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Abstract: Two numerical algorithms for solving elastoplastic problems with the finite element method
are presented. The first deals with the implementation of the return mapping algorithm and is based
on a fixed-point algorithm. This method rewrites the system of elastoplasticity non-linear equations
in a form adapted to the fixed-point method. The second algorithm relates to the computation of the
elastoplastic consistent tangent matrix using a simple finite difference scheme. A first validation is
performed on a nonlinear bar problem. The results obtained show that both numerical algorithms are
very efficient and yield the exact solution. The proposed algorithms are applied to a two-dimensional
rockfill dam loaded in plane strain. The elastoplastic tangent matrix is calculated by using the finite
difference scheme for Mohr–Coulomb’s constitutive law. The results obtained with the developed
algorithms are very close to those obtained via the commercial software PLAXIS. It should be noted
that the algorithm’s code, developed under the Matlab environment, offers the possibility of modeling
the construction phases (i.e., building layer by layer) by activating the different layers according to
the imposed loading. This algorithmic and implementation framework allows to easily integrate
other laws of nonlinear behaviors, including the Hardening Soil Model.

Keywords: plasticity; Mohr–Coulomb; return mapping; consistent tangent operator

1. Introduction

The use of numerical codes that account for plasticity is essential when designing
geotechnical structures, as they are functional decision-making tools. However, the imple-
mentation of a good plasticity model requires the development of powerful algorithms to
resolve the numerical difficulties arising from complex plasticity laws such as those used
for soil modeling. For example, de Souza et al. [1] present several algorithms for solving
plasticity problems (that are incorporated into the HYPLAS calculation code written in
FORTRAN 77). The classical Newton–Raphson scheme is very often used to solve the
nonlinearities of the plasticity models since it converges at the second order, but under
the condition that the initial solution is close to the true solution. Its implementation
requires a rewriting of the load function as a function of the plastic deformation increment.
Furthermore, it should be ensured that during the iterative procedure, this plastic incre-
ment is not less than zero, which could happen for certain plasticity models. However,
the Newton–Raphson scheme can be improved by using the Homotopy–Newton–CPPM
or CG–Newton–CPPM algorithms proposed by Dajiang et al. [2]. Scherzinger et al. [3]
proposed a line-search algorithm with the Newton–Raphson method making it possible
to force the convergence when the first guessed solution is far from the sought numerical
solution. Similarly, Simo and Hughes [4] described the theoretical foundations of several
formulations and algorithms for plasticity based on the Newton–Raphson procedure. In
particular, they show that the construction of the elastoplastic tangent matrix, which is
closely related to the rate of convergence in the Finite Element Method (FEM) and guar-
antees the consistency of the algorithmic integration process [5], is a crucial step for the
robustness of these algorithms, hence the difficulty of implementing certain constitutive
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laws (such as the Hardening Soil Model law [6]). However, for the perfectly plastic behavior
laws, particularly Mohr–Coulomb’s law, some authors have been able to establish this
matrix analytically, as with de Souza et al. [1], who determined this matrix in the principal
basis before returning it to the global basis (Cartesian) using spectral projection. Indeed, the
arising functions and their derivatives expressed in the global basis are complicated, and
so the eigenvectors must therefore be determined numerically [7]. This difficulty can be
avoided by keeping the stresses in the main base when the plasticity or failure criterion has
a very simple shape compared to its formulation in the general stress space [8]. Another
approach was proposed in [9], where the authors preferred to express the yield function in
a non-invariant form. This enables the derivatives and the plastic matrix to be expressed
in a fairly simple algebraic form. In general, great care should be taken to avoid errors in
deriving the consistent elastoplastic tangent analytically, as the calculations can become
very complicated. Recently, another approach for solving local constitutive equations using
conic optimization is discussed [10]. This method avoids blind guessing in the search for
the elastic stress tensor (trial stresses) for the constitutive scheme. Indeed, the solution of
the problem can be searched as the optimal pair (isotropic and linear behavior and linear
hardening) for the convex optimization problem. Moreover, this procedure also allows to
lighten the construction of the tangent operator. This operator can also be decomposed into
elastoplastic and elastic tangent operators [11].

Commercial finite element software systems are available to solve geotechnical prob-
lems, including PLAXIS, ZSOIL and FLAC. However, coupling them with calibration or
uncertainty analysis algorithms can be difficult due to the impossibility of accessing source
codes. In addition, these software packages are expensive, and academic versions often
do not offer a complete library that can meet specific needs; hence the need to develop an
in-house code for research purposes. Most software packages were initially designed to
meet a specific purpose before being extended to other areas. For example, the PLAXIS
software we use to validate our results was initially designed for the analysis of river
embankments on earthen soils before being extended to most other geotechnical fields [12].

We develop a finite element code for elastoplasticity calculations with the application
of the Mohr–Coulomb soil law. This law is widely used in geotechnical engineering to
model the behavior of soils, particularly those of earth dams. We advocate the use of a
‘purely’ numerical strategy to compute the consistent tangent matrix. For this purpose, we
evaluate a fixed point and a finite difference scheme. These schemes are simple alternatives
to existing methods for solving the return mapping. The resulting finite element code offers
the flexibility to integrate other much more complex constitutive laws, particularly those
whose plasticity criteria evolve during loading (such as the Hardening Soil Model [6]). In
addition, it can be easily coupled with parameter calibration algorithms.

The organization of the rest of this paper is as follows: Section 2 presents the for-
mulation of the plasticity problem, as well as the return mapping algorithm for 1D and
2D models. Section 3 presents and discusses numerical examples, and we draw our
conclusions in Section 4.

2. Plasticity Formulation
2.1. Constitutive Law of Plasticity

In linear elasticity, the constitutive law is given by:

σ = D : εe (1)

where in plane strain case, σ =
[
σxx σyy σxy

]T is the stress vector, εe =
[

εe
xx εe

yy εe
xy

]T

the elastic strain vector and D the matrix of elasticity material properties. As soon as the
yield strength is exceeded during loading, and under the assumption of small strains,
permanent strains (or plastic strains) εp occur. The strain tensor ε is decomposed as:

ε = εe + εp (2)
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and the stress-strain relationship is written as:

σ = D : (ε− εp) (3)

This relationship can also be written in terms of tensor rates (or in incremental form
linking the increments strains to those of the stresses):

.
σ = D :

( .
ε− .

ε
p
)

(4)

with
.
ε

p
=

.
γ

∂ f
∂σ

(5)

where
.
γ represents the plastic multiplier and the dots symbol means the pseudo-time

derivative of the quantity.
The in-plane strain, the elasticity tensor linking stresses and strains in the principal

basis are expressed as [1,13]:

D = 2G I +
(

K− 2
3

G
)

1⊗ 1 (6)

where K, G > 0 represents the elastic and shear modulus, respectively, I = 1
2

[
δikδjl + δilδjk

]
ei ⊗ ej ⊗ ek ⊗ el is the fourth symmetric order identity tensor and 1 = δijei ⊗ ej is the second
order of identity tensor.

