of 98.29%. Tang et al. [32] integrated the SE module [25] into
ShuffleNet [33] and carried out disease identification on grape disease from the PlantVillage
dataset, with an average recognition rate of 99.14%.

The above studies have proved that CNNs are effective in solving the plant disease
identification task, and the integration of the SE module into the CNN networks can
improve the disease identification ability of the networks. The SE module can be added
to any network to add channel attention to the network. More possible ways to add
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an SE module to existing CNN networks can be explored beyond the four approaches
suggested by the authors of the SE module. With the popularity of mobile devices, CNN
networks can be embedded into mobile applications to provide growers with the ability of
disease identification anytime and anywhere. The mobile application requires the network
to have a small parameter number, low memory usage, low computation, and faster
recognition speed. Existing CNN networks with large quantity of parameters are hard
to deploy into the mobile devices. Therefore, we need to look for (or design) lightweight
networks with high recognition accuracy. On the one hand, we can verify the performance
of existing lightweight networks on the apple disease identification task. On the other
hand, the network compression experiment can also be carried out on the existing CNN
network with a good recognition rate in the apple disease recognition task.
The main contributions of this paper are summarized as follows:

e In order to meet the application requirements of apple leaf disease identification in
a natural growing scenario, we built a dataset with 2975 images of five apple leaf
diseases and healthy leaves, where images with different backgrounds were shot in
different time periods.

e  We propose a new method called SE-DEEP to deeply fuse the SE module with a
depth-wise separable convolution layer, where the SE module is inserted between the
depth-wise convolution and the pointwise convolution of the depth-wise separable
convolution block, therefore, the feature channels from the lower layers can be directly
weighted. This makes the model more sensitive to the principal features that are
useful for the classification task. Then, we used SE-DEEP to integrate the SE module
into Xception network to propose the SE_Xception network.

e Toinvestigate the influence of depth and width on network performance, we designed
an experiment to compress the proposed SE_Xception network to get the lightweight
network, named SE_miniXception. In the compression experiment we compared two
networks by either compressing the depth or compressing the width. The experi-
mental results show that compression on the width has little effect on the network
performance, while compression on the depth has a greater effect on the network
performance. Then we compressed the SE network width to 0.25-times the original
width, and further compressed its depth to get SE_miniXception. The results show
that the network compression scheme designed in this paper could achieve high
compression ratio, while the compressed network still has ideal performance.

The following sections of this paper are organized as follows. Section 2 introduces
our constructed apple disease dataset. In Section 3, we present the proposed SE_Xception
network and the light weight SE_miniXception network compressed from SE_Xception net-
work. Section 4 compares the average identification accuracies of the proposed SE_Xception
and SE_miniXception and other six popular CNNs. In Section 5, the network compression
experiment and its results are discussed. The paper is finally summarized in Section 6.

2. Dataset
2.1. Building the Dataset

The experimental apple leaf images were collected from the apple experimental and
demonstration stations of Northwest A&F University in China, which were located in
Baishui County of Weinan city, Qianyang County of Baoji city, Luochuan County of Yan’an
city, Qian County of Xianyang, and Qingcheng County of Qingyang city. Images were either
taken by an ABM-500GE/BB-500GE color digital camera or an Honor V10 mobile phone.
The dataset contained color images of 5 apple leaf diseases and healthy leaves, including
Alternaria leaf spot, gray spot, brown spot, Mosaic, and rust, which were common diseases
that have great influence on apple trees. The image resolution was 2448 x 3264.

A total of 2975 images containing 5 kinds of diseased and healthy leaves were se-
lected from the collected images as the experimental dataset, which was named ATLDD
(Apple Tree Leaf Disease Dataset). The ALTDD contains 279 images with Alternaria leaf
spot, 540 images with brown spot, 879 images with Mosaic, 430 images with gray spot,
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429 images with rust and 418 images of healthy leaves. Examples of the dataset are shown
in Figure 1. We can see that the dataset includes the disease images in different disease
stages and the images are photographed under different lighting conditions and weather
conditions. There is a large discrepancy between different images within each category,
and there is a certain similarity between different categories to increase the robustness of
our model.

