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Featured Application: This contribution presents a central predictive control of the vehicle dy-
namics regarding the roll, self-steering and pitch behavior.

Abstract: Considering automated driving, vehicle dynamics control systems are also a crucial
aspect. Vehicle dynamics control systems serve as an important influence factor on safety and
ride comfort. By reducing the driver’s responsibility through partially or fully automated driving
functions, the occupants’ perception of safety and ride comfort changes. Both aspects are focused
even more and have to be enhanced. In general, research on vehicle dynamics control systems
is a field that has already been well researched. With regard to the mentioned aspects, however,
a central control structure features sufficient potential by exploiting synergies. Furthermore, a
predictive mode of operation can contribute to achieve these objectives, since the vehicle can act
in a predictive manner instead of merely reacting. Consequently, this contribution presents a
central predictive control system by means of a non-linear model-based predictive control algorithm.
In this context, roll, self-steering and pitch behavior are considered as control objectives. The
active roll stabilization demonstrates an excellent control quality with a root mean squared error
of 7.6953× 10−3 rad averaged over both validation maneuvers. Compared to a vehicle utilizing a
conventional control approach combined with a skyhook damping, pitching movements are reduced
by 19.75%. Furthermore, an understeering behavior is maintained, which corresponds to the self-
steering behavior of the passive vehicle. In general, the central predictive control, thus, increases
both ride comfort and safety in a holistic way.

Keywords: central control; non-linear model-based predictive control; pitch behavior; predictive
control; roll behavior; self-steering behavior; vehicle dynamics

1. Introduction

Two major driving factors in vehicle development are increasing the safety and en-
hancing the ride comfort of the vehicle [1]. Especially in the context of automated driving,
where the driver becomes a passenger, the perception of ride comfort changes significantly
and at the same time gains in importance [2]. Moreover, a predictive mode of operation
of the vehicle is beneficial. The implementation of a central predictive control of the vehi-
cle dynamics addresses the objectives of increasing safety and ride comfort. The central
control structure exploits synergies in terms of the control quality [3]. An overview of the
state of the art for centralized integrated vehicle dynamics control systems is given in [4].
Furthermore, a predictive mode of operation allows the vehicle to act in a predictive way
instead of just reacting [5]. In addition to classical approaches to control vehicle dynamics
such as skyhook damping [6] and model-based control algorithms [7], the utilization of
artificial intelligence is gaining increased attention. This mainly includes reinforcement
learning [8], fuzzy inference systems [9] as well as deterministic artificial intelligence [10].
Due to the current regulation for the use of artificial intelligence in vehicles, a model-based
approach is considered in this contribution.

Appl. Sci. 2021, 11, 4687. https://doi.org/10.3390/app11104687 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-4017-1352
https://orcid.org/0000-0002-7945-1853
https://www.mdpi.com/article/10.3390/app11104687?type=check_update&version=1
https://doi.org/10.3390/app11104687
https://doi.org/10.3390/app11104687
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11104687
https://www.mdpi.com/journal/applsci


Appl. Sci. 2021, 11, 4687 2 of 18

For this purpose, a non-linear model-based predictive control algorithm implements
the central predictive control. The control objectives pursued are an active roll stabilization,
the manipulation of the self-steering behavior as well as the reduction of pitching move-
ments. Mathematical models are used to predict the system behavior as a function of the
manipulated variables [11]. Subsequently, the predicted system behavior is adapted to the
desired system behavior in the form of reference trajectories. Furthermore, the manipulated
variables can also be taken into account in the cost function to be minimized, so that the
energy requirement within the central predictive vehicle dynamics control can likewise be
reduced. A further advantage of the model-based predictive control is that it can also con-
sider constraints on the manipulated variables. This enables actuator limits to be respected
already during the optimization within the model-based predictive control algorithm [12].
As a result, this class of algorithms exhibits an excellent control quality. In [13], a model-
based predictive control is used to stabilize a vehicle at its vehicle dynamics limits. Due to
limitations of the side-slip angle and the yaw rate within the control algorithm the safety is
enhanced. [14] apply a model-based predictive control algorithm to reduce vertical vehicle
body motions. The vehicle is equipped with active suspension elements. Compared to a
passive vehicle the ride comfort is significantly increased. A model-based predictive control
algorithm is used in [15] to control the semi-active suspensions of a vehicle. This algorithm
is validated against classical control approaches such as the skyhook damping presented
in [16] and a clipped control strategy presented in [17]. For various road excitations, the
model-based predictive control algorithm outperforms the classical control approaches.

This contribution is organized as follows: Section 2 presents the simulation framework,
which is used to develop and validate the central predictive vehicle dynamics control.
Section 3 introduces the central non-linear model-based predictive control algorithm with
respect to the control objectives of roll, self-steering and pitch behavior. The central
predictive control is then validated in Section 4. The contribution concludes in Section 5
with a summary as well as an outlook on future research tasks.

