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Abstract: After detonation synthesis, primary nanodiamond particles are around 4–6 nm in size.
However, they join into agglomerates with larger parameters and weak bonds between particles. The
introduction of agglomerates into a metal matrix can lead to the weakness of composites. This paper
demonstrates the possibility of obtaining a non-agglomerated distribution of nanodiamonds inside a
metal matrix. The fabrication method was based on mechanical alloying to create additional stresses
and deformations by phase transformations during treatment in a planetary mill. According to the
findings, the starting temperature of the reaction between the non-agglomerated nanodiamonds and
aluminium matrix reduces to 450 ◦C. Furthermore, the paper shows that existing methods (annealing
for the transformation of a diamond structure into graphitic material and cleaning from this graphitic
material) cannot reduce the sizes of nanodiamonds in the agglomerated state. Agglomerated nan-
odiamonds transform into carbon onions (graphitic material) during annealing in a vacuum in the
following way: the nanodiamonds located in the surface layers of the agglomerate are the first to
undergo the complete transformation followed by the transformation of nanoparticles in its deeper
layers. In the intermediate state, the agglomerate has a graphitic surface layer and a core from
nanodiamonds: cleaning from graphite cannot reduce nanodiamond particle size.

Keywords: metal matrix composites; mechanical alloying; nanodiamonds; carbon onions; agglomer-
ates

1. Introduction

Carbon nanoparticles, including nanodiamonds (NDs), evoke considerable interest
among researchers because of their unique properties [1–12]. The size of primary ND parti-
cles is generally 4–6 nm. Nevertheless, depending on synthesis conditions, particles of both
smaller (up to 2 nm) and larger (up to 10 nm and more) [1] sizes also occur. A peculiarity
of ND powders, which is valid for any powdery nanomaterials, is their agglomeration, i.e.,
their consolidation into larger aggregates. Aggregation is an issue typical for detonation
nanodiamonds. ND agglomerates are divided into primary and secondary: (i) primary ND
agglomerates (up to 100 nm) are constituted by primary ND particles with the creation of
coherent and incoherent boundaries with C–C bonds (basically) between primary nanopar-
ticles (created spontaneously under explosion conditions); (ii) secondary ND agglomerates
are formed through the creation of bonds between oxygen-containing surface groups and
Van der Waals forces during ND purification stages. The deagglomeration of detonation
nanodiamonds was investigated by several groups of researchers [13–15].

It was ascertained shortly after discovering NDs that heating in an oxygen-free en-
vironment to temperatures above 1000 ◦C resulted in NDs transforming into onion-like
carbon nanoparticles (carbon onions), substantially being a graphitic material [16–23].
Furthermore, the mechanism leading to the sp3 to sp2 transformation at the ND surface
was previously reported [22].

The use of carbon nanoparticles as reinforcements in metal matrix composites (MMC)
is one of their future applications [24–26]. The presence of ND agglomerates inside the
metal matrix can lead to the decomposition of material under complicated loading because

Appl. Sci. 2021, 11, 4695. https://doi.org/10.3390/app11104695 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://www.mdpi.com/article/10.3390/app11104695?type=check_update&version=1
https://doi.org/10.3390/app11104695
https://doi.org/10.3390/app11104695
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11104695
https://www.mdpi.com/journal/applsci


Appl. Sci. 2021, 11, 4695 2 of 9

the strength of agglomerates is weaker than the strength of the metal matrix. This is why it
is necessary to develop a non-agglomerated state of nanodiamond-reinforcing particles
inside the metal matrix. The most effective method for destroying agglomerates inside
the metal matrix is mechanical alloying [27], i.e., treating composite components by balls
(milling instruments) in a planetary mill. The purpose of the present study is to show a
possibility of the complete crushing of ND agglomerates inside a metal matrix (to obtain
a non-agglomerated distribution of nanodiamond-reinforcing particles inside the metal
matrix in MMC) and check the workability of the developed material. This means that
the size of the reinforcements will become a parameter for nanodiamonds after synthesis,
namely 4–6 nm.