Figure 1. The examples of ATLDD dataset: (a) Alternaria leaf spot; (b) Rust disease; (c) Brown spot
disease; (d) Gray spot disease; (e) Mosaic disease; (f) Healthy leaves.

2.2. Dataset Partition and Data Augmentation

(1) Dataset Partition

The dataset was divided into 3 subsets with the ratio of 19:1:4 for training, valida-
tion, and testing, respectively. We repeated the above data set division method 5 times,
and trained each network 5 times, respectively. For each network, the average accuracy and
average Fj score of these 5 experiments were taken as indicators to measure the network
performance.

(2) Data Augmentation

In order to increase the diversity of the dataset, alleviate over-fitting in the train-
ing stage, reduce the dependence of the model on certain attributes, and enhance the
anti-interference ability of the model under complex conditions, four data enhancement
methods were adopted for the images of the training set [12,34]: (a) Introduce angle in-
terference: 90°, 180°, and 270° rotation and horizontal and vertical mirror transformation
were used; (b) Introduce light interference: adjust the brightness value of the image (set the
enhancement factor as 1.5 and 0.8 respectively, where the enhancement factor of 1 is the
original image, and 0 for the complete black image) and the contrast value (set the enhance-
ment factor as 3 and 0.8, respectively, where the enhancement factor of 1 is the original
image); (c) Introduce noise interference and add Gaussian noise (the expectation of Gaus-
sian distribution is 0 and the variance is 0.01); (d) Compress and enhance images through
Principal Component Analysis. The example pairs of the original image and the enhanced
image are shown in Figure 2. After data augmentation, one image can be extended to
14 images.
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Figure 2. The data augmentation examples of training set: (a) Original image; (b) Vertical mirroring; (c¢) Horizontal

mirroring; (d) Rotating 90°; (e) Rotating 180°; (f) Rotating 270°; (g) Weak sharpening; (h) Strong sharpening; (i) Weak light;

(j) Strong light; (k) Weak contrast; (1) Strong contrast; (m) Gaussian noise; (n) PCA jitter.

3. Disease Classification Models of Xception Fused by the SE Module
3.1. Deep Fusion of the SE Module and Depth-Wise Separable Convolution

Xception [35] uses depth-wise separable convolution instead of traditional convolution
operation. This helps maintain the classification accuracy while reducing the number of
parameters and the amount of computation. The depth-wise separable convolutions used
in Xception performs spatial convolution independently in each channel, followed by
point-wise convolution. This facilitates the possibility of improving the model from the
channel dimension.

Using channel dependency (namely channel correlation) is an important way to
improve CNNs [25]. SE module adopts the Squeeze-Excitation-Reweight method. First, the
information of all channels is summarized and compressed, then the weight of channels
is calculated through the two fully connected layers and activation function. Finally, the
weight is multiplied with the original feature by channel-wise, so as to complete the
adaptive feature recalibration, namely channel weighting. Hu et al. [25] analyzed the
computational complexity of SE module in their paper, and the experiment proved that the
number of parameter of SE-ResNet-50 increased by about 10% compared with ResNet-50,
while the calculation cost would increase by less than 1%, theoretically. Therefore, it is
expected that the fusion of SE module into Xception will not bring obvious changes in the
number of parameters and calculation time.

There are two problems to consider when introducing Squeeze-and-Excitation into
Xception. Which convolution layers of the network to insert SE modules? How to fuse the
SE module into Xception? The author of SENet found that the addition of the SE module
into deep layers of CNNs had limited improvement of accuracy on the classification tasks.
Therefore, to improve the classification performance without introducing too many extra
parameters, we would not add SE modules into the deep layers, but add it to the shallow
and middle layers of Xception. The author of SENet proposed four schemes to insert SE
modules as independent modules into the CNN models, as illustrated in Figure 3a—d,
but these four schemes did not directly weight the feature channels from the low level.
Based on depth-wise separable convolution, this paper proposes to insert the SE module
between the depth-wise convolution and the point-wise convolution of the depth-wise
separable convolution, as shown in Figure 3e. Therefore, the SE module can perform
feature recalibration directly on the feature channel from the lower level, which makes the
model more sensitive to the important features for the current classification task.
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Figure 3. SE-DEEP block: SE model deeply fused to depth-wise separable convolution block:
(a) Standard SE block; (b) SE-PRE block; (c) SE-POST block; (d) SE-Identity block; (e) SE-DEEP
block(proposed block).