2. Simulation Framework

A simulation framework is used to implement the central predictive vehicle dynamics
control and its validation. This framework is based on a co-simulation between IPG
CarMaker and MATLAB & Simulink. Figure 1 illustrates the simulation framework. The
multi-body simulation within the software IPG CarMaker is used for a realistic simulation
of the vehicle. In addition to this realistic representation of the vehicle and the vehicle
dynamics, IPG CarMaker also offers the possibility to edit and simulate the environment
as well as driver models. In the context of the contribution, a vehicle of the sport utility
vehicle class, a Lexus RX400h, is utilized. Due to the heightened center of gravity, this
class of vehicle features higher tendencies towards movements in terms of rolling and
pitching, which ultimately presents a more challenging task for the vehicle dynamics
control. In order to accomplish the control and to achieve the control objectives, the vehicle
is equipped with active stabilizers and semi-active dampers. The sensor equipment of the
vehicle in IPG CarMaker is based on a minimalistic configuration. Available measured
quantities are the longitudinal acceleration ax, the lateral acceleration ay, the yaw rate

.
ψ, the

steering wheel angle δSW, the velocity v and the wheel speeds nij. Further fixed parameters
of the vehicle are listed in Table 1.
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Figure 1. Simulation Framework, © 2021 IEEE. Reprinted, with permission, from [18].

Table 1. Vehicle Parameters.

Parameter Value Unit

Vehicle Body Mass 1820 kg
Track Width 1.538 m
Wheelbase 2.75 m

Tires 235/55R18 -
Distance of the Center of Gravity to the Front Axle 1.343 m
Distance of the Center of Gravity to the Rear Axle 1.407 m

Height of the Center of Gravity 0.682 m
Height of the Center of Pitching 0.3257 m
Height of the Center of Rolling 0.2826 m

Moment of Inertia about the Lateral Axis 2654 kg m2

Moment of Inertia about the Longitudinal Axis 760 kg m2

Moment of Inertia about the Vertical Axis 2774 kg m2

The implementation of all algorithms is done in MATLAB & Simulink. In addition
to the central predictive control, this also includes the generation of reference trajectories
representing the control targets, the simulation of the actuators with regard to a realistic
mapping, as well as the implementation of state estimators, which estimate the states
necessary for the control not determined by sensors. Examples for the implementation of
these state estimators are presented in [19–21].

In the following, the focus is on the central non-linear model-based predictive con-
trol algorithm.

3. Central Predictive Control

The steps of prediction and subsequent optimization characterize the central predictive
control based on the non-linear model-based predictive control algorithm [22]. Within this
contribution, the integrated model-based predictive control presented in [5] is extended
and elaborated with respect to influencing the self-steering behavior. In this context, the
control of roll behavior features the highest priority. Influencing the self-steering behavior
and reducing pitching movements are subordinate control objectives.
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3.1. Prediction

Theoretical modeling is used to generate the prediction models of the vehicle dynamics
as a function of the manipulated variables. As a result, three interrelated prediction models
are determined, which are presented individually. The split is made in relation to the
control objectives of influencing the roll, the self-steering and the pitch behavior. In this
context, u1 and u2 represent the manipulated variables of the counter roll torques at the
front and rear axles, respectively. The variable u3 is the damping factor of the semi-active
damper at the front left, u4 the damping factor of the semi-active damper at the front right,
u5 the damping factor of the semi-active damper at the rear left and u6 the damping factor
of the semi-active damper at the rear right.

3.1.1. Roll Behavior

To build the prediction model for the roll behavior, the vehicle body is cut free in
the y− z plane. Subsequently, the principle of angular momentum is set up around the
vehicle’s roll center. The resulting equation can be transformed according to the roll
acceleration

..
ϕ(k) at a certain time step k:

1
Jxx

[hGRmay cos ϕ(k) + hGRmg sin ϕ(k)− u1(k)− u2(k)

−2
(

s2
S,fcS,f + s2

S,rcS,r

)
sin ϕ(k)

−
(
(u3(k) + u4(k))s2

D,f

) .
ϕ(k) cos ϕ(k)

−
(
(u5(k) + u6(k))s2

D,r

) .
ϕ(k) cos ϕ(k)]

=
..
ϕ(k).

(1)

Here, Jxx represents the moment of inertia about the x-axis, hGR the distance between the
center of gravity and the roll center and m the mass of the vehicle body. The external input
variables are the lateral acceleration ay and the gravitational acceleration g. In addition to
the external input variables, the chassis elements also have an effect on the roll motion.
Apart from the active stabilizers and the semi-active dampers, the vehicle is equipped
with passive springs. These passive springs are characterized by the spring stiffnesses
cS,i. Furthermore, sS,i and sD,i indicate the distances of the springs and dampers from the
vehicle’s center plane. The index i indicates which vehicle axle is concerned.

Using the scheme of the semi-implicit Euler method [23], the roll rate
.
ϕ(k + 1) and

the roll angle ϕ(k + 1) can be predicted as a function of the manipulated variables, starting
from the roll acceleration

..
ϕ(k):

.
ϕ(k + 1) =

.
ϕ(k) +

..
ϕ(k)tS, (2)

ϕ(k + 1) = ϕ(k) +
.
ϕ(k + 1)tS. (3)

Here, tS denotes the fixed step size.

