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Featured Application: Velocity-level parasitic motion optimization is performed based on the 
instantaneous restriction space analysis. The manipulator whose parasitic motion is successfully 
eliminated from the workspace has tremendous benefit for robotic assistive s urgery, precision 
machining devices, and other applications that are critical for manipulators with parasitic motion.

Abstract: This paper presents a velocity-level approach to optimizing the parasitic motion of 3-
degrees of freedom (DoFs) parallel manipulators. To achieve this objective, we first systematically 
derive an analytical velocity-level parasitic motion equation as a primary step for the optimization. 
The paper utilizes an analytic structural constraint equation that describes the manipulator’s restric-
tion space to formulate the parasitic motion equation via the task variable coupling relation. Then, the 
relevant geometric variables are identified from the analytic coupling equation. The Quasi-Newton 
method is used for the direction-specific minimization, i.e., optimizing either the x-axis or y-axis 
parasitic motion. The pattern-search algorithm is applied to optimize all parasitic terms from the 
workspace. The proposed approach equivalently describes the 3-PhRS, 3-PvRS, 3RPS manipula-
tors. Moreover, other manipulators within a similar category can be equivalently expressed by the 
proposed method. Finally, the paper presents the resulting optimum configurations and numerical 
simulations to demonstrate the approach.

Keywords: parallel manipulator; IMS; IRS; screw theory; constraint analysis; parasitic motion; 
optimization

1. Introduction

In recent years, the deployment of lower DoF mechanisms has grabbed the attention
of industries and academia due to its interesting properties such as lower cost, kinematic
simplicity, fast dynamic response and higher accuracy. For several applications, such as
pointing devices, surgical robots, parallel kinematic machines (PKMs), parallel manipu-
lators (PMs) with less than six DoFs can be preferable [1–5]. Because such tasks can be
well performed with manipulators having less than 6-DoFs. For example, surgical devices
require 4 DoFs at most including one external yaw motion of the tool [6].

Lower mobility PMs as a pointing device:Replacing conventional antenna and tele-
scope positioning methods with PMs dates back to 1980 when first suggested by Fichter and
McDowell and later continued by Jones at the Canterbury University [7]. Pointing devices
often operate in a complex environment that could heavily affect their accuracy, such as
telescopes on satellite continuously changes its pose in relation to the telescope mounted
on the ground. However, these devices require higher accuracy and precision to guarantee
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strong signals in tracking and communication. To ensure the pointing precision under
complex operational environment, engineers employed 6-DoFs PM instead of the conven-
tional mounting methods [8–10]. Yu et al. introduced a new 6-PSS (prismatic-spherical-
spherical) telescope’s secondary mirror alignment mechanism [8]. Sun et al. proposed
another 6-DoFs hybrid manipulator for pointing and positioning purposes in aerospace
applications [11]. However, manipulation of the secondary mirror of the telescope requires
3-DoFs at most [12]. The remaining degrees of freedom of the manipulator are to avoid
singularities. But singularity can be handled by PMs with less than 6-DoFs [12,13]. To
avoid the use of such complicated manipulators for lower DoFs tasks, researchers shifted
their attention to fewer DoFs mechanisms. Carretero et al. designed a 3-PRS (prismatic-
revolute-spherical) manipulator to perform tip/tilt pointing (2 rotational freedoms) and
focusing (1 translational freedom) for the secondary mirrors of a Cassegrain telescope [12].
In 2008, a 3-PRS PM was proposed for orienting television satellite antenna [14]. Likewise,
the high-performance antenna pointing device (3POD) in a micro-gravity environment was
proposed by CENS [13].

Lower mobility PMs as high precision PKMs: PKMs use their actuators working side-
by-side to enhance rigidity, fast dynamic response, and accuracy. Due to these advantages,
the interest has increased both in academia and industry to use lower mobility PMs as a
machining device. The first PKM was introduced at the international machine tool show
(IMTS) in 1994. Along that track, there have been intensive research and innovations
to meet the conceptual potentials of PKMs [15–18]. In 2016, the most successful sprint
Z3 [19] of the Ecospeed series from Starrag Group had received significant orders in the
double-digit million from customers. This success indicates the Ecospeed series with
sprint Z3-head has become a choice to achieve 5-axis precision machining in spacecraft
and automobile industries. Inspired by Z3-head, Tianjin university developed a PKM
with identical motion but with RPS(Revolute-Prismatic-Spherical) joint arrangements in a
limb [18]. Both manipulators are extensively studied and are the most used examples to
demonstrate different theoretical and experimental approaches.

Lower mobility PMs as surgical devices: One of the medical industry’s growing
trends is to use robotic-assisted surgery to take advantage of parallel manipulators’ high
accuracy and accessibility. Robots in the medical sector can help surgeons handle routine
tasks, complement their skills with manipulators’ accuracy and repeatability, and several
researchers focused on exploring PMs’ capabilities in medical applications. Guaranteeing
manipulators’ successful usage in the medical field requires few critical requirements to be
fulfilled, such as simple operation, efficient control, limited workspace, safe behaving near
the singular configurations, etc. Considering the PMs promising features to achieve the
medical sector’s requirements, several researchers are developing surgical lower-mobility
PMs [20,21].

1.1. The Effect of Parasitic Motion on the Application of Lower Mobility Parallel Manipulators

The applications of robotic manipulators described above require lower DoFs with
higher accuracy. Thus, researchers showed keen interest in the use of PMs with lower
DoFs instead of the serial ones. Even though parallel manipulators are comparatively
accurate enough, a hidden property of lower mobility PMs named parasitic motion can
considerably affect accuracy [12]. Parasitic motion is a small dependent movement that
occur in the restricted DoFs due to the nature of constraint [12]. For the applications that
require higher precision, such as machining, pointing devices, and robotic surgery, parasitic
motion causes accuracy problems and control complexity [22]. Because parasitic motion is
an unwanted auto-generated movement only to satisfy the structural constraint, and the
internal controller cannot correct it.