3.2. SE_Xception Network Structure

Conventional convolution considers all spatial information and channel information
together. The depth-wise separable convolution used in Xception separates spatial con-
volution by channel and each channel with the same priority, so that the relationship
between different channels is not utilized effectively. The SE module introduces attentions
to different channels. Weighting on channels from the previous layer has the potential
to improve depth-wise separable convolution. This study introduces the Squeeze-and-
Excitation module into Xception to achieve channel weighting. Instead of simply adding
SE modules to the network as separate modules, this paper proposes a network that deeply
integrates the Xception network and the SE module, namely SE_Xception. In SE_Xception,
depth-wise separable convolutions in Xception were reconstructed into depth-wise spatial
convolution and point-wise convolution, then the SE module was inserted between depth-
wise convolution and point-wise convolution. The feature channels from the low level
were directly weighted and then the point-wise convolution was carried out in order to
fully model and utilize the dependency relationship between feature channels. The fusion
method, namely SE-DEEP block, is shown in Figure 3e. The author of SENet proposed four
blocks to fuse the SE module into CNNs, and their experiments proved that standard SE
block, SE-PRE module, and SE-Identity block had basically the same degree of improve-
ment on the performance, while those of the SE-POST module were not as good as the
aforementioned three schemes.

To verify the effectiveness of the SE-DEEP block proposed in this paper, SE_Xcetion2
network was designed by referring to the network used in Ni’s paper [36] based on the
fusion of standard SE block with Xception for animal species recognition. In SE_Xception,
the SE-DEEP block is inserted into the shallow and middle layers of the Xception network,
as shown in Figure 4, where SE_SeparableConv in the figure is using the SE-DEEP block.
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Figure 4. The network structure of SE_Xception fused by the proposed SE-DEEP block and Xception network. Note that
we only replace some of the SeparableConv (depth-wise separable convolution) layers with SE_SeparableConv (SE-DEEP

block) layers in Xception, and did not change their width, depth and kernel size.

3.3. SE_miniXception Network Structure

In order to simplify the model structure, reduce the model parameters, improve the
training and recognition speed, and meet the memory requirement of the model used
in the mobile platform, we carry out an experiment to compress SE_Xception. The SE
module is lightweight and hard to compress again, so we compress the depth and width of
SE_Xception. Xception architecture has 36 convolution layers. These 36 convolution layers
are divided into 14 blocks, most of them connect with residual. The stack of depth-wise
separable convolution layers makes it easy to modify the network structure.

The number of channels in classic CNN models has been carefully designed and
fine-tuned through a large number of experiments. Therefore, the number of channels in
SE_Xception can also be increased or decreased according to the model performance on
the ATLDD dataset. Based on the above theories, a compression experiment is carried out
on SE_Xception by condensing and pruning the network structure.

After compression experiment, the selected lightweight network structure is illustrated
in Figure 5. The compression scheme is as follows: compress the width of SE_Xception to
0.25-times those before, then delete 6 depth-wise separable convolution blocks from the
middle flow and the deep flow. The lightweight network is named as SE_miniXception,
as shown in Figure 5. With relatively high classification accuracy, the model reduced
the number of parameters from 23.85 to 0.61 M, so that the parameter compression ratio
reached 39:1, which laid a foundation for the SE_miniXception network to be embedded in
the mobile platform.

Entry flow Middle flow Exit flow

- Convolution Separable (Y SF eparableCon
Convolution
- Add - GlobalAvgpool - Softmax - Maxpool

Figure 5. The network structure of SE_miniXception.

4. Apple Leaf Disease Identification Network Training
4.1. Environment Configuration

Tesla P100-PCIE-16GB graphics card and xshell 6 terminal simulation software were
used in the experiment. The operating system was Ubuntu16.04.5 64-bit system, which used
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CUDA V8.0.61, Anaconda V4.6.11, Python V3.6.10, Keras V2.2.4, and Keras used Tensor-
Flow V1.4.1 as back-end tools.