3.1.2. Self-Steering Behavior

The basis for the prediction of the self-steering behavior is the single-track model [24].
Here, the wheels of an axle are virtually combined for modeling. The single-track model
can be used to describe and predict the self-steering behavior and, thus, the response of the
vehicle to steering movements [25]. Within the control system, the self-steering gradient
SSG is used as the characteristic variable:

SSG(k) =
(αf(k)− αr(k))

ay
(4)

The variables αf and αr are the slip angles at the front and rear axles, respectively. The
slip angles are dependent of the yaw rate

.
ψ, the velocity v and the side-slip angle β. In

addition, the steering angle δ affects the slip angle at the front axle αf. The parameters
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lf and lr represent the distance from the center of gravity to the front axle and the rear
axle, respectively.

αf(k) = δ− arctan

(
lf

.
ψ(k) + v sin β(k)

v cos β(k)

)
(5)

αr(k) = −arctan

(
−lr

.
ψ(k) + v sin β(k)

v cos β(k)

)
(6)

Whereas the steering angle and the velocity are kept constant within the prediction, the
yaw rate and the side-slip angle are predicted. For this purpose, both Newton’s principle in
the lateral direction and the principle of angular momentum in the x− y plane are applied:(

cos δ
(

Fy,fl(k) + Fy,fr(k)
)
+
(

Fy,rl(k) + Fy,rr(k)
))

mv cos β(k)
−

.
ψ(k) =

.
β(k), (7)

1
Jzz

(
lf cos δ

(
Fy,fl(k) + Fy,fr(k)

)
− lr

(
Fy,rl(k) + Fy,rr(k)

))
=

..
ψ(k). (8)

These two equations are solved for
.
β and

..
ψ, respectively. Fy,fl, Fy,fr, Fy,rl and Fy,rr rep-

resent the lateral forces at the tire front left, front right, rear left and rear right, respectively.
The moment of inertia about the vertical axis is denoted as Jzz. By applying the scheme of
the explicit Euler integration method [26], the time derivative of the side-slip angle

.
β(k)

and the yaw acceleration
..
ψ(k) are then used to predict the side-slip angle β(k + 1) and the

yaw rate
.
ψ(k + 1), respectively:

β(k + 1) = β(k) +
.
β(k)tS, (9)

.
ψ(k + 1) =

.
ψ(k) +

..
ψ(k)tS. (10)

The influence of the chassis elements and, thus, the actuators on the self-steering
behavior is exerted indirectly via the lateral tire forces Fy,ij. Here, the index j denotes the
vehicle side. The lateral tire forces Fy,ij correspond to the product of the slip angles αi and
the respective cornering stiffnesses cα,ij:

Fy,ij(k) = cα,ij(k)αi(k). (11)

The cornering stiffness cα,ij depends on the current wheel load Fz,ij. The dependency
features a degressive characteristic. This characteristic is illustrated in Figure 2.
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This relationship is modeled using a semi-empirical approach according to [27]. The
degressive characteristic is described by a mathematical model, which is parameterized by
empirical measurements:

cα,ij(k) = c1c2Fz0,ij sin

(
2arctan

(
Fz,ij(k)
c2Fz0,ij

))
. (12)

The basis for the parameter identification is the tire model used in IPG CarMaker.
This results in the parameters c1 and c2 of the semi-empirical tire model. Furthermore,
Fz0,ij is the nominal wheel load, which is present under static conditions. The influence
of the actuators and, thus, of the control is taken into account via the wheel loads Fz,ij.
The forces of the chassis elements are determined as a function of the roll behavior. The
parameter sSt,i indicates the distance of the stabilizer force application point from the
vehicle’s center plane:

Fz,fl(k) =
lr

lf + lr

(
0.5mg− u3(k)sD,f

.
ϕ(k) cos ϕ(k)− sS,fcS,f sin ϕ(k)− 1

2sSt,f
u1(k)

)
, (13)

Fz,fr(k) =
lr

lf + lr

(
0.5mg + u4(k)sD,f

.
ϕ(k) cos ϕ(k) + sS,fcS,f sin ϕ(k) +

1
2sSt,f

u1(k)
)

, (14)

Fz,rl(k) =
lf

lf + lr

(
0.5mg− u5(k)sD,r

.
ϕ(k) cos ϕ(k)− sS,rcS,r sin ϕ(k)− 1

2sSt,r
u2(k)

)
, (15)

Fz,rr(k) =
lf

lf + lr

(
0.5mg + u6(k)sD,r

.
ϕ(k) cos ϕ(k) + sS,rcS,r sin ϕ(k) +

1
2sSt,r

u2(k)
)

. (16)

3.1.3. Pitch Behavior

In order to obtain the prediction model for the pitch behavior, the vehicle body is
cut free in the x − z plane. Subsequently, the principle of angular momentum is set up
around the vehicle’s pitch center. The transformation of the resulting equation to the pitch
acceleration

..
θ(k) yields:

1
Jyy

lbrackhGPmax cos θ(k) + hGPmg sin θ(k)− 2
(

l2
S, f cS, f + l2

S,rcS,r

)
sin θ(k)

−u1(k)
lSt, f
sSt, f
− u2(k)

lSt,r
sSt,r

−
(
(u3(k) + u4(k))l2

D, f

) .
θ(k) cos θ(k)

−
(
(u5(k) + u6(k))l2

D,r

) .
θ(k) cos θ(k)] =

..
θ(k).