2.2. Return Mapping Algorithm

In plasticity problems, the constitutive laws linking stresses to strains, as well as
the internal hardening law or that of the plastic multiplier (Equations (4) and (5)) are
given as rates and therefore depend on the loading history. Thus, all these laws will
have to be integrated over time with a numerical scheme. However, there are several
numerical integration methods, including implicit and explicit Euler methods and Runge–
Kutta methods. The choice of one of these methods should be simple; any one of them
should provide accurate and robust results. The implicit Euler method also called the
return-mapping method for elastoplastic problems and is often selected because of its
stability [1,4,14,15]. This integration technique was first developed by Wilkins [16] for
plane strain and elastoplasticity problems for low loads. Its extension to problems of large
strains has been proposed by various authors, including Nagtegaal [17] and Simo and
Taylor [18]. The iterative procedure often adopted for solving the constitutive problem
is the classic Newton–Raphson scheme, which proves to be an optimal choice because
of its quadratic convergence rate, generally leading to very efficient procedures in terms
of the number of iterations required for convergence [1]. However, before applying this
procedure, it is necessary, from the consistency condition, to express an equation dependent
on the incremental plastic multiplier ∆γ, as presented in [1,4]. The implementation of
the return mapping resolution algorithm is laborious and often analytically impossible
when the yield function f is nonlinear. Therefore, we are developing a method for solving
a nonlinear system based on the fixed-point algorithm. This system (Equation (7)) is
generally defined by [1]:

εe
n+1 − εe trial

n+1 + ∆γ N(σn+1, An+1) = 0
αn+1 − αn − ∆γ H(σn+1, An+1) = 0

f
(
σn+1, An+1

)
= 0

(7)

where at time n + 1, εe
n+1 represents the elastic strain tensor, εe trial

n+1 is the elastic strain test

tensor; αn+1 is the internal hardening, N = ∂ f
∂σ the plasticity flux vector, An+1 is all the
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combined thermodynamic forces associated with α, H = ∂ f
∂A is the generalized hardening

module f represents the yield function and ∆γ the incremental plastic multiplier.

2.2.1. Return-Mapping Scheme for the 1D Model

To illustrate the proposed approach, we consider a 1D model, where we define the
yield function f as obeying the mixed hardening law:

f (σ, q) = |σ− q| − (σY + Kα) (8)

where σY represents the yield strength, K the plastic modulus and α the internal hardening
variable, which has the evolution equation:

.
α =

.
γ (9)

and q is the back stress defined by Ziegler’s rule as:

.
q =

.
γ H

∂ f
∂σ

=
.
γ H sign(σ− q), (10)

with H representing the kinematic hardening modulus.
For a 1D problem, the return mapping algorithm is explicitly presented in the work

of Simo and Hughes [4]. It is reproduced here (Algorithm 1) with a reformulation as an
algebraic system (Equation (11)) in order to highlight our numerical method.

Algorithm 1: Return-mapping algorithm for 1D.

1. ε
p
n, αn and qn are known in step n

2. Given a strain εn+1 = εn + ∆εn

3. Compute elastic trial stress σtrial
n+1 and test for plastic loading

4. σtrial
n+1 = E

(
εn+1 − ε

p
n

)
5. ξtrial

n+1 = σtrial
n+1 − qn

6. f trial
n+1 =

∣∣∣ξtrial
n+1

∣∣∣− [σY + Kαn]

7. if ftrial
n+1 ≤ 0 then

8. Elastic step : ()n+1 = ()trial
n+1

9. Elseplastic step, solve the system :
σn+1 = σtrial

n+1 − ∆γ E sign(ξn+1)

ε
p
n+1 = ε

p
n + ∆γ sign(ξn+1)

αn+1 = αn + ∆γ

qn+1 = qn + ∆γ H sign(ξn+1)
fn+1 = |ξn+1| − [σY + Kαn+1]

10. EndIf



σn+1 = σtrial
n+1 − ∆γ E sign(ξn+1)

ε
p
n+1 = ε

p
n + ∆γ sign(ξn+1)

αn+1 = αn + ∆γ
qn+1 = qn + ∆γ H sign(ξn+1)

fn+1 = |ξn+1| − [σY + Kαn+1]

(11)
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The analytical resolution of the system Equation (11) gives [4]:

∆γ =
f trial
n+1

E+[K+H]
> 0

σn+1 = σtrial
n+1 − ∆γ E sign(ξn+1)

ε
p
n+1 = ε

p
n + ∆γ sign(ξn+1)

qn+1 = qn + ∆γ H sign(ξn+1)

αn+1 = αn + ∆γ

(12)

While there are several numerical methods for solving non-linear equation systems,
we chose a simple fixed-point method. This choice is motivated by the fact that it does
not require the calculation of the derivatives. Integrating Equation (11) amounts to cal-
culating the mechanical state Zn+1 =

[
σn+1, αn+1, ∆γ, qn+1, ε

p
n+1

]
at the instant tn+1

from a given strain increment ∆ε and a state Zn at instant tn. The initial values for Z0

are
[
σtrial

n+1 , αn, 0, qn, ε
p
n

]
. The iteration is stopped for a time step n + 1 ≤ Nmax when

‖ Zn+1 − Z0 ‖ / ‖ Z0 ‖ is tess then a fixed threshold. Then, once Zn+1 is calculated it is
tested on the plasticity criterion as presented in [1]. If ftrial

n+1 ≤ 0 then the predicted state is
the solution of the problem. Otherwise, the predicted state is not admissible, and a plastic
correction step is performed. Algorithm 2 illustrates this iterative process for the 1D model:

Algorithm 2: Fixed point method applied to the return mapping algorithm.

1. Initialization : Z0 =
[
σtrial

n+1 , αn, 0, qn, ε
p
n

]
2. tol: tolerance and Nmax maximum number of iterations are set
3. While ‖ Z− Z0 ‖ / ‖ Z0 ‖> tol and n ≤ Nmax = 20

4.


∆γ = − (σn+1−σtrial

n+1)
E signξn+1

ε
p
n+1 = ε

p
n + ∆γ sign(ξn+1)

αn+1 = αn + ∆γ

qn+1 = qn + ∆γ H sign(ξn+1)

5. If σn+1 − qn+1 ≥ 0 then
6. σn+1 = qn+1 + [σY + Kαn+1]
7. else
8. σn+1 = qn+1 − [σY + Kαn+1]
9. EndIf

10. Z =
[
σn+1, αn+1, ∆γ, qn+1, ε

p
n+1

]
11. Update Z0 = Z
12. EndWhile

2.2.2. Return-Mapping Scheme for the Mohr–Coulomb (MC) Law

The MC model generally depends on two parameters: the internal friction angle φ of
the material and the cohesion c, which can also depend on the accumulated plastic strain
ε

p
n and its increment ∆εp(c

(
ε

p
n, ∆εp

)
. It also involves the shear stress τ and normal stress

σn. For this criterion, the plastic strain begins when the shear stress τ, as well as the normal
stress σn become critical. These two stresses are linked by the relationship:

τ = c− σn tan(φ) (13)

The plastic function f is expressed in terms of principal stresses by:

f (σ, c) = σ1 − σ3 + (σ1 + σ3) sin φ− 2c cos φ (14)
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with the convention σ1 ≥ σ2 ≥ σ3 where σj (j = 1, 2, 3) is the j-th principal stress. The
representation of its yield surface is a hexagonal pyramid whose axis is colinear to the
hydrostatic pressure (Figure 1) defined by:

p = c cot(φ) (15)
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The six edges of this criterion in three-dimensional space, allow it to be expressed by
six load functions given by [1]:

f1(σ, c) = σ1 − σ3 + (σ1 + σ3) sin φ− 2c cos φ
f2(σ, c) = σ2 − σ3 + (σ2 + σ3) sin φ− 2c cos φ
f3(σ, c) = σ2 − σ1 + (σ2 + σ1) sin φ− 2c cos φ
f4(σ, c) = σ3 − σ1 + (σ3 + σ1) sin φ− 2c cos φ
f5(σ, c) = σ3 − σ2 + (σ3 + σ2) sin φ− 2c cos φ
f6(σ, c) = σ1 − σ2 + (σ1 + σ2) sin φ− 2c cos φ

(16)

The two-by-two intersections of these load surfaces and the vertex form singularities
that pose some problems for numerical integration. Each of the six load surfaces has a
plastic flow rule associated with it. In addition, the behavior of the soil during loading
involves friction, and so non-associated plastic flow rules must be used to avoid excessive
expansion of the material [9]. For this purpose, an expansion angle, noted as ψ, that allows
the introduction of six plastic flow potentials gi (I = 1, . . . , 6) associated with each yield
function fi. These plastic potentials are written in the same way as their respective yield
surfaces (the relationships in (Equation (16)).