4.2. Experimental Setup

Transfer learning and cross validation were used to train the networks. Considering
that the pretrained model on similar datasets is helpful to improve the generalization
performance and speed up the convergence of the model, all models in this paper are
pre-trained on the sub-dataset of PlantVillage with five categories of leaves, and then all
the models are migrated to the ATLDD dataset. The input image size is 224 x 224. During
the pre-training step, batch size is set to 16, epochs to 50 and initial learning rate to 0.001,
and an Adam optimizer is used. According to the characteristics of ATLDD data set, the
5-fold validation method described in Section 2.2 is used to divide the data set and train
the models. For all of the trainings on ATLDD dataset, batch size, number of epochs, initial
learning rate, and the optimizer are the same as the pre-training step, and the validation
loss is monitored during the training. If its value does not decline within 2 epochs, the
learning rate will be reduced to 1/2 of what it was.

4.3. The Evaluation Index

To evaluate the robustness of the proposed SE_Xception and SE_miniXception net-
works, they are compared with other classical CNNs on ATLDD dataset. Five experiments
were carried out. In the k-th experiment (k = 1,2,3,4,5), the precision (precision’(‘i)), the recall

(recalll((i)) and the weighted average of recall and precision (F{‘(i>) of i-th class are calculated

by Equation (1)~(3). Then F{‘ will be the F; score of the k-th experiment of the model,
which is calculated by Equation (4). Finally, F; is the mean of F{‘ (k=1,2,3,4,5) of a network
calculated by Equation (5) [21]. F; is taken as the robustness evaluation standard for all

the networks. )
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In these equations, n;; refers that the class i is predicted to be the j-th class; n; is the
total number of classes in the data set.

5. Experimental Results
5.1. Performance Analysis

We used the same transfer learning and hyper-parameter finetune method to evaluate
the performance of the compared CNN models, including ResNet50 [37], DenseNet201 [38],
Xception, MobileNetV1 [39], ShuffleNet [33], SE_Xception2, as well as the proposed
SE_Xception and SE_miniXception. Table 1 lists the experimental results of compared mod-
els on ATLDD dataset with six types of apple leaves. As illustrated in Table 1, SE_Xception,
SE_Xception2, Xception, and SE_miniXception rank among the top four in the aspect of
disease classification accuracy. Among them, SE_Xception has the highest classification ac-
curacy (99.40%) and F; score (99.10%) with a relatively fast classification speed. The number
of parameters of SE_Xception is 14% higher than Xception, but its classification accuracy is
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1.99% higher and F; score is 2.32% higher than Xception. For SE_Xception2, although there
are some improvements compared to Xception, its average recognition accuracy and F;
score is not as high as those of SE_Xception. Its accuracy is 0.61% higher than Xception and
1.38% lower than SE_Xception, and the F; score is 1.58% lower than those of SE_Xception.

Table 1. Experimental results of compared models for ATLDD dataset.

Number of Training Recognition

Model Name Parameters FLOPs (M) Time for 50 Speed Ac::/u)acy k (So/c;)re
™M) Epochs (min) (ms/Image) ° °

ResNet50 23.60 47.63 72 15 95.56 94.99
DenseNet201 18.33 38.73 209 36 96.88 96.34
Xception 20.87 4224 92 10 97.41 96.78
SE_Xception 23.85 48.15 122 15 99.40 99.10
SE_Xception2 21.20 42.88 103 13 98.02 97.52
MobileNetV1 3.23 42.24 41 6 95.41 94.64
ShuffleNet 1.95 6.67 106 20 95.79 95.49
SE_miniXception 0.61 0.13 23 7 97.01 96.29

The accuracy and F; score of the proposed SE_miniXception lightweight model are
97.01% and 96.29%, respectively. Its accuracy is still higher than ResNet50, DenseNet201,
MobileNetV1, and ShuffleNet, but its number of parameters is only 0.61M, which is
only about 3% of those of ResNet50, DenseNet201, and 18.89% of those of MobileNetV1,
31.41% of those of ShuffleNet. The number of FLOPs of SE_miniXception model is 0.13M,
which is only 0.26% of SE_Xception and is the lowest in the table. The classification speed
of SE_miniXception is 7 ms/image, which is only a little slower than MobileNet and faster
than the rest of the compared models in Table 1.