(17)

Jyy denotes the moment of inertia about the lateral axis of the vehicle. The distance
between the center of gravity and the pitch center is defined by hGP. The parameters
lS,i, lD,i and lSt,i represent the distances between the center of gravity plane and the force
application points of the springs, dampers and stabilizers, respectively. Based on the pitch
acceleration

..
θ(k) at time k, the pitch rate

.
θ(k + 1) and the pitch angle θ(k + 1) for the time

k + 1 are likewise determined using the scheme of the semi-implicit Euler method:

.
θ(k + 1) =

.
θ(k) +

..
θ(k)tS, (18)

θ(k + 1) = θ(k) +
.
θ(k + 1)tS. (19)

This procedure likewise allows the pitch behavior to be predicted as a function of the
manipulated variables.
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3.2. Optimization

Following the prediction of the vehicle dynamics as a function of the manipulated
variables, the optimization is executed with regard to the control objectives. The optimiza-
tion is performed using the entire prediction horizon np. The prediction horizon equals
0.15 s.

A major advantage of the non-linear model-based control algorithm is that constraints
can be taken into account within the optimization. In this contribution, the manipulated
variables are constrained. Thus, the physical limits of the actuators can be considered
within the optimization. This results in the restriction of the counter roll torques u1 and u2
between a minimum counter roll torque Tmin and a maximum counter roll torque Tmax

Tmin ≤ ui ≤ Tmax, i ∈ {1, 2}, (20)

as well as the restriction of the damping factors u3, u4, u5 and u6 in between a minimum
damping factor dmin and a maximum damping factor dmax

dmin ≤ ui ≤ dmax, i ∈ {3, 4, 5, 6}. (21)

For the description of the manipulated variables, temporal polynomials defined
over the prediction horizon are used to take into account the temporal course within the
optimization [5]. The definition of the polynomial degree is done with respect to the desired
characteristics. The manipulated variables of the counter roll torques at the front and rear
axle u1 and u2, respectively, are defined as cubic polynomials:

u1(k) = a11 + a12k + a13k2 + a14k3, (22)

u2(k) = a21 + a22k + a23k2 + a24k3. (23)

The manipulated variables representing the damping factors u3, u4, u5 and u6 are
specified by quadratic polynomials:

u3(k) = a31 + a32k + a33k2, (24)

u4(k) = a41 + a42k + a43k2, (25)

u5(k) = a51 + a52k + a53k2, (26)

u6(k) = a61 + a62k + a63k2. (27)

For the further description, the following notation is used:

u(k) = (u1(k), . . . , u6(k))
T, (28)

a = (a11, . . . , a63)
T. (29)

The manipulated variables are grouped in the vector u and the parameters of the
polynomials are grouped in the vector a. Furthermore, the predicted vehicle dynamic states
of the roll angle ϕ, the pitch angle θ and the self-steering gradient SSG are summarized in
the vector x:

x(k) = (ϕ(k), θ(k), SSG(k))T. (30)

The reference variables of the central predictive control are given in xRef. These result
from the generation of the reference trajectories:

xRef(k) = (ϕRef(k), θRef(k), SSGRef(k))
T. (31)
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A dynamic roll angle specification is used for the control objective of the active roll
stabilization. A non-linear roll model with passive chassis elements is used for this purpose:

1
Jxx

[hGRmay cos ϕp(k) + hGRmg sin ϕp(k)− 2(s2
S, f cS, f + s2

S,rcS,r) sin ϕp(k)

−
(

dp, f s2
D, f + dp,rs2

D,r

) .
ϕp(k) cos ϕp(k)

−2
cSt, f sSt, f

bSt, f
arcsin

( aSt, f
2bSt, f

sin ϕp(k)
)

−2 cSt,rsSt,r
bSt,r

arcsin
(

aSt,r
2bSt,r

sin ϕp(k)
)
] =

..
ϕp(k).

(32)

Here, dp,i represents the damping factors of the passive dampers. The passive stabi-
lizers are characterized by the stiffnesses cSt,i, the effective lengths aSt,i and the lever arms
bSt,i. The double integration of the passive roll acceleration

..
ϕp by the explicit Euler method

yields the corresponding roll angle ϕp. This passive roll angle ϕp is then scaled by a scaling
factor ζ in order to determine the dynamic roll angle specification ϕRef:

ϕRef = ζϕp. (33)

This dynamic reference roll angle specification improves comfort and safety overall,
since the roll behavior is significantly reduced while still maintaining feedback of the lateral
dynamics to the driver. For the pitch and self-steering behavior, static reference values
are specified. The pitch angle specification θRef corresponds to the stationary pitch angle
of the vehicle. The specification of the self-steering gradient SSGRef is used to achieve an
understeering vehicle behavior corresponding to the passive vehicle behavior.