Therefore, researchers aim to describe parasitic motion, introduce methods to remove
the parasitic terms, and invent manipulators without parasitic movement considering
various applications sensitive to this natural behavior [12,21,22]. Through the extensive
research carried out to define and analyze parasitic motion, Carretero et al. were the
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first to address it appropriately at the position-level [12]. Their study has also introduced
the optimal configuration of a 3-PRS manipulator that minimizes this undesired motion.
Later in 2011, Li. et al. [22] also investigated 3-PRS manipulator without and with small
amplitude parasitic motion using different limb arrangements. In 2010, Li and Hervé
synthesized 1T2R manipulators without parasitic motion [18]. Qu et al. also introduced a
method to remove the parasitic motion of 3-UPU by adding a redundant active leg [23]. A
simplified method to describe the rotational parasitic motion was introduced by Liu et al.
in 2008 [24]. However, the proposed approach is also at the position-level.

In this study, the optimum geometric parameters are obtained purely at the velocity
level. Deriving the parasitic motion equation at the velocity level avoids unnecessary
explicit position relation coverage. It also suits the commonly used velocity-level control
scheme. Previously, the procedure had to start from the position-level relations. However,
that is ineffective for someone who does not necessarily need the position information.
Note that the parallel manipulator’s control scheme is commonly based on the velocity in-
formation since the theory for the velocity analysis is well-established for such mechanisms.
Also, embedding the constraint information in the position equation is not uniformly appli-
cable for all manipulators since it is obtained differently for each mechanism. The analytic
constraint equation used to formulate parasitic velocity is obtained via screw theory using
instantaneous restriction and motion spaces [25,26]. Consequently, the manipulators that
optimize the parasitic velocities are obtained.

Moreover, the paper introduces an enhanced performance manipulator without para-
sitic motion after the performance evaluation of optimized manipulators.

1.2. Description of Example Manipulators

For the example manipulators used in this paper (Figures 1–3), the fixed and moving
platforms are described by the frames {O} and {O′}, respectively. The orientation of the
moving plate with respect to the base plate is represented by:

R = Ry(θ)Rx(ψ)Rz(φ), (1)

whereas the position of the moving plate with respect to the base is described by a vector p.
Considering the moving plates as a rigid plane, the position of spherical joints is described
by the vector ai, which is directed from O′ to Ai and written as follows:

a′i = Rz(αi)Tx(rp). (2)

Variable rp in Equation (2) implies the radius of the moving platform’s circumscribed
circle and Tx(·) represents a translation vector in the x- direction by the specified magnitude,
in this case rp. The angle αi defines the location of three spherical joints measured from the
positive x-axis parallel to the moving platform and is given as:

αi = (i− 1)
2π

3
, for i = 1, 2, 3. (3)

whereas the revolute joints located on the fixed platform can be measured by the angle ξi
from the positive x-axis and parallel to the fixed platform as in Equation (4).

ξi = (i− 1)
2π

3
, for i = 1, 2, 3. (4)

The vector from {O} to {Bi} can be denoted by bi. So, it can be described by the
following relation:

bi = Rz(ξi)Tx(bi). (5)

Note that rp and bi of Figures 1 and 2 are initially the same and can be equally repre-
sented in Equation (5). In solving the inverse kinematics, bi is the varying length associated
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to the prismatic joint. Accordingly, for the manipulators shown in Figures 1 and 2, the
kinematic transformation from {O} to {O′} can be represented by the following relation:

HRz(αi)HTx(rp) = HRz(ξi)HTx(bi)HRz(θ2i)HTz(li)HRx(θ3i)×
HRy(θ4i)HRz(θ5i),

(6)

where H ∈ SE(3) = {(p, R) : p ∈ IR3, R ∈ SO(3)}, which is a Euclidean space group. Note
that the radius of the fixed platform is not constant for the 3-PhRS manipulator because of
the actuator layout. Thus, vector bi in Equation (5) is also not constant for this manipulator.
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Figure 1. Kinematic architecture of the 3-RPS manipulator.
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Figure 2. Kinematic architecture of the 3-PhRS manipulator.

Similarly, the transformation from {O} to {O′} for the manipulator shown in Figure 3
can be given by:

HRz(αi)HTx(rp) = HRz(ξi)HTx(bi)HTz(di)HRz(θ2i)HTz(li)HRx(θ3i)×
HRy(θ4i)HRz(θ5i).

(7)

Using Equations (6) and (7), the position relation can be derived. However, the detail
is left for the readers since it is not complicated, and not the purpose of this paper.



Appl. Sci. 2021, 11, 4690 5 of 22

Figure 3. Kinematic architecture of the 3-PvRS manipulator.

2. Constraint Analysis at the Velocity Level

The kinematics of parallel manipulators, in general, and lower mobility manipulators,
in particular are usually described with a well-established procedure at the velocity level
known as screw-based rate kinematics. Consequently, the control scheme of most of these
manipulators is designed based on the rate kinematics algorithms. This section’s main
objective is to create a foundation for analyzing the moving platform’s motion by examining
the legs’ structural constraints. Therefore, two approaches to studying the PMs will be
employed, i.e., (a) several serial limbs restrict the moving plate’s motion, and (b) analyzing
the PMs by considering the moving plate as a rigid body that restricts the legs. Although
these two approaches of analyzing the motion and constraints of the PMs are connected,
this paper will discuss the two in separate sections. To analyze each serial limb’s kinematic
feature that connects the fixed and the moving plates, the entire PM is breakdown into
subsystems by isolating the limbs and then integrating back to describe the PM’s motion.