Results in Table 1 shows that deep fusion of SE modules into Xception network with
channel weighting method significantly improves the accuracy and robustness of model
classification. Moreover, when compressing the SE_Xception network, the classification
performance of SE_miniXception stays at a good level, and its memory usage and number
of FLOPs drops greatly compared to SE_Xception. These imply the high robustness for the
SE_Xception network with the proposed SE-DEEP blocks.

5.2. Comparison of Model Convergence Performance

Select the best model in the cross-validation experiment for each network and plot
its accuracy curve on the validation set, as shown in Figure 6. SE_Xception has the
fastest convergence speed and highest accuracy rate among all of the models on the
validation set. SE_miniXception has similar convergence performance with MobileNetV1
and SE_Xception2. In addition, the learning curve of SE_Minixception fluctuates slightly
more than that of SE_Xception, and the convergence speed is slower than the latter, but it
converges around 20 epochs. To conclude, the convergence speed of SE_Xception is better
than all the other compared models, and the compressed SE_miniXception model still has
an ideal convergence.
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Figure 6. Comparison of convergence of SE_Xception and compared CNN models on the valida-
tion set.

5.3. Lightweight Model Analysis

The number of model parameters is an important indicator of whether the model can
be deployed to the mobile platform [39]. In order to reduce memory consumption and to
improve the model recognition speed to meet the requirements for mobile applications,
it is necessary to minimize the amount of model parameters and FLOPs (floating point op-
erations). We designed a compression experiment using the same dataset and experimental
methods, inspired by the network compression method of MobileNets [39], we compressed
SE_Xception by reducing the number of depth-wise separable convolution blocks, and also
reducing the width of the convolution layers in the model by multiply « to the width of the
input channels [39]. We designed several lightweight models, and compared their average
recognition accuracy on ATLDD, number of parameters, and FLOPs.

Firstly, in order to answer the question of whether to compress the width or the depth,
we designed two networks have similar number of parameters. We removed the last six
depth-wise separable convolutional blocks from SE_Xception to get the first network, we
called this compressed network the SE_Xception_shallow. Then we designed the second
network, named SE_Xception_0.75, by reducing the width of SE_Xception to 0.75-times
those before. Table 2 compares the accuracy, number of parameters, and number of FLOPs
of these two compressed networks and the baseline SE_Xception. We can see from Table 2
that these two compressed models have a similar number of parameters and FLOPs, but
the accuracy of SE_Xception_0.75 only drops a little bit compared to SE_Xception, and
is 1.47% higher than SE_Xception_shallow. Therefore, we have a conclusion that making
SE_Xception thinner is better than making it shallower.

Table 2. Comparison of shallower and narrower SE_Xception.

Number of Accuracy
Model Name Parameters (M) FLOPs (M) (%)
SE_Xception 23.85 48.15 99.40
SE_Xception_shallow 11.74 23.73 97.79

SE_Xception_0.75 13.47 27.29 99.26
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Secondly, since compressing width is better than compressing depth, we further
compressed the width of SE_Xception with a scale of 0.25-times and 0.50-times to get
SE_Xception_0.25 and SE_Xception_0.50. Then we compared these two networks with
SE_Xception_0.75, baseline SE_Xception, MobileNetV1, and ShuffleNet. Table 3 shows the
accuracy, number of parameters, and number of FLOPs of these models. The numbers of
parameters and FLOPs drop off quickly, while the accuracy drops off smoothly until the
width scale reaches 0.1. The identification accuracy of SE_Xception_0.25 is still higher than
most of the compared networks in Table 1, although its numbers of parameters and FLOPs
are far less than SE_Xception. Furthermore, the number of parameters of SE_Xception_0.25
is only 13.2% of that of SE_Xception_shallow, while its classification accuracy is 0.7% higher
than that of SE_Xception_shallow. This implies that for the Xception structure in apple
leaf disease identification task, the depth is more important than the width of the network.
Furthermore, the number of parameter and FLOPs of SE_Xception_0.25 is less than those
of MoblieNetV1 and ShuffleNet, but its average classification accuracy is 3.08% and 2.70%
higher than these two popular light weight networks.

Table 3. Comparison of compressed SE_Xception and other light-weight models.

