
applied  
sciences

Article

Saddle Point Approximation of Mutual Information for
Finite-Alphabet Inputs over Doubly Correlated MIMO
Rayleigh Fading Channels

Yuyu Liu 1, Jinbao Zhang 1,2 and Dan Zhang 1,3,*

����������
�������

Citation: Liu, Y.; Zhang, J.; Zhang, D.

Saddle Point Approximation of

Mutual Information for

Finite-Alphabet Inputs over Doubly

Correlated MIMO Rayleigh Fading

Channels. Appl. Sci. 2021, 11, 4700.

https://doi.org/10.3390/app11104700

Academic Editors: Ireneusz Kubiak,

Tadeusz Wieckowski and

Yevhen Yashchyshyn

Received: 28 April 2021

Accepted: 19 May 2021

Published: 20 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Electromagnetic Compatibility, Beijing Jiaotong University, Beijing 100044, China;
19120084@bjtu.edu.cn (Y.L.); jbzhang@bjtu.edu.cn (J.Z.)

2 Frontiers Science Center for Smart High-speed Railway System, Beijing 100044, China
3 Beijing Engineering Research Center of EMC and GNSS Technology for Rail Transportation,

Beijing 100044, China
* Correspondence: zhang.dan@bjtu.edu.cn

Abstract: Given the mutual information of finite-alphabet inputs cannot be calculated concisely and
accurately over fading channels, this paper proposes a new method to calculate the mutual informa-
tion. First, the applicability of the saddle point method is studied, and then the mutual information
is estimated by the saddle point approximation method with known channel state information.
Furthermore, we induce the expectation of mutual information over doubly correlated multiple-input
multiple-output (MIMO) Rayleigh fading channels. The validity of the saddle point approximation
method is verified by comparing the numerical results of the Monte Carlo method and the saddle
point approximation method under different doubly correlated MIMO fading channel scenarios.

Keywords: mutual information; finite-alphabet inputs; doubly correlated MIMO Rayleigh fading
channels; saddle point approximation

1. Introduction

Mutual information plays an irreplaceable role in the theoretical analysis of communi-
cation system performance, including analysis, evaluation and optimization of transceiver
structure [1], encoding and decoding schemes [2], and communication system bit error rate
(BER) performance [3], etc., so it attracts increasing research interest. Channel capacity,
defined as the upper bound of mutual information, is realized under Gaussian inputs
over additive white Gaussian noise (AWGN) channels [4]. A large number of theoretical
analyses and research are also based on this concept [5–7]. By means of Minkowski’s
inequality [1], two lower bounds of system capacity are obtained and are used as selection
indexes to discuss the selection of antenna subsets in spatial multiplexing systems. Under
the condition of Gaussian inputs, the hybrid encoder and combiners are designed by
maximizing the achievable SE [2].

However, Gaussian inputs are rarely realized in practice because the unbounded
amplitude of Gaussian distribution may lead to infinite transmitting power, and the conti-
nuity of Gaussian distribution will make it difficult to detect and decode the signal at the
receiver. In practical communication systems, inputs are usually taken from finite-alphabet
constellation sets with average distribution, rather than Gaussian inputs [8]. Considerable
gaps in terms of transmitting performance exist [9–11] due to the differences between
Gaussian and finite-alphabet inputs and then lead to deviations from optimal strategies.
For example, it is believed that the traditionally optimal strategy to achieve capacity for
Gaussian inputs is to allocate higher power to the sub-channels with a larger signal-to-noise
ratio (SNR). In [10], it is demonstrated that such strategy may be quite suboptimal for the
reason that the mutual information with finite-alphabet inputs is upper bounded, and there
is little incentive to allocate more power to the sub-channels already close to saturation.
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At the same time, channel capacity reflects the upper bound of communication system
performance, so the performance of digital communication systems can be accurately
evaluated by mutual information under the condition of finite alphabet sets inputs and
actual transmission environment [12,13].