A general manipulator has instantaneous motion ẋ ∈ IR6. But when subjected to
certain constraints, some regions can or cannot be reached by the manipulator, and con-
sequently, the kinematic analysis needs to consider those regions. Hence, two sub-spaces
need to be considered for a complete description of the robot manipulators. These re-
gions, in general, consist of the sub-space that the manipulator is free to move in, and
the sub-space that the manipulator is restricted from entering. These two regions are
described with two complementary sub-spaces named Instantaneous Motion Space (IMS)
and Instantaneous Restriction Space (IRS) [27]. As discussed earlier, since PM has resulted
from multiple serial limb combinations, the entire manipulator’s kinematic behavior can
be determined by separately analyzing the limbs IMS and IRS.

Instantaneous Motion Space (IMS): It is the tangent space of SE(3) spanned by the
linearly independent motion vectors at the moving-plate (IMS ⊂ IR6). From the leg
point of view, this space is spanned by the intersection of twists in all legs, and it can be
physically interpreted as the motion of the moving platform in the region where all legs
commonly operate.

Instantaneous restriction Space (IRS): It is an orthogonal complementary subspace of
the instantaneous motion space in IR6 − IMS, which belongs to the unreachable region due
to the structural constraints and formed by the union of all restriction screws induced from
each leg.

PMs’ constraints are a union of those legs restriction, and thus the entire motion is
described by the legs IMS and IRS. In a serial manipulator, IMS (C(J j)) is obtained from
the forward rate kinematics whereas, IRS (C(Jc)) is obtained by taking the orthogonal
complement (N (JT

j )). Hence, the IMS fully describes the serial manipulator’s motion, and
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the corresponding IRS is {IR6IMS} which represents the space that the manipulator cannot
reach. Thus, the generic extended forward-rate kinematics (FRK) of an isolated limb can be
written with the (6× 6) extended Jacobian matrix Je as follows:

ẋ = Jeq̇e =
[

J j ; Jc

][q̇
0

]
, (8)

where ẋ and q̇e denote the velocity of the end-effector and extended joint velocities, respectively.

ẋ ∈ C(J j) and q̇ ∈ C(JT
j ). (9)

The dimension of J j is a (6× f ) Jacobian matrix and that of Jc is a (6× (6− f )) con-
straint matrix, where f is the total DoF. Note that the extended joint velocity, q̇e = [q̇T ; 0T ]T

is composed of usual joint velocity q̇ and zero for constraints Jc.
Generally, the inverse rate kinematics of Equation (8) can be obtained by inverting Je

in Equation (8):

q̇e = J−1
e ẋ = GT

e ẋ =

[
GT

j
GT

c

]
ẋ, (10)

where GT
e is the inverse of Je, and Je is a 6× 6 extended Jacobian comprising the two

complementary orthogonal sub-spaces called IMS and IRS given as follows;

Je =
[

J j Jc

]
, (11)

Ge =
[
Gj Gc

]
. (12)

Since our objective is to utilize the constraint relation, we will be restricted to focus on
obtaining Jc and Gc.

Analytic Constraint Equation

Utilizing a reciprocity relation is a well-known approach to get the structural constraint
information, and there are geometric, numeric, and analytic techniques to obtain the
reciprocal screw’s basis elements. Geometric and numeric approaches suffer from two
contradicting limitations, as discussed in the previous sections. On the one hand, the
geometric method is well related to the physical meaning, but it cannot be consistently
applied to complicated systems. On the other hand, the numerical method cannot be easily
interpreted, but it can solve any type of screw system. This study uses an analytic approach
introduced by Kim and Chung [25–27], since it can give a consistent derivation process
with physical and geometrical meanings.

Each manipulator limb is isolated and is considered a serial mechanism to obtain the
manipulator’s structural information. Then, limb motion generators, that span the limb
IMS, are used to get the limb restriction screw.

For the manipulators shown in Figures 1–3, the limb IMS is spanned by 4$0 − 1$∞
screws, where $0 and $∞ are zero and infinite screws, respectively. Hence, the Jacobian
matrix of the ith leg is:

Ji =

[
0 s2i‖ s3i‖ s4i‖ s5i‖

s1i‖ s2i‖ × li 0 0 0

]
. (13)
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Then, the limb restriction screw is obtained from the following constraint equation.

[
M‖ M⊥

]
∧ $c =



sT
5i‖

0T

sT
4i‖

0T

sT
3i‖

0T

sT
2i‖

(s2i‖ × li)
T

0T sT
1i‖


[

sci⊥
sci‖

]
= 0, (14)

where M‖ and M⊥ are the sub-matrices spanned by the direction and moment vectors,
respectively. The symbol, "∧", is an operator for reciprocal relation. Then, the direction
and moment vectors of restriction screws are obtained by solving Equation (14):

sci‖ = −[s5i‖ · (s3i‖ × s2i‖)]

(
r54 × s4i‖

)
× s1i‖

+[s5i‖ · (s4i‖ × s2i‖)]

(
r53 × s3i‖

)
× s1i‖

−[s5i‖ · (s4i‖ × s3i‖)]

(
r52 × s2i‖

)
× s1i‖

≈ s2i‖

(15)

where r5i = ri − r5 is the relative moment arm between the fifth and ith joints.
Scalars in Equation (15) can be dropped, and the vector part is further simplified by

vector triple product and limb geometric conditions. Such that, the direction vector is
parallel to s2i‖ .