For example, for the yield surface f1(σ, c), we have:

g1(σ, c) = σ1 − σ3 + (σ1 + σ3) sin ψ− 2c cos ψ (17)

The plastic flow rule is then written as:

.
ε

p
=

m

∑
i=1

.
γi

∂gi(σ, c)
∂σ

(18)

where we recall that m is the number of active mechanisms.
Thus, with the principal stresses ordered as follows: σ1 ≥ σ2 ≥ σ3, the flow rule can be

formulated in the edge space located in the same plane of the principal stresses space (the
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sextant plane) (Figure 2). There are then four distinct possibilities for defining the plastic
flow rule:

3 If the final stress is within the load surface, then the point is regular and a mechanism
is activated, m = 1.

3 If the final stress is located on the right edge of the cone relative to the sextant plan,
then the point is singular and two mechanisms are activated, m = 2.

3 If the final stress is located on the left edge of the cone relative to the sextant plan,
then the point is singular and also two mechanisms are activated, m = 2.

3 If the final stress is not located inside the load surface or on an edge, then it is projected
to the top of the cone, the point is singular and six mechanisms are activated, m = 6.
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Figure 2 illustrates the plastic flow rule of Mohr–Coulomb’s law. Figure 2a shows
how, according to the condition σ1 ≥ σ2 ≥ σ3 linking the principal stresses, the main plane
and the two possible configurations for two mechanisms are activated simultaneously: the
right-edge mechanism or the left-edge mechanism and the apex (Figure 2b).

� For a single activated mechanism, the plastic flow rule is written:

.
ε

p
=

.
γ Na (19)

with Na the flow vector normal to the corresponding plane defined by f1 = 0,
given by:

Na =
∂g1

∂σ
= (1 + sin ψ)e1 ⊗ e1 − (1− sin ψ)e3 ⊗ e3 (20)

� For two activated mechanisms, the plastic flow rule is written:

.
ε

p
=

.
γ

aNa +
.

γ
bNb (21)

with Nb the normal at the intersection of the two planes f1 = 0 and f6 = 0 or f1 = 0
and f2 = 0, given by:

Nb =

{
N6 = (1 + sin ψ)e1 ⊗ e1 − (1− sin ψ)e2 ⊗ e2
N2 = (1 + sin ψ)e2 ⊗ e2 − (1− sin ψ)e3 ⊗ e3

(22)

� For six activated mechanisms, the plastic flow rule is written

.
ε

p
=

6

∑
i=1

.
γi Ni (23)
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The updated stress tensor in the return mapping algorithm is generally given by
equation Equation (24). For an isotropic model, and taking into account the elastic rigidity
matrix linking the principal stresses and strains given to Equation (5), Mohr–Coulomb’s
constitutive law written in principal stresses is ([1,19]):

σj = σ trial
j −

6

∑
i=1

∆γi
(

2G
[
Ni

d

]
j
+ K Ni

v

)
, j = 1, 2, 3 (24)

where Ni
v ≡ tr

[
Ni
]

represents the i-th volumetric component of the updated plastic

flow vector, tr[ ] the trace of the second-order tensor and
[
Ni

d

]
j

the j-th eigenvalue of its

deviatoric projection.
From Equation (24), four return mappings of Mohr–Coulomb’s law according to the

active mechanisms follow: to the smooth portion, to the right edge, to the left edge, and to
the apex.

(a) Return mapping to the smooth portion (σ1 > σ2 > σ3)

For a single activated mechanism and taking into account its flow rule, the principal
updated stresses give:

σ1 = σtrial
1 −

[
2G
(

1 + 1
3 sin ψ

)
+ 2K sin ψ

]
∆γ (a)

σ2 = σtrial
2 +

(
4
3 G− 2K

)
∆γ sin ψ (b)

σ3 = σtrial
3 +

[
2G
(

1− 1
3 sin ψ

)
− 2K sin ψ

]
∆γ (c)

(25)

with the accumulated plastic strain:

ε
p
n+1 = ε

p
n + 2∆γ cos φ (26)

By combining Equation (25a,c) we have:{
σ1 − σ3 = σtrial

1 − σtrial
3 − 4G∆γ

σ1 + σ3 = σtrial
1 + σtrial

3 − 4
(

G
3 + K

)
∆γ sin ψ

(27)

The consistency condition in this case is given by:

f1(σ , c) = σ1 − σ3 + (σ1 + σ3) sin φ− 2c cos φ = 0 (28)

By substituting Equation (27) in Equation (28) and after a few transformations, the
analytical form of ∆γ is obtained by:

∆γ =
f trial
1

(
σtrial , c

)
a

(29)

with

a = 4
[

G +

(
G
3
+ K

)
sin ψ sin φ

]
In the case where the material properties are non-linear, we adopt a fixed-point algorithm

to complete the resolution. The fixed point algorithm applied to the return mapping
of the main plane mechanism (Algorithm 3) is based on the constitutive law of the acti-
vated mechanism (Equation (25)), with the initial conditions taken in the elastic domain(

σtrial
1 , σtrial

2 , σtrial
3 , 0, ε

p
n = 0

)
. In this algorithm, the plastic multiplier ∆γ is obtained by

substituting the principal trial stresses σtrial
1 ,σtrial

2 ,σtrial
3 in the consistency equation for this

activated mechanism Equation (28). Moreover, from Equation (28) we deduce σ1.
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Algorithm 3: Fixed point algorithm applied to the main plane mechanism.