In addition to maintaining the reference trajectories, the optimization also takes into
account the energy requirements of the actuators, which should be set to a minimum. For
this reason, the weighting factors λ are introduced within the optimization. Thus, the focus
can be set on the control quality as well as on the energy demand:

λ = (λR, λP, λS, λu1, λu2, λu3, λu4, λu5, λu6)
T. (34)

During the optimization, the cost function f (u(k), x(k), xRef(k)) is minimized for
the entire prediction horizon np by adjusting the parameters of the polynomials a. The
optimization toolbox using the interior-point algorithm of MATLAB is used to solve the
optimization [28,29]:

min
a

f
(

u(k), x(k), xRe f (k)
)
=

1
np
[λR

np

∑
k=0

(
ϕRe f (k)− ϕ(k)

)2

+λS

np

∑
k=0

(
SSGRe f (k)− SSG(k)

)2
+ λP

np

∑
k=0

(
θRe f (k)− θ(k)

)2

+ λu1

np

∑
k=0

(u1(k))
2 + λu2

np

∑
k=0

(u2(k))
2 + λu3

np

∑
k=0

(u3(k))
2

+ λu4

np

∑
k=0

(u4(k))
2 + λu5

np

∑
k=0

(u5(k))
2 + λu6

np

∑
k=0

(u6(k))
2].

(35)

The result of the optimization is a set of optimal polynomial parameters over the entire
prediction horizon, from which optimal manipulated variable trajectories are obtained.
Finally, the principle of the receding horizon is applied [22]. Only the manipulated variables
for the next time step are taken from the optimal manipulated variable trajectories and
passed on to the actuator models. In the next time step, the entire process of prediction
and optimization is repeated. This allows the non-linear model-based predictive control
to adapt to non-modeled disturbances in an optimal way. Furthermore, the warm-start
method is used [30], in which the last determined optimal polynomial parameters are used
as a starting point for the optimization in the following time step. As a result, the number
of iterations within the optimization can be reduced.



Appl. Sci. 2021, 11, 4687 9 of 18

4. Results

In a first step, the validation maneuvers are presented which are used to validate the
central predictive vehicle dynamics control. Subsequently, the focus is on the evaluation of
the control quality for the individual driving maneuvers. The central predictive control is
evaluated against a vehicle using a conventional roll control as well as a skyhook damping
according to [16] and a vehicle with passive chassis elements. The conventional roll control
is based on a proportional integral derivative controller, which is parameterized by using
the control system design toolbox of MATLAB. The section concludes with a summary of
the results obtained.

4.1. Validation Maneuvers

In order to validate the central non-linear model-based predictive control algorithm,
two driving maneuvers are utilized. First, the double lane change driving maneuver is
used [31]. For this purpose, the vehicle is first accelerated from standstill to the target
velocity before performing the double lane change at constant velocity. The first lane change
is performed counterclockwise. The target velocity within this contribution equals 50 km/h.
The track limits for the double lane change are defined in the ISO standard. By combining
the acceleration phase and the dynamic lane changes, the central predictive control can be
validated with regard to all control objectives. The second driving maneuver for validation
is a sinusoidal steering. This maneuver also involves accelerating the vehicle to a velocity
of 50 km/h and then performing sinusoidal steering, according to [32]. Three periods
with a steering wheel angle amplitude of 68◦ and a frequency of 1 Hz are performed. In
addition, a significantly reduced friction coefficient of 0.4 is used for this driving maneuver.

4.2. Double Lane Change

The evaluation of the control quality for the double lane change is carried out sepa-
rately for each control objective. The evaluation is done qualitatively and quantitatively.

4.2.1. Roll Behavior

For the qualitative evaluation of the control quality of the non-linear model-based
predictive control algorithm with respect to the main control objective, the roll angle is
plotted over time for the validation maneuver. This is illustrated in Figure 3. The roll
angle ϕMpc resulting from the execution of the non-linear model-based predictive control
algorithm is represented by a dotted black line. The dynamic reference variable ϕRef is
represented by a red solid line. Furthermore, a green dashed line illustrates the roll angle
curve ϕPas of the vehicle with passive chassis elements and an orange dotted line illustrates
the roll angle curve ϕPID resulting from the conventional control approach.