Then, the moment vector is obtained using the derived direction vector and Equation (15).
The result gives a zero moment vector, and it can be verified by checking the linear inde-
pendence of the first three zero pitch screws in Equation (14). Finally, the limb restriction
can be written as :

$ci =
[
0 s2i‖

]T
. (16)

For the limb, point Ai is regarded as the reference point of motion, however, for the
manipulator, the reference point of motion must be moved to the center of the moving
platform by the following transformation matrix:

M =

[
I 0

−[ai×] I

]
. (17)

The limb constraint is then obtained from the restriction screw by the the transforma-
tion of correlation [28].

After transformation, the three limbs constraints are combined to get the manipulator
constraint as:

GT
c =


sT

21‖
(s21‖ × a1)

T

sT
22‖

(s22‖ × a2)
T

sT
23‖

(s23‖ × a3)
T

. (18)

With Equation (18), any constraint-compatible task velocity used to solve the inverse
rate kinematics should satisfy the following constraint:

GT
c ẋ = 0. (19)

3. Analytic Coupling Relation

Usually, the parasitic motion equation is derived analytically at the position-level [12]
and takes the time derivative when the information is required for higher-level problems.
However, the procedureexplained in this paper does not require any position information to
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describe the parasitic motion. The parasitic motion can also be incorporated at the velocity-
level without deriving any coupling relation as suggested in [29] by projecting arbitrary
motion onto the null space of the constraint matrix. In this section, the coupling relation
between parasitic and independent terms is formulated analytically. After detecting and
identifying the parasitic terms it can be written as a function of the independent terms. This
is called the coupling relationship of the task space variables. For the example manipulators
used in this paper, the variables vz, ωx, and ωy were identified as the independent variables,
whereas vx, vy, and ωz were the parasitic terms [12,18,22], and the following general relation
can describe it. vx

vy
ωz

 = f

ωx
ωy
vz

. (20)

To rearrange the manipulator’s task motion variables in the format shown in
Equation (20), the general constraint given in Equation (19) is used. Then, we can obtain
the velocity-level analytic coupling relation between the parasitic and independent velocity
terms by substituting the manipulator’s structural constraint information in Equation (19).
Obtaining the coupling relation between dependent and independent variables enables
us to understand the parasitic motion in-depth. It also can be used to understand the
geometric parameters that cause the parasitic motion for eventual optimization of the
structure. The method of obtaining the coupling relation from the relation in Equation (19)
is advantageous over the position-level approach when the manipulator is designed at the
velocity-level. Moreover, obtaining Gc is a well-established procedure at the velocity-level
compared to the geometric-based point-plane constraint approach. This section briefly
shows the detailed derivation of parasitic terms as a function of the independent motion
by manipulating the velocity constraint element-wise. From the Equation (19), we have the
ith limb constraint’s relation with the task velocity and can be rewritten as:

sT
2i‖

v + [s2i‖×]aiω = 0, (21)

where

[s2i‖×] =

 0 0 cξi
0 0 sξi
−cξi −sξi 0

. (22)

Then, by distributing the elements of s2i‖ we can get:[
−sξi cξi 0

]
v +

[
aizcξi aizsξi −aixcξi + aiysξi

]
ω = 0. (23)

Unpacking v and ω in Equation (23) to further expanding the equation yields:

− vxsξi + vycξi + ωxaizcξi + ωyaizsξi + ωz(−aixcξi − aiysξi) = 0. (24)

Then, by rearranging the parasitic terms on one side and the independent terms on
the other side as shown below:

− vxsξi + vycξi + ωz(−aixcξi − aiysξi) = −ωxaizcξi −ωyaizsξi. (25)

Finally, rewriting Equation (25) in matrix form gives:

[
−sξi cξi (−aixcξi − aiysξi)

]vx
vy
ωz

 =
[
−aizcξi −aizsξi

][ωx
ωy

]
, (26)

C1i

vx
vy
ωz

 = C2i

[
ωx
ωy

]
. (27)
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Writing C1i and C2i for i = 1, 2, and 3 makes them a 3× 3 and 3× 2 mapping matrices,
respectively. From the relation in Equation (27), we can obtain the parasitic motion of the
moving plate as a function of the main motions, i.e.,vx

vy
ωz

 = C−1
1 C2

[
ωx
ωy

]
, (28)

where,

C1 =

−sξ1 cξ1 −(a1xcξ1 + a1ysξ1)
−sξ2 cξ2 −(a2xcξ2 + a2ysξ2)
−sξ3 cξ3 −(a3xcξ3 + a3ysξ3)

, and C2 =

−a1zcξ1 −a1zsξ1
−a2zcξ2 −a2zsξ2
−a3zcξ3 −a3zsξ3

.

In Equation (28), we can freely define ωx and ωy and obtain vx, vy, ωz. The z-axis
linear velocity is zero if the manipulator is not moving along the z-axis. Equation (28), we
can see that the z-axis linear motion is not related to the parasitic motion.

Numerical simulation: A numerical simulation is presented to visualize the parasitic
motion-induced for satisfying the structural constraint. Because the simulation result
for all manipulators has shown the same property, a 3-RPS manipulator is chosen as a
representative example. So, other manipulators also have similar outcomes regardless of the
amplitude of the parasitic motion. The user-defined (desired) motion is the angular velocity
in rad/sec shown in Equation (29). The motion along the z-axis is set to zero. The geometric
parameter shown in Table 1 is used to obtain the solution shown in Figure 4. From Figure 4,
we can see that our desired motion is different from what the manipulator can execute.
If the parasitic motion obtained in Figure 4 is not incorporated in the task motion, the
manipulator cannot function well or will be broken in the worst case. However, the parasitic
motion is undesired from users’ perspective. The result in Figure 4c demonstrates that the
linear motion along the z-axis has no relation with the parasitic motion as in Equation (28).
The user input variables ωx and ωy are shown in Figure 4d,e. As can be seen from the
result, these terms are not entirely affected by the parasitic motion since they are freely
chosen. In general, the task velocity in Figure 4 is constraint compatible motion that can be
used to solve the joint rate.[

ωx ωy
]T

=
[
0.2s2πt −0.2c2πt

]T . (29)

Note that s and c in Equation (29) stands for sine and cosine, respectively.