Model Name Number of Parameters (M) FLOPs (M) Aci(l)zr)acy
SE_Xception 23.85 48.15 99.40
SE_Xception_0.75 13.47 27.29 99.26
SE_Xception_0.50 6.04 12.31 98.59
SE_Xception_0.25 1.55 3.21 98.49
SE_Xception_0.1 0.27 0.59 95.78
MobileNetV1 3.24 6.67 95.41
ShuffleNet 1.95 3.99 95.79
SE_miniXception 0.61 197 9701

(SE_Xception_0.25_shallow)

To further explore the possibility of compressing both depth and width of the net-
work, we further delete six depth-wise separable convolution blocks from the latter part of
SE_Xception_0.25, and name it as SE_Xception_0.25_shallow. We find that the accuracy of
SE_Xception_0.25_shallow drops by 1.48% than SE_Xception_0.25, but it is still higher than
these of MobileNetV1 and ShuffleNet, as illustrated in Table 3. Therefore, we finally select
SE_Xception_0.25_shallow as our light weight model, and name it as SE_miniXception.
With relatively high classification accuracy, SE_miniXception reduces the number of pa-
rameters of SE_Xception from 23.85M to 0.61M, so that the parameter compression ratio
reached 39:1. The FLOPs of SE_miniXception is only 0.26% of SE_Xception, and much less
than other compared networks in Table 1. These laid a foundation for SE_miniXception
network to be embedded in the mobile platform.

Actually, one can choose to use SE_Xception_0.25 or SE_Xception_0.25_shallow as
the final lightweight model according to the requirements of the platform on the model
identification accuracy, the number of model parameters, and FLOPs.

5.4. Experiment on Data Augmentation and Transfer Learning

In order to verify the effects of data augmentation and transfer learning technologies,
we carried out the ablation experiment.

(1) Experiment on Data Augmentation Technology

With no transfer learning, we compared accuracy convergence curves of two SE_Xception
models. One of them uses data augmentation and the other model does not. The results
are shown in Figure 7a. It can be seen that the data augmentation technology can effectively
improve the accuracy and convergence performance of the model.
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Figure 7. Effects of data augmentation and transfer learning on model convergence performance and recognition accuracy:

(a) The effect of data augmentation technology on network convergence and classification accuracy without transfer learning;

(b) The effect of transfer learning on network convergence and classification accuracy with no data augmentation technology.

(2) Experiment on Transfer Learning Technology

The effect of transfer learning on model performance is verified on the SE_Xception
model without data augmentation. Figure 7b shows that transfer learning can improve the
starting point of convergence of the model.

To summarize, data augmentation can improve the final accuracy and transfer learning
can improve the starting point of convergence. The combination of these two technologies
can effectively improve the final performance of the model.

6. Conclusions and Future Works

In order to add channel attentions to the CNN network, we proposed a deep fusion
scheme of SE module into Xception network, and constructed the SE_Xception network,
where SE module is inserted between depth-wise convolution and point-wise convolu-
tion of a depth-wise separable convolution layer, and feature channels from the lower
level are weighted. The proposed SE_Xception network is better than other classical
deep convolutional neural networks in terms of classification accuracy, robustness, and
convergence performance on the ATLDD dataset. On the premise of maintaining the
network classification performance, we propose a lightweight model SE_miniXception
by compressing the width and depth of SE_Xception. Compared with MobileNet and
ShuffleNet, which are two popular lightweight models, the number of parameters and
FLOPs of SE_miniXception are greatly reduced, so that the model complexity and training
time have minimized, and disease prediction speed has been significantly improved, while
the classification accuracy of SE_miniXception on ATLDD dataset is still higher than those
of MobileNet and ShuffleNet. The experimental results prove that the proposed SE-DEEP
block can improve the model’s performance on apple leaf disease classification through fea-
ture channel adaptive weighting. The SE_miniXception model provides technical support
for the design of mobile terminal disease identification system. The scheme of SE-DEEP
block and the conclusion of light-weight experiment could provide some reference value
for the identification of other crop diseases.

In the future, we will extend and improve the existing data set, balance the number of
images of different disease types in the dataset, and add more images with natural growing
background, so as to improve the model performance on disease identification in the actual
planting scenario. Furthermore, we plan to add spatial attentions and channel attentions
together to the CNN networks to improve their identification accuracy.
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