1. Initialization : Z0 =
[
σtrial

1 ,σtrial
2 ,σtrial

3 , 0, εp
n

]
2. tol: tolerance and Nmax maximum number of iterations

3. While ‖Z−Z0‖
‖Z0‖ > tol and n ≤ Nmax = 100

4. a = 4
[
G +

(
G
3 + K

)
sinψ sinφ

]
5. ∆γ =

(σtrial
1 −σtrial

3 )+(σtrial
1 +σtrial

3 ) sinφ−2 c(εp
n ,∆εp) cosφ

a

6. σ1 =
(1−sinψ)σ3+2 c(εp

n ,∆εp) cosφ
1+sinψ

7. σ2 = σtrial
2 + ∆γ

(
4G
3 − 2K

)
sinψ

8. σ3 = σtrial
3 +

[
2G
(

1− 1
3 sinψ

)
− 2K sinψ

]
∆γ

9. ε
p
n+1 = ε

p
n + 2∆γ cosφ

10. Update c, K and G

11. Z =
[
σ1,σ2,σ3, ∆γ, εp

n+1

]
12. Update Z0 = Z
13. EndWhile

(b) Return mapping to the right edge (σ1 > σ2 = σ3)

Similarly, for two mechanisms activated on the right edge, the principal updated
stresses are:

σ1 = σtrial
1 −

[
2G
(

1 + 1
3 sin ψ

)
+ 2K sin ψ

](
∆γa1 + ∆γb1

)
(a)

σ2 = σtrial
2 +

(
4
3 G− 2K

)
∆γa1 sin ψ +

[
2G
(

1− 1
3 sin ψ

)
− 2K sin ψ

]
∆γb1 (b)

σ3 = σtrial
3 +

[
2G
(

1− 1
3 sin ψ

)
− 2K sin ψ

]
∆γa1 +

(
4
3 G− 2K

)
∆γb1 sin ψ (c)

(30)

with the accumulated plastic strain given by:

ε
p
n+1 = ε

p
n + 2

(
∆γa1 + ∆γb1

)
cos φ (31)

The combination of equations Equation (30a,c) gives:
σ1 − σ3 = σtrial

1 − σtrial
3 − 4G∆γa1 − 2G(1 + sin ψ)∆γb1

σ1 + σ3 = σtrial
1 + σtrial

3 − 4
(

G
3 + K

)
∆γa1 sin ψ−

2
[

G
(

1− 1
3 sin ψ

)
+ 2K sin ψ

]
∆γa1

(32)

By substitution of Equation (32) into Equation (28) and after some transformations,
we obtain:

a∆γa1 + b1∆γb1 = f trial
1

(
σtrial , c

)
(33)

with

b1 = 2G
(

1 + sin ψ + sin φ− 1
3

sin ψ sin φ

)
+ 4K sin ψ sin φ (34)

For the second mechanism, the consistency condition is given by:

f6(σ , c) = σ1 − σ2 + (σ1 + σ2) sin φ− 2c cos φ = 0 (35)
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The combination of equations Equation (30a,b) gives:
σ1 − σ2 = σtrial

1 − σtrial
2 − 4G∆γb1 − 2G(1 + sin ψ)∆γa1

σ1 + σ2 = σtrial
1 + σtrial

2 − 4
(

G
3 + K

)
∆γb1 sin ψ−

2
[

G
(

1− 1
3 sin ψ

)
+ 2K sin ψ

]
∆γa1

(36)

By substitution of Equation (36) into Equation (35) and after some transformations,
we obtain:

a∆γb1 + b1∆γa1 = f trial
6

(
σtrial , c

)
(37)

From Equations (33) and (37), we can deduce the scalar form of ∆γa1 and ∆γb1, defined
by:  ∆γa1 =

a f trial
1 −b1 f trial

6
Det1

∆γb1 =
a f trial

6 −b1 f trial
1

Det1

or  ∆γa1 =
f trial
1 −b1∆γb1

a

∆γb1 =
f trial
6 −b1∆γa1

a

(38)

with
Det1 = a2 − b2

1

Remark 1. Regardless of the «physical» values taken by parameters K, G, φ and ψ, Det1 6= 0. (see
Figure 3).
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Figure 3. Example of Det1 values for K = 1.67 × 108 and G = 6.39 × 105.

The fixed-point algorithm applied to the return mapping of the right edge mechanism
(Algorithm 4) is based on the constitutive law given in Equation (30). Its initial conditions
are also taken in the elastic domain (σtrial

1 , σtrial
2 , σtrial

3 , 0, 0, ε
p
n = 0).
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Algorithm 4: Fixed point method applied to the right edge mechanism.

1. Initialization : Z0 =
[
σtrial

1 ,σtrial
2 ,σtrial

3 , 0, 0, εp
n

]
2. tol: tolerance and Nmax maximum number of iterations

3. While ‖Z−Z0‖
‖Z0‖ > tol and n ≤ Nmax = 100

4. a = 4
[
G +

(
G
3 + K

)
sinψ sin φ

]
5. b1 = 2G

(
1 + sin ψ + sin φ− 1

3 sin ψ sin φ
)
+ 4K sin ψ sin φ

6. ∆γa1 =
(σtrial

1 −σtrial
3 )+(σtrial

1 +σtrial
3 ) sin φ−2 c(εp

n ,∆εp) cos φ−b1∆γb1

a

7. ∆γb1 =
(σtrial

1 −σtrial
2 )+(σtrial

1 +σtrial
2 ) sin φ−2 c(εp

n ,∆εp) cos φ−b1∆γa1

a

8. σ1 = σtrial
1 −

[
2G
(

1 + 1
3 sinψ

)
+ 2K sinψ

](
∆γa1 + ∆γb1

)
9. σ2 = σtrial

2 +
(

4
3 G− 2K

)
∆γa1 sinψ+

[
2G
(

1− 1
3 sinψ

)
− 2K sinψ

]
∆γb1

10. σ3 = σtrial
3 +

[
2G
(

1− 1
3 sinψ

)
− 2K sinψ

]
∆γa1 +

(
4
3 G− 2K

)
∆γb1 sinψ

11. ε
p
n+1 = ε

p
n + 2

(
∆γa1 + ∆γb1

)
cos φ

12. Update c, K and G

13. Z =
[
σ1,σ2,σ3, ∆γa1, ∆γb1, εp

n+1

]
14. Update Z0 = Z
15. EndWhile

(c) Return mapping to the left edge (σ1 = σ2 > σ3)

For two mechanisms activated on the left edge, principal updated stresses are given
by:

σ1 = σtrial
1 −

[
2G
(

1 + 1
3 sin ψ

)
+ 2K sin ψ

]
∆γa2 +

(
4
3 G− 2K

)
∆γb2 sin ψ (a)

σ2 = σtrial
2 +

(
4
3 G− 2K

)
∆γa2 sin ψ−

[
2G
(

1 + 1
3 sin ψ

)
+ 2K sin ψ

]
∆γb2 (b)

σ3 = σtrial
3 +

[
2G
(

1− 1
3 sin ψ

)
− 2K sin ψ

](
∆γa2 + ∆γb2

)
. (c)

(39)

Similarly, the accumulated plastic strain is given by:

ε
p
n+1 = ε

p
n + 2

(
∆γa2 + ∆γb2

)
cos φ. (40)

The combinations of equations Equation (39a,c) gives:
σ1 − σ3 = σtrial

1 − σtrial
3 − 4G∆γa2 − 2G(1− sin ψ)∆γb2

σ1 + σ3 = σtrial
1 + σtrial

3 − 4
(

G
3 + K

)
∆γa2 sin ψ+

2
[

G
(

1 + 1
3 sin ψ

)
− 2K sin ψ

]
∆γb2.