The following question appears: is it possible to decrease the size of these reinforcing
particles? It is well known that during heating by the electron beam in the transmission
electron microscope, nanodiamond particles slowly, layer by layer (or small block by
small block), transform into carbon onion. Based on this information, the hypothesis
has appeared concerning the possibility of decreasing the nanodiamond size by partially
annealing and purification from graphitic layers. However, temperature conditions in a
microscope and the furnace are different: in the microscope, a particle receives energy from
one side and loses it from the other side, but in the furnace, particles receive energy from
all sides. In agglomerated state (in which the particles are used for annealing), the energetic
state of particles on the surface of agglomerates and in central zones are different (different
free surface and surface energy): it is the reason for a different way of transforming
nanodiamonds from the surface and from deeper layers of agglomerates. Part of this paper
is about the effect of the agglomerated state of NDs on such transformation processes.

2. Materials and Methods

Commercially available detonation nanodiamonds (produced by Electrokhimpribor,
Russia), in which the diamond component was 95% ± 2%, were used in this research.
The average size of ND particles was 4 to 6 nm (Figure 1a–c). Part of the nanoparticles
had defects in their crystal structure in the form of various twins (Figure 1b,c). Primary
nanodiamond particles were consolidated into agglomerates (Figure 1d); for the present
study, the agglomerates’ sizes ranged from 20 microns to 200 microns; the average size of
the agglomerates was 50 microns.

Commercially available metals for the matrix were aluminium and copper. Metal
matrix composites were fabricated by mechanical alloying (ball milling) [27–29] in planetary
mill Retch 400. The diameter of the balls was 12 mm. The “weight of balls/weight of
treated materials” rate was 10. Mechanical alloying was executed in closed milling jars
with a volume of 500 mL in argon atmosphere during 6–10 h (the stops for cooling were
not calculated as milling time).

For the annealing of nanodiamonds, the quantity of investigated material for each
experiment was 25–30 g. Annealing was done using the crucible in vacuum furnaces at a
residual pressure of 10−5 millibar. Before evacuating, the furnace was filled with argon, i.e.,
the residual atmosphere was mainly argon. Then, the annealing temperature was raised at
20 degrees/min to 1200–1300 ◦C. The holding period of 1 h was followed by a cool-down
to 800 ◦C at a 20 degrees/min rate, and the heating was then turned off. Samples were
removed from the furnace after completely cooling.

The materials were studied using the scanning electron microscope Helios Nanolab
600i, transmission electron microscopes JEOL JEM 2100 F/Cs, JEOL JEM 2100, FEI TITAN
80–300 with EELS (electron energy loss spectroscopy), X-ray diffractometer DRON-3, and
the differential scanning calorimeter Netzsch DSC 404C.
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Figure 1. Nanodiamonds of detonation synthesis: (a) primary nanodiamond particle without crystalline defects; (b,c)
nanodiamonds with twins; and (d) agglomeration of nanodiamonds.

3. Results and Discussion

Mechanical alloying can lead to the fragmentation of big nanodiamond agglomerates
up to single nanoparticles inside the metal matrix after treatment for a long time. However,
in a big volume fraction of nano reinforcements, this fragmentation is complicated: it can
be executed only up to nanoagglomerates. Figure 2a demonstrates ND nanoagglomerates
on a cross-section of “aluminium + 25%vol. nanodiamonds” composite granule (the
cross-section was produced by ion beam). It is necessary to create additional stresses and
micro deformations around these nanoagglomerates. The addition of a second metal in
the matrix leads to the formation of new phases with different densities; this results in
changes in material volume and the appearance of additional stresses and deformations.
As a result, nanoagglomerates can be destroyed. For a demonstration of this scheme, at
first, the composite “Al + 30%vol. ND” was prepared by mechanical alloying for two
hours. After, the copper powder was added to the grinding jar, and a new mixture was
also treated for two hours. Figure 2b shows an obtained non-agglomerated distribution
of ND reinforcements inside a metal matrix. An XRD study determined the appearance
of intermetallic phases in the matrix (Figure 3): CuAl2 (density D = 4.37 g/cm3); Cu4Al3
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(D = 6.86 g/cm3); Cu4Al3 (D = 5.75 g/cm3); and Cu3Al (D = 7.33 g/cm3) (Al: D = 2.7 g/cm3,
Cu: D = 8.93 g/cm3).