Table 1. Geometric parameter of an example manipulator.

Variables Value Unit

Moving plate radius 250 mm
Fixed plate radius 350 mm

Leg length 657.6473 mm
z position 650 mm
ψ and θ ±0.6981 rad

From the simulation, we can see the motions that are undesired for the user but
necessary for the manipulator to operate safely. Optimization should be performed to
match the user’s requirements and manipulator’s specifications.
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(a) vx for the mechanism in Figure 1 (b) vy for the mechanism in Figure 1

(c) vz for the mechanism in Figure 1 (d) ωx for the mechanism in Figure 1

(e) ωy for the mechanism in Figure 1 (f) ωz for the mechanism in Figure 1

Figure 4. Numerical simulation.

4. Optimization of Parasitic Motion

The parasitic motion has been recognized as one of the major drawbacks of the
lower mobility PMs. Consecutively, several researchers have tried to eliminate it from
the workspace. However, most attempts are entirely geometry dependent and applied
at the position-level while most parallel manipulators control scheme is designed at the
velocity-level. In this paper, the parasitic terms in the constraint-compatible velocity are
optimized using the velocity-level relation derived in Section 3. From Equation (28), we
can see that parasitic motions are dependent on two generic parameters, i.e, ωx and ωy.
The angles ξi and αi are simultaneously altered during the optimization procedure; the
algorithm simultaneously changes the distal and proximal joint of the limbs, to determine
the optimal configuration. Thus, all of them are in the vector δi. i.e, δi =

[
ξi αi

]T . By
denoting C1 =

[
v0 v1 v2

]
, the inverse of C1 can be rewritten in the form shown in

Appendix A. Then, Equation (28) can be described in analytic form as:vx
vy
ωz

 =
1

v0 · (v1 × v2)

(v1 × v2)
T

(v2 × v0)
T

(v0 × v1)
T

−a1zcξ1 −a1zsξ1
−a2zcξ2 −a2zsξ2
−a3zcξ3 −a3zsξ3

[ωx
ωy

]
. (30)
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where

v0 =
[
cξ1 cξ2 cξ3

]T

v1 =
[
−sξ1 −sξ2 −sξ3

]T

v2 =
[
−(a1xcξ1 + a1ysξ1) −(a2xcξ2 + a2ysξ2) −(a3xcξ3 + a3ysξ3)

]T .

The expression for variable ξi is given in Equation (4). The detail elements of the
vector ai given in Equation (2) can be expanded as:

ai =
[
aix aiy aiz

]T , (31)

aix = R11rpcαi + R12rpsαi = rp((cθcφ + sψsθsφ)cαi + (sψsθcφ− cθsφ)sαi)

aiy = R21rpcαi + R22rpsαi = rp(cψsφcαi + cψcφsαi)

aiz = R31rpcαi + R32rpsαi = rp((sψcθsφ− sθcφ)cαi + (sφsθ + sψcθcφ)sαi)

where αi is the angle to locate the spherical joints from the x-axis of frame {O′} as in
Equation (3).

Our objective in this section is to remove the parasitic motion from the workspace.
Through careful observation of the parasitic motion equation, only ξi and αi are the relevant
geometric parameters that can be meaningfully altered to get the configuration of the
manipulator without parasitic motion. The radius rp of the moving platform does linearly
relate to the parasitic motion, and from the equation, it is observed that the optimal solution
is trivial, which is rp = 0. Thus, only angle ξi and αi will be considered as feasible design
parameters and are denoted by vector δi. By obtaining optimum δi for limbs 2 and 3 from
the x-axis, the minimum parasitic motion can be achieved for all choices of rp. Thus, the
choice of rp can be left to the designers.

Subsequently, it is required to transform Equation (30) in the form that is suitable
to the selected optimization algorithm. The algorithms can be single-objective such as
Quasi-Newton or multi-objective such as pattern-search or Pareto-front. In this paper, the
quasi-newton algorithm is used for the direction-specific optimization and the pattern
search to simultaneously optimize all parasitic motions. We prefer the Quasi-Newton
methods for a direction-specific optimization because it is simple and convenient when
the Hessian is quite difficult to compute analytically due to system nonlinearity. For
the vectorized evaluation, the pattern-search is chosen because it is a non-gradient rapid
convergence algorithm for multi-objective nonlinear system. Moreover, thus solvers are
valiance in Matlab optimization toolbox. For the direction-specific optimization, the x- and
y-axis linear motions can be rewritten as:

vx =
(v1 × v2)

T

v0 · (v1 × v2)

−a1zcξ1 −a1zsξ1
−a2zcξ2 −a2zsξ2
−a3zcξ3 −a3zsξ3

{ωx
ωy

}
, (32)

and,

vy =
(v2 × v0)

T

v0 · (v1 × v2)

−a1zcξ1 −a1zsξ1
−a2zcξ2 −a2zsξ2
−a3zcξ3 −a3zsξ3

{ωx
ωy

}
. (33)

To minimize the parasitic motion in a specific direction with the Equations (32) and (33)
over the intended rotational workspace, the linear motion along the z-axis has no role.
Moreover, it is difficult to use linear programming due to the nonlinearity of C1 and
C2. Thus, the average δv along the specified direction and entire rotational workspace is
obtained by summing over all the columns to create a row of sums and then summing
across the row to get the array’s total sum as in Equations (34) and (35).
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δvx = f (rp, ξ2, ξ3, α2, α3, ψ, θ, φ, ωx, ωy) =
n

∑
j=1

m

∑
k=1

vx, (34)

δvy = f (rp, ξ2, ξ3, α2, α3, ψ, θ, φ, ωx, ωy) =
n

∑
j=1

m

∑
k=1

vy. (35)

Then, the Quasi-Newton algorithm is applied consecutively for Equations (34) and (35)
as shown in Equation (36).