The reference variable ϕRef reduces the roll motion by about 75% compared to the
passive vehicle ϕPas. The roll angle resulting by the central predictive control follows
the reference with an excellent accuracy. In contrast, the conventional control approach
based on the proportional integral derivate controller and the skyhook damping results in
increased control deviations. Thus, with the central predictive control, not only the safety
but also the comfort is increased compared to the conventional control approach as well as
to the passive vehicle behavior. The rolling movements that the passive vehicle exhibits
during acceleration are not present for the vehicle utilizing the central predictive control
and the vehicle utilizing the conventional control approach, respectively.
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In addition, the impacts of the active roll stabilizations on the comfort are evaluated
by examining the resulting frequency spectra. These are illustrated in Figure 4. Due to the
use of the central predictive control, a stronger damping within the frequency spectrum
is present compared to the passive vehicle. The frequency spectrum of the conventional
approach also features a stronger damping than the passive vehicle. Compared to the
central predictive control algorithm, however, a weaker damping is present.
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Furthermore, the root mean squared errors are determined for the quantitative evaluation:

RMSE(xRef, xi) =

√
∑n

k=1
(
xRef(k)− xMpc(k)

)2

n
, i ∈ {PID, Mpc}. (36)
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In relation to the active roll stabilization, the non-linear model-based predictive control
exhibits a root mean squared error of 2.3906 × 10−4 rad. This corresponds to 0.0137◦.
In contrast, the conventional control approach results in a root mean squared error of
0.0010 rad, which is equivalent to 0.0573◦. The quantitative evaluation, thus, confirms the
qualitative analysis. The control quality of the central predictive control is excellent. In
general, the central predictive control, thus, outperforms the conventional control approach.

4.2.2. Self-Steering Behavior

In comparison to controlling the roll angle, influencing the self-steering behavior is a
subordinate control objective. Here, a constant understeering behavior SSGRef is pursued,
which corresponds approximately to the one of passive vehicle. Because the vehicle is
equipped with active stabilizers and semi-active dampers, this control objective can only
be pursued to a limited extent. With regard to the representability for the evaluation, the
pseudo quantity α̃i is introduced:

α̃i = αf,i − αr,i = aySSGi, iε{Ref, Pas, PID, Mpc} (37)

The pseudo quantity α̃i represents the difference between the slip angle of the front
axle αf,i and rear axle αr,i and, thus, corresponds to the product of the self-steering gradient
SSGi and the lateral acceleration ay. The evaluation is conducted in the following based on
the pseudo quantity α̃i. The qualitative evaluation is performed using the pseudo quantity
courses for the validation maneuver. This is shown in Figure 5.
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With regard to the absence of lateral dynamics in the acceleration phase, only the
section of the double lane change is considered. The representation of the pseudo quantity
suggests a dynamic reference variable α̃Ref. However, this results from the dynamics of the
lateral acceleration ay. With regard to safety, a constant self-steering gradient SSGRef is used.
The representation remains consistent with the evaluation of the roll behavior. The vehicle
with the central predictive control shows an almost identical course of the pseudo quantity
to the passive vehicle. Due to the weighting of this control target and the limited possibility
to manipulate, there is a deviation from the reference variable. Since the conventional
control approach does not explicitly consider the influence on the self-steering behavior,
only a limited evaluation can be performed. For the validation maneuver of the double
lane change, the conventional control exhibits a self-steering behavior corresponding to the
passive self-steering behavior, similar to the central predictive control.
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In principle, the control objective is satisfied by the central predictive control, since the
self-steering behavior corresponds to the behavior of the passive vehicle despite utilizing
an active control system. This is confirmed by examining the frequency spectra, which are
illustrated in Figure 6.
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The frequency spectrum for the vehicle with the central predictive control is almost
identical to that of the passive vehicle. The conventional control approach features a similar
frequency spectrum.

The quantitative evaluation for the whole validation maneuver results in a root mean
squared error for the central predictive control of 8.1009 × 10−4 rad, which is equiva-
lent to 0.0464◦. The conventional control approach yields a root mean squared error of
8.1334× 10−4 rad, which corresponds to 0.0466◦.

4.2.3. Pitch Behavior

Similar to the manipulation of the self-steering behavior, the reduction of pitching
movements is a subordinate control objective within the non-linear model-based predictive
control algorithm. Due to the vehicle’s equipment with active stabilizers and semi-active
dampers, only a limited influence on the pitch behavior is possible. In order to evaluate
the central predictive control in a qualitative way with respect to the control objective of
reducing the pitching movements, the pitch angle is plotted over time. The pitch angle
curves are shown in Figure 7.