Figure 2. Nanodiamonds inside metal matrix: (a) nanoagglomerates; and (b) non-agglomerated distribution of
nanodiamond-reinforcing particles in metal matrix from aluminium and copper.

Figure 3. X-ray diffraction patterns from the composite with the matrix from Al and Cu with
nanodiamond reinforcements; as shown by the arrows.
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The non-agglomerated state of nanodiamond particles leads to a change of properties
of the material. A vital change is the cardinally decreasing start temperature of the reaction
between the aluminium matrix and diamond nano reinforcements with the formation of
aluminium carbide Al4C3: for macro-materials (bulk and big pieces), the start temperature
is 1200 ◦C [30], for micro-materials (powders) it is 750 ◦C [31], but for nanodiamonds, this
starting temperature is 450 ◦C as it is demonstrated by a DSC study (Figure 4).

Figure 4. Results of DSC study of nanocomposite “Al + 25% ND”: exo-peak is the result of Al4C3

formation; endo-peak is the result of aluminium melting.

The investigation shows a possibility of obtaining the non-agglomerated distribution
of nanodiamond reinforcements inside the metal matrix, i.e., the size of nano reinforcements
equals approximately 4–6 nm. Furthermore, to determine the possibility of reducing the
size of agglomerated nanodiamonds by annealing and cleaning from graphitic material,
the process of ND transformation into carbon onions during annealing in a vacuum
was studied.

It is necessary to say that there are two hypotheses (or two variants) about the process
by which nanodiamonds transform into carbon onions during annealing. According to
the first [18], all ND particles simultaneously undergo a transformation, layer by layer.
This hypothesis states that each ND particle consists of a diamond core coated with a
graphitic material while in an intermediate state. According to the second hypothesis [19],
while in the agglomerated state, the nanoparticles in the surface layers of ND agglomerates
undergo a complete and rapid transformation first, followed by the transformation of
nanoparticles in their deeper layers. While in its intermediate state, each ND agglomerate
has a core of diamond nanoparticles and completely transformed carbon onions on the
agglomerate’s surface. The principal difference between these hypotheses is explained
below. We suppose that the transformation of diamond nanopowders takes place according
to the first scheme. In this case, it is possible to reduce the size of the nanoparticles by
cleaning intermediately annealed nanodiamond powders of the graphitic substance. On
the other hand, if the transformation of nanodiamond nanopowders takes place according
to the second scheme, it is necessary to work with the nanopowders obtained via synthesis.
Therefore, it is impossible to reduce their size by annealing and cleaning.

It should be noted that a detached ND particle does, in fact, transform layer by layer
when exposed to local heating by an electron beam in the electron microscope. Figure 5a–c
shows annealing stages for a particle heated with an electron beam in a transmission
electron microscope.
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Figure 5. Transformation of a detached nanodiamond particle exposed to local heating by electron beam; images were
produced with an interval of 60 s (TEM JEOL JEM 2100 F/Cs, accelerating voltage 200 kV): (a) big diamond core; (b) small
diamond core; (c) complete transformation.