Quasi-Newton method: The quasi-Newton methods build up a curvature information
at each iteration to formulate a quadratic model problem of the form:

min
δi

1
2

δT
i Hδi + gTδi + [ f (ξ2, ξ3, α2, α3)], (36)

where H is a positive definite symmetric matrix and g is a constant vector. The condition
for the optimality of Equation (36) is:

∇ f (δ∗i ) = Hδ∗i + g = 0. (37)

Then, the optimal solution is obtained by inverting Equation (37):

δ∗i = −H−1c. (38)

Although several methods exists for updating the Hessian matrix (H) in Equation (36),
Broyden–Fletcher–Goldfarb–Shanno (BFGS) is known to be effective [30]. The BFG method
updates the Hessian matrix using the following relation:

Hk+1 = Hk
qkqT

k
qT

k qk
−

HT
k sT

k sk Hk

sT
k Hksk

, (39)

where,

sk = δk+1 − δk,

qk = ∇ f (δk+1)−∇ f (δk).

The inverse of H is updated through the Davidon–Fletcher–Powell (DFP) method at
each iteration [30].

At each iteration, a line search is performed in the direction :

λ = −H−1
k ∆ f (δk) (40)

The optimization result tells varying δi over the intended workspace, for the optimal
parasitic motion, is the same result for all example manipulators used in this paper. This
is demonstrated in the simulation and is shown in Figure 5a–c. Figure 5a shows the
configuration of zero x-axis parasitic motion for the PhRS manipulator. Figure 5b,c shows
the configuration (limb arrangement) that eliminates the x-axis parasitic motion for the
PvRS and RPS manipulators, respectively. Note that the limb number convention is
consistently applied for all figures and counted counterclockwise starting from the +ve
x-axis throughout the paper.
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Figure 5. Optimal configuration for vx = 0.

The results shown in Figure 5 is the leg (limb) arrangement of the manipulator for zero
parasitic motion along the x-axis, and these parameters are ξ1 = α1 = 0◦, ξ2 = α2 = 90◦,
ξ3 = α3 = −90◦. Substituting the angular values and all the corresponding elements
in Equation (32) proves the result is true. Based on the result obtained, the following
optimality condition can be drawn:

Conditions for vx = 0: To eliminate the parasitic motion along the x-axis, the center
of the second and third limb’s spherical joints must be collinear, and both should be
orthogonal to the first limb.

Similarly, the appropriate limb arrangement or configuration for the zero parasitic
motion along the y-axis is obtained by optimizing Equation (35). Accordingly, the zero
parasitic motion along this particular axis is obtained at ξ1 = α1 = 0◦, ξ2 = α2 = 90◦ and
ξ3 = α3 = ±180◦ for all three manipulators. Likewise, the following optimality condition
can be drawn for vy = 0.

Conditions for vy = 0: To eliminate the parasitic motion along the y-axis, the center of
the first and the third limb’s spherical joints must be collinear. i.e., ξ1 = 0◦, ξ2 = 90◦ and
ξ3 = ±180◦.

Pattern-search algorithm: Considering the Quasi-Newton algorithm is suitable only
for a single-digit output objective function, the non-gradient vector optimization (multi-
objective algorithm) called pattern-search is used to simultaneously optimize vx and vy.
The pattern-search method is a family of derivative free nonlinear numerical optimization.
To reach to the optimal point, it looks a long certain specified direction, and evaluate the
cost function at a given step length each of these directions. These points form a frame
around the current iteration. Depending on whether any point within the pattern has a
lower cost function value than the current point, the frame shrinks or expands in the next
iteration. The search stops after the minimum pattern size is reached. The key condition
to choose a search direction is that at least one direction in this set should give a descent
direction for the cost function whenever the current point is not a stationary point.

From the sequential optimization of vx and vy, we have noticed that the parasitic
motion along the x- and y-axes are antagonistic functions. Therefore, the pattern-search
algorithm achieved a simultaneous optimization of parasitic motions along the x- and
y-axes by coinciding the center of the second limb’s spherical joint with the center of the
third limb’s spherical joint, as shown in Figure 6a. Although the resulting configuration
seems meaningless, it accurately tells the condition for eliminating both vx and vy parasitic
motions from the workspace.
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Figure 6. Optimal configuration for vx = vy = 0.

As can be seen from Figure 6a, the limb arrangement that eliminates both parasitic
motions have two coincident spherical joints. This is because of the constant length radius
of the moving platform. In general, the result tells, all spherical joints need to be collinear
in order for the manipulator to perform without parasitic motion. Thus, the following
condition can be drawn.

Condition for vx = vy = 0: To eliminate the parasitic motion in all directions, the
three joints on the moving platform must be collinear. Moreover, the direction of the two
revolute joints axes at the base should be parallel, while the remaining is perpendicular for
both. Other example manipulators also have a similar result to that shown in Figure 6a.
Thus, the example can be representative. When the two spherical joints meet at one point,
as shown in Figure 6a, the design becomes complex. To avoid this problem, the radius
of a limb perpendicular to the other two limbs can be adjusted to zero without loss of
generality, as shown in Figure 6b. Setting rp = 0 for this particular limb does not violate the
condition for vx = vy = 0. The numerical example is provided to show these manipulators
have removed the parasitic motion in the required direction. Figures 7 and 8 are the task
velocity for the optimal parasitic motion presented by taking the 3-RPS manipulator as a
representative example.