(41)

By substituting Equation (41) into Equation (28) and making some transformations,
we obtain:

a∆γa2 + b2∆γb2 = f trial
1

(
σtrial , c

)
(42)

with

b2 = 2G
(

1− sin ψ− sin φ− 1
3

sin ψ sin φ

)
+ 4K sin ψ sin φ. (43)

For the second activated mechanism, the consistency condition is given by:

f2(σ , c) = σ2 − σ3 + (σ2 + σ3) sin φ− 2c cos φ = 0. (44)
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The combination of equations Equation (39a,b) gives:
σ2 − σ3 = σtrial

2 − σtrial
3 − 4G∆γb2 − 2G(1− sin ψ)∆γa2

σ2 + σ3 = σtrial
2 + σtrial

3 − 4
(

G
3 + K

)
∆γb2 sin ψ+

2
[

G
(

1 + 1
3 sin ψ

)
− 2K sin ψ

]
∆γa2

(45)

By substituting Equation (45) into Equation (44) and making some transformations,
we obtain:

a∆γb2 + b2∆γa2 = f trial
2

(
σtrial , c

)
. (46)

From Equations (42) and (46), the scalar forms of ∆γa2 and ∆γb2 are: ∆γa2 =
a f trial

1 −b2 f trial
2

Det2

∆γb2 =
a f trial

2 −b2 f trial
1

Det2

or  ∆γa2 =
f trial
1 −b2∆γb2

a

∆γb2 =
f trial
2 −b2∆γa2

a

(47)

with
Det2 = a2 − b2

2.

Remark 2. Similarly, for «physical» values of parameters K, G, φ and ψ, Det2 6= 0 (see Figure 4).
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The fixed-point algorithm applied to the left edge mechanism (Algorithm 5) is based
on the constitutive law of the activated mechanism (Equation (39)). Its initial conditions
are taken in the elastic domain (σtrial

1 , σtrial
2 , σtrial

3 , 0, 0, ε
p
n = 0).
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Algorithm 5: Fixed point algorithm applied to the left edge mechanism.

1. Initialization : Z0 =
[
σtrial

1 ,σtrial
2 ,σtrial

3 , 0, 0, εp
n

]
2. tol : tolerance and N _max maximum number of iterations

3. While ‖Z−Z0‖
‖Z0‖ > tol and n ≤ Nmax = 100

4. a = 4
[
G +

(
G
3 + K

)
sinψ sin φ

]
5. b2 = 2G

(
1− sinψ− sin φ− 1

3 sinψ sin φ
)
+ 4K sinψ sin φ

6. ∆γa2 =
(σtrial

1 −σtrial
3 )+(σtrial

1 +σtrial
3 ) sin φ−2 c(εp

n ,∆εp) cos φ−b2∆γb2

a

7. ∆γb2 =
(σtrial

2 −σtrial
3 )+(σtrial

2 +σtrial
3 ) sin φ−2 c(εp

n ,∆εp) cos φ−b2∆γa2

a

8. σ1 = σtrial
1 −

[
2G
(

1 + 1
3 sinψ

)
+ 2K sinψ

]
∆γa2 +

(
4
3 G− 2K

)
∆γb2 sinψ

9. σ2 = σtrial
2 +

(
4
3 G− 2K

)
∆γa2 sinψ−

[
2G
(

1 + 1
3 sinψ

)
+ 2K sinψ

]
∆γb2

10. σ3 = σtrial
3 +

[
2G
(

1− 1
3 sinψ

)
− 2K sinψ

](
∆γa2 + ∆γb2

)
11. ε

p
n+1 = ε

p
n + 2

(
∆γa2 + ∆γb2

)
cos φ

12. Update c, K and G

13. Z =
[
σ1,,σ2,σ3, ∆γa2, ∆γb2, εp

n+1

]
14. Update Z0 = Z
15. EndWhile

(d) Return mapping to the apex (σ1 = σ2 = σ3)

Finally, in the case of the Apex, the stress is located on the hydrostatic axis. The
hydrostatic pressure is then written:

pn+1 = ptrial
n+1 − K ∆ε

p
v, (48)

where ∆ε
p
v represents the volumetric plastic strain increment and is given by:

∆ε
p
v = 2 sin(ψ)

6

∑
i=1

∆γi. (49)

The updated stress and the accumulated plastic strain are given by [1]:{
σn+1 = pn+1 1

ε
p
n+1 = ε

p
n + β∆ε

p
v.

(50)

with β ≡ cos φ
sin ψ .

The fixed-point algorithm applied to the return mapping to the Apex mechanism
(Algorithm 6) is also based on the constitutive law of the activated mechanism (Equation
(48)). Its initial conditions, taken in the elastic domain, are ptrial

n+1, 0 and ε
p
n = 0. The

volumetric plastic strain increment ∆ε
p
v can still be written as a function of the hydrostatic

pressure p using equations Equation (15) and Equation (48).
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Algorithm 6: Fixed point algorithm applied to the Apex mechanism.

1. Initialization : Z0 =
[
ptrial

n+1, 0, εp
n

]
2. tol : tolerance and N _max maximum number of iterations

3. While ‖Z−Z0‖
‖Z0‖ > tol and n ≤ Nmax = 100

4. β = cotφ/ sinψ
5. pn+1 = ptrial

n+1 −K∆εp
v

6. ∆εp
v =

(
ptrial

n+1 − c cotφ
)

/K

7. ε
p
n+1 = ε

p
n + β ∆εp

v

8. Update c, K and G

9. Z =
[
pn+1, ∆εp

v , εp
n+1

]
10. Update Z0 = Z
11. EndWhile

2.3. The Elastoplastic Consistent Tangent Operator

The elastoplastic consistent tangent operator is closely related to the algorithmic
form for updating the stress tensor. Indeed, it is obtained by performing a linearization
of the stress updating algorithm [1,4,20]. Thus, in this section, we present a numerical
method using a first-order finite difference scheme for calculating this tangent oper-
ator. However, the analytical method is presented in Section 2.3.1 for 1D case and in
the Appendix A for 2D case. Analytical calculation is often laborious, and sometimes
even impossible to perform exactly. In the numerical approach, the return mapping
algorithm is used twice. The additional numerical calculations come with more time
consumption, but the complexities associated with the analytical calculations are over-
come. Furthermore, the computational overload due the finite difference algorithm
can be substantially reduced using parallel programing. The general expression of the
consistent elastoplastic tensor is given by:

Dep =
dσn+1

dεe trial
n+1

(51)

where σn+1 represents the stress tensor at time tn+1.

2.3.1. 1D Illustration

Using the consistency condition
( .

f = 0
)

, the expression of
.
σ is given by:

.
σ = E

(
.
ε− E

(E + H + K)
.
ε

)
, (52)

and so, the relationship of the constitutive law linking
.
σ to

.
ε becomes:

.
σ =


E(H+K)
(E+H+K)

.
ε i f

.
γ > 0

E
.
ε i f

.
γ = 0

(53)
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We can therefore deduce the tangent modulus Delp obtained analytically for the
1D model:

Delp =
E(H + K)

(E + H + K)
(54)

The tangent module is in general not easy to determine. Indeed, in this case, it was
only made possible because of the linear shape of the yield loading function. However, if
this function is non-linear, and for higher dimension problems, the calculations become
tedious or even impossible and a numerical method may be necessary. Thus, at a time tn+1
corresponding to the load increment and iteration k of the Newton–Raphson algorithm
solving the equations of equilibrium, the elastoplastic tangent modulus D(k)

n+1 is:

Delp (k)
n+1 =

∂σ
(k)
n+1

∂ε
(k)
n+1

(55)

In the 1D case, the analytical derivation leads to Equation (54). However, this result
is not general [4]. The tangent elastoplastic tensor can be obtained in the triaxial case
from the yield function expressed in terms of principal stresses. It is therefore necessary
to bring it back to the Cartesian basis. The following approximation for a small dε