The focus is on the acceleration phase of the validation maneuver, since pitching move-
ments are present here due to the gear changes and the present longitudinal accelerations.
The pitching movements during the double lane change in contrast are negligibly small.
The representation remains consistent. Analogous to the manipulation of the self-steering
behavior, a constant reference variable θRef is used. This reference variable represents the
stationary pitch angle of the vehicle, which corresponds to the pitch angle that is present
when the vehicle is at standstill. The reference variable cannot be adjusted fully by the
present vehicle setup, but it is considered in order to implement the reduction of pitching
movements. In comparison to the vehicle with passive chassis elements θPas, pitching
movements of the vehicle with the central predictive control θMpc are, therefore, reduced.
The implementation of the skyhook damping within the conventional control approach
also reduces pitching movements compared to the passive vehicle. By exploiting synergies,
however, the implementation of the central predictive control results in a greater reduction
of pitching movements compared to the conventional control approach.
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The corresponding frequency spectra are shown in Figure 8. Here, the positive influ-
ence of the central predictive control is also evident. The non-linear model-based predictive
control results in greater damping within the frequency spectrum. The amplitudes of
the conventional control approach present at very low frequencies are sometimes even
greater than those of the passive vehicle. In terms of ride comfort, the central predictive
control, thus, provides a significant improvement in comparison to the application of the
conventional control approach.
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The quantitative evaluation confirms this statement. The non-linear model-based
predictive control yields a root mean squared error of 0.0106 rad, which corresponds
to 0.6073◦. The conventional control approach results in a root mean squared error of
0.0119 rad corresponding to 0.6818◦. By using the central predictive control, pitching
movements are, thus, reduced compared to the conventional control approach as well as
compared to the passive vehicle. As a result, the ride comfort is, thus, increased.
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4.3. Sinusoidal Steering

The evaluation of the control quality for the sinusoidal steering maneuver is likewise
performed qualitatively and quantitatively. The acceleration phase, which is already
examined in Section 4.2, is neglected and only the sinusoidal steering phase is considered.

4.3.1. Roll Behavior

To evaluate the control quality of the central predictive control with a focus on the
active roll stabilization, the roll angle curves during the sinusoidal steering are plotted. The
present roll angle curves are shown in Figure 9.
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As with the double lane change maneuver, the reference variable ϕRef reduces the
rolling motions by approximately 75% compared to rolling motions ϕPas of the passive
vehicle. The central predictive control ϕMpc is able to follow the reference variable ϕRef
despite the minimal friction coefficient. Compared to the results for the validation maneu-
ver of the double lane change, there are slightly larger control deviations due to this low
friction coefficient. In comparison to the conventional control approach, the centralized
predictive control nevertheless features an improved control quality.

This is confirmed by the evaluation of the root mean squared errors. The non-linear
model-based predictive control yields a root mean squared error of 0.0013 rad for the
sinusoidal steering, which is equivalent to 0.0745◦. In contrast, the conventional control
approach results in a root mean squared error of 0.0031 rad, which corresponds to 0.1776◦.
Despite the aggravated road conditions, the control quality of the central predictive control
is excellent.

4.3.2. Self-Steering Behavior

For the evaluation of the control quality with respect to the self-steering behavior,
the courses of the pseudo quantity α̃i are first considered again. The resulting curves are
illustrated in Figure 10.

Comparable to the results for the double lane change, the self-steering behavior
α̃Mpc implemented by the central predictive control system almost corresponds to the
passive self-steering behavior α̃Mpc. With regard to the reference variable α̃Ref, there are
larger deviations due to the very low friction coefficient. Through the limited adjustment
possibilities caused by the vehicle equipment and the prioritization of the control objectives,
only a limited improvement of the control quality is achieved by the central predictive
control compared to the passive vehicle. A similar self-steering behavior is obtained by
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the conventional control approach, though slightly larger deviations from the reference
variable are present.
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Figure 10. Control Quality Sinusoidal Steering–Self-Steering Behavior–Pseudo Quantity Curves.

The non-linear model-based predictive control algorithm results in a root mean
squared error of 0.0077 rad corresponding to 0.4412◦. The conventional control approach
yields a root mean squared error of 0.0078 rad, which is equivalent to 0.4469◦.

In general, the control objective of influencing the self-steering behavior is achieved as
well. A self-steering behavior corresponding to the passive self-steering behavior is present
despite the application of the central predictive control system.

4.3.3. Pitch Behavior

The qualitative evaluation for the control objective of reducing pitching movements is
likewise realized by examining the pitch angle curves during the sinusoidal steering. The
pitch angle curves are shown in Figure 11.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 19 
 

 
Figure 10. Control Quality Sinusoidal Steering–Self-Steering Behavior–Pseudo Quantity Curves. 

The non-linear model-based predictive control algorithm results in a root mean 
squared error of 0.0077 rad corresponding to 0.4412°. The conventional control ap-
proach yields a root mean squared error of 0.0078 rad, which is equivalent to 0.4469°. 

In general, the control objective of influencing the self-steering behavior is achieved 
as well. A self-steering behavior corresponding to the passive self-steering behavior is 
present despite the application of the central predictive control system. 

4.3.3. Pitch Behavior 
The qualitative evaluation for the control objective of reducing pitching movements 

is likewise realized by examining the pitch angle curves during the sinusoidal steering. 
The pitch angle curves are shown in Figure 11. 

Figure 11. Control Quality Sinusoidal Steering–Pitch Behavior–Pitch Angle Curves. 

The positive influence of central predictive control is likewise evident during the si-
nusoidal steering. Compared to the passive vehicle and the conventional control ap-
proach, the pitching movements are reduced. 