Figure 7 is the linear parasitic motion for the RPS manipulator shown in Figure 5.
The simulation result shows that the x-axis parasitic motion is zero in the entire rotational
workspace. Similarly, the y-axis parasitic motion is eliminated when the condition for
vy = 0 is satisfied. Finally, the simulation for Figure 6b implies no parasitic motions in all
directions. The result is shown in Figure 8. Thus, the manipulator is capable of performing
pure rotation about the center of the moving plate. The resulting motion is purely spherical
but with a non-spherical spatial manipulator. It is known that the rotational motion about
a fixed point has usually been achieved by a spherical manipulator. Achieving a pure
independent rotational motion with non-spherical spatial manipulator can improve the
problems that are existed in the spherical manipulators.
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(a) vx for mechanism in Figure 5c. (b) vy for mechanism in Figure 5c.

Figure 7. vx and vy for the mechanism in Figure 5c.

During the optimization of the parasitic motion, two types of optimal structures are
obtained, i.e., direction-specific optimal manipulator and manipulators with zero parasitic
motion in all directions. Depending on the desired application, the direction-specific
optimal manipulator can be chosen. For example, suppose the task strictly requires zero
parasitic motion along the x-axis but loosens-up sensitivity for the y-parasitic motion. In
that case, the result shown in Figure 5 can be used. Likewise, when the x-axis parasitic
motion is not critical, the manipulator with the zero parasitic motion along the y-axis can
be used.

Figure 8. vx = vy = 0 for mechanism arrangement in Figure 6b.

5. Performance Evaluation of Optimal Manipulator Designs

It is necessary to evaluate these optimized manipulators’ performance within their
rotational workspace to make sure the resulted optimal manipulators are usable. A di-
mensionally homogeneous Jacobian method is used to evaluate the performance of these
manipulators [31]. Interested readers can get the detailed derivation procedure in the
reference paper. For the dimensionally homogeneous Jacobian, the manipulator actua-
tion wrenches are obtained using the same procedure as that of the constraints. Taking
the 3-RPS manipulator as a representative example for consistency, Figure 9 depicts the
manipulability-based performance simulation for the manipulator that removes x-axis
parasitic motion. We can see that the performance of the manipulator shown in Figure 5c
is dropped or not very close to one. Note that the manipulator performs well when the
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manipulability index is one or close to one [32]. Moreover, the manipulability evaluation
of optimal design exhibits poor performance as shown in Figure 6. The simulation is not
provided because the property can be seen from Figure 6. Thus, the manipulator is singular
and has lost a rotational DoF about the x-axis. This is because of the location center of the
spherical joint of the second limb.

Figure 9. Manipulability of PhRS Figure 5c where parasitic motion along x-axis is removed.

The optimal conditions are only related to the collinearity of rotational center of joints
on the moving plate and limb arrangements as discussed in previous sections. Thus, the
remedy to enhance the performance of the manipulator without changing the mechanism
motion property and optimality conditions can be done by creating a special geometric
arrangement to the spherical joint of the particular limb. As can be seen from Figure 10, the
spherical joint of the second limb is decoupled to a revolute-universal layout. Hence, the
revolute joint near the moving platform will help the manipulator escape the singularity
and improve the manipulator’s performance eventually. The following section analyzes
the kinematics and performance of the modified manipulator.

Jacobian of the Limb with Decoupled Joint

For the manipulators shown in Figure 10, the motion of the limb with the decoupled
joint is generated by a 4$0 − 1$∞ screws. Taking the center of the second revolute joint as a
reference point, the direction vector of the restriction screw for the limb shown in Figure 10
can be obtained from a five system as:

sc12‖ = −[s52‖ · (s32‖ × s12‖)]

(
r54 × s42‖

)
× s22‖

+[s52‖ · (s42‖ × s12‖)]

(
r53 × s32‖

)
× s22‖

−[s52‖ · (s42‖ × s32‖)]

(
r52 × s12‖

)
× s22‖ .

(41)
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Figure 10. Non-Parasitic motion enhanced performance manipulators (left). Isolated limb (right).

Because r54 = 0, the direction vector in Equation (41) can be simplified to:

sc12‖ = +[s52‖ · (s42‖ × s12‖)]

(
r53 × s32‖

)
× s22‖

−[s52‖ · (s42‖ × s32‖)]

(
r52 × s12‖

)
× s22‖ .

(42)

With the condition of linear independence of s32‖, s42‖, s52‖, the moment vector is zero.
Then, the second limb restriction screw becomes:

$c12 =
[
0 sc12‖

]T
, (43)

where sc12‖ = s32‖(r53 · s22‖) + s12‖(r52 · s22‖). Note that r53 = l22 and r52 = l21 + l22.
From further simplification of the restriction screw, we can see vector sc12‖ is parallel

to s12‖. By transforming the reference point and taking the constraint wrench of all three
legs, we obtain the constraint matrix. Then, with the extended Jacobian, we obtain the first
revolute joint wrench can be obtained from:

sT
52‖ (s52‖ × l22)

T

sT
42‖ (s42‖ × l22)

T

s32‖ 0
0T sT

22‖
0 sT

c12‖


[

wp12⊥
wp12‖

]
= 0 : 3$0 − 2$∞. (44)

For Equation (44), the direction vector is simultaneously orthogonal to s21 and sc12‖.
Therefore, wp12‖ = s22 × sc12‖. The moment vector is obtained from Equation (44), and
thus wp12⊥ = M†

1 M2wp12‖, where M1 and M2 are matrices spanned by the set of direction
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and moment vectors of Equation (44), respectively. The active (prismatic) joint wrench is
also obtained from the following constraint equation:

sT
52‖ (s52‖ × l22)

T

sT
42‖ (s42‖ × l22)