(k)
n+1

can be used:
∂σ

(k)
n+1

∂ε
(k)
n+1

≈
σ
(k)
n+1

(
ε
(k)
n+1

per
)
− σ

(k)
n+1

(
ε
(k)
n+1

)
dε

(k)
n+1

(56)

where:
dε

(k)
n+1 = ω

∣∣∣ε(k)n+1

∣∣∣. (57)

In Equation (57), ω is an appropriate small number (e.g., 10−6) that represents the
amount of perturbation. The perturbed strain ε

(k)
n+1

per is:

ε
(k)
n+1

per = ε
(k)
n+1 + ω

∣∣∣ε(k)n+1

∣∣∣ (58)

and the strain increment is
∆ε

(k)
n

per = ∆ε
(k)
n + ω

∣∣∣ε(k)n+1

∣∣∣. (59)

For a given ε
(k)
n+1, the value of σ

(k)
n+1 is obtained by the return mapping method pre-

sented in Algorithm 2. The perturbed stress σ
(k)
n+1

per is calculated from the perturbed

strain ε
(k)
n+1

per using the same procedure. Finally, the tangent modulus is determined by
the relationship:

Delp (k)
n+1 ≈

σ
(k)
n+1

per − σ
(k)
n+1

ε
(k)
n+1

per − ε
(k)
n+1

. (60)

The illustration of this numerical method is presented in Algorithm 7.
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Algorithm 7: Numerical computation of the elastoplastic tangent modulus.

1. ε
p
n, αn and qn are known in step n and iteration k of Newton–Raphson

2. Compute σn+1
3. Given strain a εn+1 = εn + ∆εn

4. Compute elastic trial stress σtrial
n+1 and test for plastic loading

5. σtrial
n+1 = E

(
εn+1 − ε

p
n

)
6. ξtrial

n+1 = σtrial
n+1 − qn

7. ftrial
n+1 =

∣∣∣ξtrial
n+1

∣∣∣− [σY + Kαn]

8. if ftrial
n+1 ≤ 0 then

9. Elastic step: ()n+1 = ()trial
n+1

10. Else plastic step, go to Algorithm
11. EndIf
12. Compute σ

per
n+1

13. ω: positive scalar representing the perturbation
14. Given the perturbed strain εper

n+1 = εn+1 +ω
∣∣εn+1

∣∣
15. the strain increment is: ∆εper

n = ∆ε(k)n +ω
∣∣∣ε(k)n+1

∣∣∣
16. Compute elastic trial stress σtrial, per

n+1 and test for plastic loading

17. σ
trial, per
n+1 = σn + E ∆εper

n

18. ξ
trial, per
n+1 = σ

trial, per
n+1 − qn

19. ftrial, per
n+1 =

∣∣∣ξtrial, per
n+1

∣∣∣− [σY + Kαn]

20. if ftrial, per
n+1 ≤ 0 then

21. Elastic step: ()n+1 = ()
trial, per
n+1

22. Else plastic step, go to Algorithm
23. EndIf
24. Compute Delp

25. Delp =
σ

per
n+1 −σn+1

ε
per
n+1−εn+1

2.3.2. Case of Mohr–Coulomb’s Law

The numerical method of the elastoplastic tangent matrix presented in the 1D case is
generalized for the in-plane strain and for Mohr–Coulomb’s law.

The elastoplastic tangent matrix is approximated using a first order finite difference
scheme for each component of:

(
Delp

)(k)
(n+1)

=


∂σxx

∂εe trial
xx

∂σxx
∂εe trial

xy

∂σxx
∂εe trial

yy
∂σxy

∂εe trial
xx

∂σxy

∂εe trial
xy

∂σxy

∂εe trial
yy

∂σyy

∂εe trial
xx

∂σyy

∂εe trial
xy

∂σyy

∂εe trial
yy

|
(k)

(n+1)
(61)

Each component of the strain vector is thus perturbed according to the same principle
stated in Section 2.3.1, and so allows an approximation of the elastoplastic tangent matrix
to be calculated for each activated mechanism.

3. Numerical Study

In this section, we show the efficiency of the proposed numerical methods. For this
purpose, two examples are considered. The first example concerns the solution of a bar
(under a traction load) problem proposed by Kim [14]. This is a classical benchmark test for
which there exists an analytical solution. Therefore, any numerical algorithm in plasticity
must pass it.
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The second example deals with a symmetrical rockfill dam modeled in plane strains
according to Mohr–Coulomb’s law.

3.1. Example 1: Nonlinear Bar Problem

The bar considered is uniform with a cross-sectional area A = 1× 10−4 m and a unit
length L = 1 m. A traction force of magnitude F = 50 kN is applied at the end of the bar
(Figure 5).
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Figure 5. Nonlinear bar problem [14].

The yield strength is σY = 400 MPa. In the elastic region, the bar’s Young’s modulus
is E = 200 GPa and in the plastic region, its plastic modulus K is zero. Its yield function
obeys Equation (7).

Figure 6 shows the stress-strain for a single element of the 1D bar. Ten equal load levels
are applied to the bar. In the legend, Ana-NR represents the results from the analytical
calculation of Delp, Num-NR represents the numerical calculation of Delp, and (Kim)
represents the exact solution [14].
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Figure 6. Stress-strain for a single element considered for ω = 10−6 and tol = 10−6.

The results obtained for both models and for the exact solution (Ana-NR, Num-NR and
Kim) are virtually identical (Figure 6). For loads below 40 kN, all models converge (Table 1)
in a single iteration (elastic domain). Above 40 kN (the plastic domain), the Ana-NR and
Num-NR models converge (i.e., meet the convergence criterion which is ‖Fext−Fint‖

‖Fext‖ ≤ 10−6

where Fext represents the external force, Fint the internal force and ‖ · ‖ the Euclidean
norm) after at most two iterations. All the results show that the proposed numerical model
for the calculation of the tangent module (Num-NR) is sufficiently accurate and efficient.
In summary, the results prove that the exact solution is obtained no matter how many
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elements are used. The case of 10 elements is to show that the code behaves correctly for
any mesh.

Table 1. Convergence rate and number of iterations by loading: 1D case.

Convergence: ‖Fext−Fint‖
‖Fext‖ <10−6 Number of Iterations

Load (kN) Ana-NR Num-NR Ana-NR Num-NR
5 0 0 1 1
10 0 4.6 × 10−11 1 1
15 1.2 × 10−16 3.1 × 10−11 1 1
20 0 2.7 × 10−11 1 1
25 0 4.9 × 10−12 1 1
30 0 9.9 × 10−13 1 1
35 0 2.1 × 10−11 1 1
40 0 3.8 × 10−12 1 1
45 1.62 × 10−16 2.3 × 10−7 2 2
50 0 4.8 × 10−11 1 1

Figure 6 also shows that the yield strength is reached at 400 MPa, and beyond this
value, the bar becomes in plastic mode. To better observe these areas, we divided the bar
into ten identical elements of two nodes each. Ten successive loads in 5 kN steps were
applied. The evolution of plasticity in the bar during these loads for the Num-NR model is
presented in Figure 7.