However, as investigations show, when massive samples of ND agglomerates are
exposed to heat treatment (heating of significant quantities, not local), the transformation
process is realized according to the second hypothesis: ND particles from the surface
layer of agglomerates transform earlier than nanoparticles located in the central part of
the agglomerate. Agglomerated ND powders annealed in vacuum furnaces at 1180 to
1300 ◦C were studied using the transmission electron microscopy and electron energy
loss spectroscopy (EELS). Figure 6a shows the fracture point of the partially transformed
ND agglomerate. Parts with particles that have 100% diamond structure and parts with
completely transformed particles are clearly visible. This fact attests to the second hypoth-
esis. A separate investigation of the nanoparticles on the surface of partially annealed
agglomerates showed that they had undergone complete transformation (Figure 6b).

Figure 6. TEM images of nanodiamonds after annealing at 1200 ◦C: (a) fracture of ND agglomerate after partial transforma-
tion; and (b) complete transformation of ND in surface layers of agglomerate.

Figure 7 shows the EEL spectra. The size of the electron beam is within a range of
2–5 nm, and the size of the ND agglomerates is about 50 µm. The experimental method is
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shown in Figure 7a. Zone 1 mainly includes carbon onions. The EEL spectrum for zone 1 is
shown in Figure 7b: the sp2 peak (π* peak) is remarkably high. Zone 2 mainly consists of
particles from the central layers of the ND agglomerate and a small number of particles
from the surface layers. The EEL spectrum for this zone is shown in Figure 7c: the sp2

peak (π* peak) has a much lower intensity than zone 1 (enhanced thickness leads to the
noisy image). This result suggests that the ND agglomerate has a core of nanodiamond
particles. This core is coated with a layer of graphitic particles (carbon onions), i.e., the
second hypothesis is valid for transforming agglomerated ND powders.

Figure 7. EEL spectra for the surface and central layers of the ND agglomerate: (a) method of data collection; (b) EEL
spectrum from zone 1 (particles from surface layers); and (c) EEL spectrum from zone 2 (mainly particles from central layers).

It is probable that several reasons led to this result. In our opinion, the main reason is
the energetic state of the nanoparticles involved. It is necessary to note that the energetic
state of ND particles located in the surface layer and located in the deeper layers of the
agglomerate differs due to several reasons, mainly the difference in the surface energy of
the nanoparticles. Nanoparticles on the agglomerate surface have a significant portion
of their surface open (free). The free surface of the ND nanoparticles located in deeper
layers is much less; i.e., the surface energy is different. This fact leads to the difference
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in the energetic state of nanoparticles from the surface and deep layers of agglomerate.
In our opinion, exactly this difference in the energetic state leads to the fact that ND
particles from the surface layer of the agglomerate transform into carbon onions earlier
than the nanoparticles located in the deeper layers of the agglomerate. In the case of
removing a graphitic component, the material will consist of initial nanodiamonds with
an initial size. This means that the ordinary annealing and purification of agglomerated
nanodiamonds cannot reduce particle size: it is necessary to work with the particle size
obtained during synthesis.

4. Conclusions

The investigations demonstrated the possibility of obtaining the non-agglomerated distri-
bution of nanodiamond-reinforcing particles inside the metal matrix. The fabrication method
is based on mechanical alloying with the creation of additional stresses and deformations.

The starting temperature of aluminium carbide formation in aluminium matrix com-
posites with non-agglomerated nanodiamond-reinforcing particles reduces to 450 ◦C.
However, the composite is workable before this temperature.

The research shows that nanodiamond particles in an agglomerated state transform
into onion-like carbon nanoparticles as follows: the nanoparticles located in the surface
layers of ND agglomerate transform first (complete transformation, in fact) followed by
the transformation of particles in deeper layers. In the intermediate annealing state, the
ND agglomerate consists of a diamond core (a core of nanodiamond particles) coated with
a layer of carbon onions. This means that the ordinary annealing of agglomerated nanodia-
monds cannot reduce their particle size by annealing and purification from the graphitic
component. Instead, it is necessary to use the particle size obtained during synthesis.
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