T

s32‖ 0
sT

12‖ (s12‖ × l21)
T

0 sT
c12‖


[

wa22⊥
wa22‖

]
= 0. (45)

Since, sc12‖ ‖ s22‖, the direction vector of active wrench becomes:

wa22‖ = −r53(s32‖ · sc12‖)− r52(s12‖ · sc12‖). (46)

Similarly, the third joint (revolute) wrench is obtained from :
sT

52‖ (s52‖ × l22)
T

sT
42‖ (s42‖ × l22)

T

sT
12‖ (s12‖ × l21)

T

0T sT
22‖

0 sT
c12‖


[

wp32⊥
wp32‖

]
= 0 : 3$0 − 2$∞. (47)

Then, the direction vector becomes:

wp32‖ = s22‖ × sc12‖. (48)

The first three rows are independent. So, the moment vector is zero. Finally, the
reference point is converted to the center of the moving platform by the following transfor-
mation matrix, and all screws are related to frame {O′} to represent the manipulator.[

I 0
[l22]× I

]
(49)

where l22 is the vector representing the second link of the second limb. Generally, the
inverse Jacobian of the mechanism has a dimension of 10× 6 consisting of 3 active joint
wrenches, 4 passive joint wrenches, and 3 constraints. However, for performance analysis,
the passive joint wrench is not required.

With the rearranged spherical joint of one limb, the parasitic motion of the manipulator
is eliminated without entering a singular configuration. For this manipulator, the fastest
way to analytically prove there is no parasitic motion is to compute the center position of
the moving platform from the constraint in Equation (50).

(p + Ra′i)Tsi2‖ = 0 (50)

where

p =
[
x y z

]T , a′1 =
[
rp 0 0

]T , a′2 =
[
0 0 0

]T , a′3 =
[
0 0 rp

]T ,

s11‖
[
0 1 0

]T , s12‖
[
1 0 0

]T , s22‖
[
1 0 0

]T , s13‖
[
−1 0 0

]T .
(51)

Substituting Equation (51) into Equation (50) gives:

(p + Ra′1)Ts11‖ = y + R21rp = 0, (52)

(p + Ra′2)Ts12‖ = (p + Ra′2)Ts22‖ = x + Ra′2 = 0, (53)

(p + Ra′3)Ts13‖ = y + R21rp = 0, (54)
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From Equations (52) and (54), we know y = φ = 0, and from Equation (53) we know
x = 0. Similarly, substituting Equation (51) into Equation (28) produces no parasitic velocity.

Then, the performance of the manipulators is evaluated by applying the method
presented in [31]. Figure 11 shows that the manipulator’s manipulability index is close to 1
at the central region of the moving platform. The performance drops near the boundary of
orientational workspace as expected.

Figure 11. Manipulablity of the design shown in Figure 10 when vx=vy = 0.

From the result, we can clearly see that the performance of the manipulator is en-
hanced, and the parasitic motions have vanished from the workspace. To conclude, this
section utilized the velocity-level analytic coupling relation to get the optimal manipulator.
The performance evaluation is performed, and an enhanced performance manipulator
is presented.

6. Conclusions

This paper studied a velocity-level approach to formulate and optimize parasitic
motion. First, the structural constraint is embedded in the motion equation utilizing the
reciprocal screw method. Then, the coupling relationship between the independent and
parasitic terms is formulated from the analytic velocity constraint. From the coupling
equation, we identified the terms that cause the parasitic motion. Thus, the relevant design
variables are isolated for optimization. By directly formulating the cost function from
the screw-based velocity constraint, the velocity-level optimization is performed, and
parasitic motions are removed. For implementation, Matlab Optimization Toolbox™ is
used. The performance evaluation is conducted to ensure the usefulness of the optimal
manipulator. However, the evaluation result showed that the optimized manipulator has
low performance. Because the optimal configuration is achieved by changing the location
of the limbs to a non-uniform pattern around the fixed frame’s z-axis and, the joints on
the moving platform should be collinear to remove parasitic motion entirely from the
workspace. Thus, the load on the moving plate cannot equally distribute to all legs. Also,
the collinearity of the joints transformed the platform into a line that may not perfectly
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perform all required DoFs. These features of the manipulator eventually lead to poor
performance if not a singularity. One of the leg’s spherical joints is rearranged to a special
scheme to overcome this issue. Then, the performance is adequately improved. This
procedure is uniformly applied to other example manipulators and has shown the same
outcome. Therefore, the results of other manipulators are not included in the paper to
avoid redundancy. Manipulators that do not have any parasitic motion are easy to control
with enhanced accuracy. Therefore, it can be used for applications that are sensitive to
parasitic movement.
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Appendix A. Analytic Inversion of c1 Matrix

An efficient and intuitive way to invert a matrix in Equation (28) is as follows. For
simplicity, let’s assume C1 = A:

A−1 =

 a b c
d e f
g h k

−1

=
1

det(A)

 A B C
D E F
G H K

T

=
1

det(A)

 A D G
B E H
C F K

,

where the determinant of A can be computed by applying the rule of Sarrus as follows

det(A) = a(ek− f h)− b(kd− f g) + c(dh− eg),

If the determinant is non-zero, the matrix is invertible, with the elements of the above
matrix on the right side given by:

A = (ek− f h) D = (ch− bk) G = (b f − ce),
B = ( f g− dk) E = (ak− cg) H = (cd− a f ),
C = (dh− eg) F = (gb− ah) K = (ae− bd).

If a matrix A = [x0, x1, x2] (consisting of three column vectors, x0, x1, and x2) is
invertible, its inverse is given by

A−1 =
1

det(A)

 (x1 × x2)
T

(x2 × x0)
T

(x0 × x1)
T

.

Note: det(A) is the scalar triple product of x0, x1, and x2.
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