3.2. Example 2: Rockfill Dam

To test the efficiency of the algorithm in the case of a more complex behavior, we
consider an example of a rockfill dam. This rockfill dam is assumed to be dry, homogeneous
and symmetrical, and subject to its own weight. This dam has a width L of 320 m, a height
h equal to 100 m and a crest length of 9 m. The depth of the dam axis is assumed to
be infinite, which makes it possible to carry out a study of in-plane strain. Vertical and
horizontal movements are zero at the base. Hooke’s law is used in cases where the material
has an elastic behavior. In the plastic case, the Mohr–Coulomb model is used in its non-
associated version to avoid excessive expansion of the material [9]. The material properties
correspond to those used in [21] of a rockfill dam: Young’s modulus E = 17× 107 Pa ,
Poisson coefficient ν = 0.33, density ρ = 2370 Kg/m3, material cohesion c = 0, internal
friction angle φ = 45

◦
and material dilatancy angle ψ = 15

◦
. We propose to compare the

results obtained with our code developed in the Matlab environment and those obtained
using the commercial software PLAXIS for the mesh sizes presented in Figure 8. The
construction of the dam is simulated by adding successive layers, with 20 layers in total.

The vertical and horizontal displacements, as well as the principal stresses in the
first and second direction for the entire domain, are presented in Figure 9. Although the
comparison of isovalues for the Matlab and PLAXIS models must be done with care, the
displacements and calculated main stresses show a satisfactory correspondence. Indeed,
for displacements, we note a relative difference of only 2% and 0.1% respectively for the
maximum values of ux and uy. For the maximum stresses, there is a relative difference of
4% and 11% for the principal stress 1 and principal stress 2, respectively.
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Comparisons of the values obtained for this approach, particularly in the column
and row under consideration (Figure 10), show that the vertical (uy) and horizontal (ux)
displacements, as well as the normal stresses in the X and Y directions, are also in agreement
with those obtained with PLAXIS (Figures 11 and 12, respectively).
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However, some small differences are observed. On the one hand, these could be
attributed to the mesh sizes and to the shape of the elements, as those developed for our
Matlab code differ from those used for the commercial software PLAXIS. On the other
hand, these differences may also be due to how the loading was applied. It should be
noted, however, that the results are very encouraging, especially since we do not need
to calculate the tangent matrix analytically with our numerical model for more complex
constitutive laws.

The code developed for Matlab also offers the possibility of studying the problem
layer by layer according to the imposed load, and by refining the mesh size. These loads are
represented by the different layers of the domain. Table 2 shows the number of iterations
and the convergence calculated according to the loading for the numerical model (i.e.,
the elastoplastic tangent matrix is calculated by the finite difference method). For the
three meshes (20 × 10, 60 × 20 and 30 × 30), the convergence tolerance in the equilibrium
iterations has been set to 10−10. The maximum number of iterations in any load step (layer)
is 8.
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Table 2. Convergence rate and number of iterations by loading: 2D case.

Number of Iterations vs. to Number of Layer (with the Convergence Criterion Given by ‖Fext−Fint‖
‖Fext‖ ≤10−10)

Meshes

20 × 10 60 × 20 30 × 30

Number of
Layer

Number of
Iterations Convergence Number of

Iterations Convergence Number of
Iterations Convergence

1 1 1.692 × 10−16 1 2.708 × 10−16 1 1.653 × 10−16

2 1 8.636 × 10−16 3 3.191 × 10−11 1 5.335 × 10−16

3 4 6.068 × 10−16 5 8.266 × 10−16 1 1.512 × 10−15

4 5 3.192 × 10−13 5 1.234 × 10−15 4 6.654 × 10−16

5 5 1.590 × 10−15 4 1.718 × 10−11 4 1.099 × 10−15

6 5 2.110 × 10−15 5 2.896 × 10−15 4 9.045 × 10−12

7 5 1.712 × 10−11 5 4.163 × 10−15 5 3.325 × 10−14

8 5 4.503 × 10−15 5 3.024 × 10−14 5 2.198 × 10−15

9 7 5.917 × 10−15 6 6.844 × 10−15 5 3.132 × 10−15

10 8 7.336 × 10−15 7 8.043 × 10−15 5 4.763 × 10−15

11 7 1.136 × 10−14 5 1.078 × 10−14

12 7 9.497 × 10−14 5 5.637 × 10−15

13 7 1.948 × 10−14 5 6.700 × 10−15

14 7 4.625 × 10−14 5 6.571 × 10−15

15 7 2.017 × 10−11 5 7.162 × 10−15

16 7 5.878 × 10−14 5 1.670 × 10−12

17 7 8.057 × 10−11 5 9.223 × 10−11

18 8 4.806 × 10−14 6 1.077 × 10−14

19 8 2.862 × 10−13 5 1.517 × 10−11

20 8 1.182 × 10−11 5 1.321 × 10−14

21 5 1.427 × 10−14

22 5 3.637 × 10−13

23 6 5.778 × 10−12

24 7 1.794 × 10−14

25 7 1.791 × 10−14

26 7 2.160 × 10−14

27 7 1.100 × 10−13

28 7 4.871 × 10−12

29 8 2.473 × 10−14

30 8 2.938 × 10−14

4. Conclusions

Two methods for solving elastoplastic problems have been developed in this work.
The first is related to the return-mapping scheme and is based on the fixed-point algorithm.
The second is the calculation of the consistent tangent matrix and is based on finite differ-
ences. These two methods were implemented on an in-house finite element Matlab code.
The algorithms were first validated by applying them to a 1D problem. The numerical
results obtained during the simulations proved to be in excellent agreement with the exact
solution [14]. They were then extended to the problem of a 2D dam subjected to plane
strains and using Mohr–Coulomb’s law. Two numerical methods for solving the system of
non-linear return-mapping equations and the calculation of the tangent elastoplastic matrix
were presented. Using these approaches, a set of simulations was performed, and the
results compared to those obtained using the commercial software PLAXIS. The results of
the different approaches remain in agreement with those given by PLAXIS, with deviations
of around 2% and 0.1% in displacements for ux and uy, and of a maximum of 11% in
stresses. These results are very encouraging, especially since we do not need to analytically
calculate the often-tedious tangent matrix, thereby confirming the effectiveness of the
numerical models developed in this work.
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Appendix A

For the analytical method, this matrix will first be expressed in the principal basis,
as the yield functions have already been expressed. Then, by means of the chain rule
derivation, it will be returned to the global basis using the DGISO2 procedure proposed by
de Souza Neto et al. [1] for calculating the tensor derivative of a 2D isotropic function.

(a) Main plane

By substituting Equation (29) into Equation (25), after differentiation we have:


dσ1
dσ2
dσ3

 =


dσtr

1
dσtr

2
dσtr

3

− 2∆γ


(

K + G
3

)
sin ψ + G(

K− 2G
3

)
sin ψ(

K + G
3

)
sin ψ− G

 (A1)

Knowing that
dσtr

j = Ddεj (A2)

and because the trial stress is assumed to be elastic, Equation (A2) becomes:

dσj = Ddεj −
2 d f trial

1
a
Vpm (A3)

with

Vpm =


(

K + G
3

)
sin ψ + G(

K− 2G
3

)
sin ψ(

K + G
3

)
sin ψ− G

 (A4)

representing the normal vector applied to the flow potential of the main plane, and the
differentiation of the consistency condition given in Equation (28) is defined by

d f tr
1
(
σtr, c

)
= 2Vcmdε j, j = 1, 2, 3 (A5)

with

Vcm =


(

K + G
3

)
sin φ + G(

K− 2G
3

)
sin φ(

K + G
3

)
sin φ− G

 (A6)

representing the normal vector applied to the yield function of the main plane, so that

dσj =

(
D− 4

a
Vpm ·VT

cm

)
dεj, j = 1, 2, 3 (A7)
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Finally, the consistent tangent operator in the principal basis and for the main plane(
Dep

p,m
)

obtained analytically can be written as:

Dep
p,m = D− 4

a
Vpm .VT

cm (A8)

(b) Right edge

We replace Equation (38) in Equation (30), and then differentiate to find:


dσ1
dσ2
dσ3

 =


dσtr

1
dσtr

2
dσtr

3

− 2 ∆γa1


(

K + G
3

)
sin ψ + G(

K− 2
3 G
)

sin ψ(
K + G

3

)
sin ψ− G

︸ ︷︷ ︸
Vpm

− 2 ∆γb1


(

K + G
3

)
sin ψ + G(

K + G
3

)
sin ψ− G(

K− 2
3 G
)

sin ψ

︸ ︷︷ ︸
Vpr

(A9)

where Vpr represents the normal vector applied to the flow potential of the right edge, and

dσj = Ddεj − 2 d∆γa1 Vpm − 2 d∆γb1 Vpr (A10)

In this last relationship, we still have to express the incremental plastic multiplier as a
function of the incremental plastic strain. Therefore, after differentiating the consistency
conditions given in Equations (28) and (35) defined by:{

d f tr
1
(
σtr, c

)
= 2Vcmdεj

d f trial
6

(
σtrial , c

)
= 2Vcrdεj

(A11)

with

Vcr =


(

K + G
3

)
sin φ + G(

K + G
3

)
sin φ− G(

K− 2G
3

)
sin φ

 (A12)

representing the normal vector applied to the yield function of the right edge and the
plastic multipliers defined by d∆γa1 =

a d f trial
1 −b1 d f trial

6
Det1

d∆γb1 =
a d f trial

6 −b1 d f trial
1

Det1

, (A13)

the increment of the j principal stress is then written as:

dσj =

{
D− 4

Det1

[
a
(
Vpm ·VT

cm + Vpr ·VT
cr

)
− b1

(
Vpm ·VT

cr + Vpr ·VT
cm

)]}
dεj (A14)

The consistent tangent operator in the main base for the right edge
(
Dep

p,r
)

obtained
analytically is therefore:

Dep
p,r = D− 4

Det1

[
a
(
Vpm ·VT

cm + Vpr ·VT
cr

)
− b1

(
Vpm ·VT

cr + Vpr ·VT
cm

)]
(A15)

(c) Left edge

As before, we substitute Equation (47) into Equation (39) and then after differentiating,
to obtain:
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
dσ1
dσ2
dσ3

 =


dσtr

1
dσtr

2
dσtr

3

− 2 ∆γa2


(

K + G
3

)
sin ψ + G(

K− 2
3 G
)

sin ψ(
K + G

3

)
sin ψ− G

︸ ︷︷ ︸
Vpm

− 2 ∆γb2


(
K− 2

3 G
)

sin ψ(
K + G

3

)
sin ψ + G(

K + G
3

)
sin ψ− G

︸ ︷︷ ︸
Vpl

(A16)

and
dσj = Ddεj − 2 d∆γa2 Vpm − 2 d∆γb2 Vpl (A17)

In addition, taking into account the differentiation of the consistency conditions given
in Equations (28) and (44) and defined by{

d f tr
1
(
σtr, c

)
= 2Vcmdεj

d f trial
2

(
σtrial , c

)
= 2Vcldεj

(A18)

with

Vcl =


(

K− 2G
3

)
sin φ(

K + G
3

)
sin φ + G(

K + G
3

)
sin φ− G

 (A19)

and plastic multipliers given as: d∆γa2 =
a d f trial

1 −b2 d f trial
2

Det2

d∆γb2 =
a d f trial

2 −b2 d f trial
1

Det2

, (A20)

the increment of the main stress j is then written as:

dσj =

{
D− 4

Det2

[
a
(
Vpm ·VT

cm + Vpl ·VT
cl

)
− b2

(
Vpm ·VT

cl + Vpl ·VT
cm

)]}
dεj (A21)

Finally, the consistent tangent operator in the principal basis and for the left edge(
Dep

p,m
)

obtained analytically is:

Dep
p,l = D− 4

Det2

[
a
(
Vpm ·VT

cm + Vpl ·VT
cl

)
− b2

(
Vpm ·VT

cl + Vpl ·VT
cm

)]
(A22)

(d) Apex

By evaluating the pressure and strain equations Equations (15) and (50), respectively,
we find:

dσj = 0 (A23)

Thus, the consistent tangent operator in the principal basis for the Apex
(
Dep

p,a
)

is

Dep
p,a = 0 (A24)

Remark A1. It should be noted that the analytical calculation of the elastoplastic tangent tensor
in this case is only valid for constant parameters (without any material non-linearity as in the
Duncan-Chang hyperbolic constitutive law [22] or the HS law [6]).
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19. Sysala, S.; Čermák, M.; Ligurský, T. Subdifferential-based implicit return-mapping operators in Mohr-Coulomb plasticity. Zamm-J.
Appl. Math. Mech. /Z. Für Angew. Math. Und Mech. 2017, 97, 1502–1523. [CrossRef]

20. Semenov, A.S.; Liskowsky, A.; Balke, H. Return mapping algorithms and consistent tangent operators in ferroelectroelasticity. Int.
J. Numer. Methods Eng. 2010, 81, 1298–1340. [CrossRef]

21. Hamed, A.A. Predictive Numerical Modeling of the Behavior of Rockfill Dams. Ph.D. Thesis, École de Technologie Supérieure,
Montréal, QC, Canada, 2017.

22. Ni, P.; Mei, G.; Zhao, Y.; Chen, H. Plane strain evaluation of stress paths for supported excavations under lateral loading and
unloading. Soils Found. 2018, 58, 146–159. [CrossRef]

http://doi.org/10.1016/j.compgeo.2020.103961
http://doi.org/10.1016/j.cma.2016.11.026
http://doi.org/10.1016/0045-7825(85)90070-2
http://doi.org/10.1016/j.finel.2018.07.001
http://doi.org/10.1016/j.ijrmms.2007.10.004
http://doi.org/10.1002/cnm.1630020511
http://doi.org/10.1016/j.apm.2019.10.006
http://doi.org/10.1016/j.amc.2019.02.054
https://www.code-aster.org/V2/doc/v13/fr/man_r/r7/r7.01.28.pdf
https://www.code-aster.org/V2/doc/v13/fr/man_r/r7/r7.01.28.pdf
http://doi.org/10.1002/nme.1620310109
http://doi.org/10.1016/0045-7825(82)90120-7
http://doi.org/10.1002/nme.1620220310
http://doi.org/10.1002/zamm.201600215
http://doi.org/10.1002/nme.2728
http://doi.org/10.1016/j.sandf.2017.12.003

	Introduction 
	Plasticity Formulation 
	Constitutive Law of Plasticity 
	Return Mapping Algorithm 
	Return-Mapping Scheme for the 1D Model 
	Return-Mapping Scheme for the Mohr–Coulomb (MC) Law 

	The Elastoplastic Consistent Tangent Operator 
	1D Illustration 
	Case of Mohr–Coulomb’s Law 


	Numerical Study 
	Example 1: Nonlinear Bar Problem 
	Example 2: Rockfill Dam 

	Conclusions 
	
	References