10 15 20 
Time in s 

-0.03 

0 

0.03 

Ps
eu

do
 Q

ua
nt

ity
 in

 ra
d 

𝛼 𝛼 𝛼  𝛼  

10 15 20
Time in s 

0 

0.01

Pi
tc

h 
A

ng
le

 in
 ra

d

𝜃  𝜃 𝜃 𝜃
Figure 11. Control Quality Sinusoidal Steering–Pitch Behavior–Pitch Angle Curves.

The positive influence of central predictive control is likewise evident during the sinu-
soidal steering. Compared to the passive vehicle and the conventional control approach,
the pitching movements are reduced.
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The quantitative evaluation confirms these results. Whereas the vehicle utilizing the
conventional control approach deviates from the stationary pitch angle θRef by a root mean
squared error of 0.0035 rad, which corresponds to 0.2005◦, the non-linear model-based
predictive control results in a root mean squared error of 0.0025 rad, which corresponds
to 0.1432◦.

In comparison to the passive vehicle and the application of the conventional con-
trol approach, the utilization of the central predictive control system, thus, increases the
ride comfort.

4.4. Conclusions

The central predictive vehicle dynamics control fulfills the defined control objectives
as desired. A summary of the control quality is given in Table 2. In addition to this, the
results are compared with those of a vehicle with passive chassis elements and those
obtained by a conventional control approach.

Table 2. Central Predictive Vehicle Dynamics Control—Root Mean Squared Errors.

Setup Driving Maneuver Vehicle Dynamics RMSE Unit

Passive Chassis

Double Lane Change
Roll Behavior 0.0043 rad

Self-Steering Behavior 8.2703× 10−4 rad
Pitch Behavior 0.0114 rad

Sinusoidal Steering
Roll Behavior 0.0099 rad

Self-Steering Behavior 0.0080 rad
Pitch Behavior 0.0034 rad

Proportional Integral
Derivative Control and

Skyhook Damping

Double Lane Change
Roll Behavior 0.0010 rad

Self-Steering Behavior 8.1334× 10−4 rad
Pitch Behavior 0.0119 rad

Sinusoidal Steering
Roll Behavior 0.0031 rad

Self-Steering Behavior 0.0078 rad
Pitch Behavior 0.0035 rad

Central Predictive
Control

Double Lane Change
Roll Behavior 2.3906× 10−4 rad

Self-Steering Behavior 8.1009× 10−4 rad
Pitch Behavior 0.0106 rad

Sinusoidal Steering
Roll Behavior 0.0013 rad

Self-Steering Behavior 0.0077 rad
Pitch Behavior 0.0025 rad

The main control objective of the central predictive vehicle dynamics control, the active
roll stabilization, is met with an excellent control quality. In comparison to the conventional
control approach, the control quality is improved by approximately 67.08%. Likewise, good
results are achieved with regard to the further subordinate control objectives. As a result,
pitching movements are reduced by approximately 19.75% compared to the conventional
control approach. Despite the intervention of the control system, the self-steering behavior
of the controlled vehicle corresponds to that of the passive vehicle.

The validation demonstrates the advantages of a centralized predictive control struc-
ture over a passive vehicle and a vehicle using a conventional control approach comprising
a proportional integral derivative controller and a skyhook damping. The improvements in
the control quality by of a non-linear model-based predictive control compared to a linear
control approach utilizing a skyhook damping for a pure active roll stabilization are also
presented in [33].

5. Conclusions and Outlook

This contribution presents a central predictive vehicle dynamics control system. The
control objectives of an active roll stabilization, a manipulation of the self-steering be-
havior as well as a reduction of pitching movements are pursued. The control system is
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implemented by a non-linear model-based predictive control algorithm. The simulation
framework comprising a co-simulation between IPG CarMaker and MATLAB & Simulink
is used. The test vehicle utilized is a sport utility vehicle equipped with active stabilizers
and semi-active dampers to realize the control. Due to the heightened center of gravity,
the sport utility vehicle features an increased challenge in influencing rolling and pitch-
ing motions. Here, the implementation of active roll stabilization is the primary control
objective. The weighting of the control objectives is done via corresponding weighting
factors within the optimization of the non-linear model-based predictive control algorithm.
The validation is performed for the driving maneuvers of the double lane change and the
sinusoidal steering. In conclusion, the implementation of the central predictive control
demonstrates an excellent control quality. The central predictive control increases safety
and comfort significantly compared to a vehicle with passive chassis elements and a vehicle
utilizing a conventional control approach.

The focus of this contribution is on the presentation of the central predictive vehicle
dynamics control based on the non-linear model-based predictive control algorithm and
the resulting excellent control quality. However, due to the numerical solution of the
optimization problem, an increased computational effort is imposed at the same time. With
regard to a future implementation of the central predictive control, a real-time implementa-
tion of this central predictive vehicle dynamics control with a reduced computational effort
is required. Whereas classical approaches linearize the underlying prediction models and,
thus, simplify them, making them analytically solvable, or limit the iteration steps of the
optimization, future work will explore the use of artificial intelligence. Initial conceptual
research has already shown a particular suitability of neuro-fuzzy inference systems to
address and solve this issue [18].
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