Due to the great complexity of the direct calculation of mutual information, it is almost
impossible to obtain a closed-form solution. Monte Carlo trials are usually used for direct
and accurate calculation [14]. In order to reduce the computational complexity, a bit-level
algorithm using PDF of a log-likelihood ratio (LLR) to calculate mutual information is
proposed [15]. However, each modulation mode of the algorithm requires a lot of prior
simulations, and it is only suitable for specific scenarios without universality. To optimize
linear precoding with finite-alphabet inputs, the authors in [16,17] deduced the closed-
form lower and upper bounds of mutual information as alternatives, which reduce the
computational effort by several orders of magnitude compared to calculating the average
mutual information directly. Then the bounds of mutual information are applied to multiple
antennas, secure cognitive radio networks [18], and relay networks [19]. The study in [20]
utilized the cutoff rate (CR) as the alternative of mutual information (MI) to design the linear
precoders. Mutual information was also used to develop a two-step algorithm to enhance
the achievable secrecy rate of cooperative jamming for secure communication with finite-
alphabet inputs in [11]. However, the gaps between approximation and accurate mutual
information are still ambiguous, which limits the range where mutual information can
be applied. Recently, the authors of [21] approximated ergodic mutual information based
on multi-exponential decay curve fitting under M-ary quadrature amplitude modulation
(M-QAM) signaling, but other modulation modes were neglected.

This study takes a step toward evaluating accurate mutual information for finite-
alphabet-based transmissions over doubly correlated MIMO fading channels. After dis-
cussing the applicability of the saddle point method, we obtain the approximate solution of
mutual information for any known CSI and modulation mode by using this method, which
is universal. On this basis, the mutual information expectation of doubly-correlated MIMO
Rayleigh fading channels is further derived. This proposition highlights the considerable
accuracy with radically reduced complexity.

The outline of this paper is as follows. The second section introduces the MIMO
transmission model and its preliminary research. In the third section, the saddle point ap-
proximation method is used to estimate the mutual information, and then we calculate the
mutual information expectation over doubly correlated MIMO Rayleigh fading channels.
Then the validity and accuracy of the proposed method are verified under different doubly
correlated MIMO fading channels scenarios in the fourth section. Finally, the fifth section
gives conclusions.

2. Problem Formulation
2.1. Model of MIMO Transmission

Consider MIMO system with NT transmitting antennas and NR receiving antennas.
Let ˜̃x ∈ CNT×1 (CN×m denotes the N×m complex spaces) be a transmitting signal vector,

satisfying E˜̃x
{˜̃x} = 0 and E˜̃x

{˜̃x ˜̃wH}
= I, where E(•){∗} stands for the statistical expecta-

tion of random ∗ with respect to its variable ·; I and 0 denote an unit and zero matrix of
appropriate dimensions, respectively. (•)H is the conjugate transpose of matrix ·. MIMO
transmission is generally modeled by

˜̃y = ˜̃H˜̃x + ˜̃w (1)

where preliminaries are made as below.

1. ˜̃H ∈ CNR×NT is a complex fading channel matrix between transmitting antenna and
receiving antenna arrays. The doubly correlated MIMO Rayleigh fading channel

is modeled by ΨR
1/2 ˜̃HWGΨT

1/2 ∈ CNR×NT [1], where ˜̃HWG ∈ CNR×NT is a matrix
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consisted of independent and identically distributed CN (0, 1) complex Gaussian
entries; ΨT and ΨR are transmitting and receiving correlation matrices, respectively.
ΨT and ΨR can be expressed as

ΨT = UTΣTUT
H and ΨR = URΣRUR

H (2)

where UT and UR are unitary matrices whose columns are eigenvectors of ΨT and ΨR;
ΣT and ΣR represent diagonal matrices whose diagonal entries are the eigenvalues of
ΨT and ΨR, respectively.

2. ˜̃w ∈ CNR×1 stands for AWGN corresponding to NR receiving antennas, where each
element is independent and identically complex Gaussian distributed, satisfying

E ˜̃w
{ ˜̃w} = 0 and E ˜̃w

{ ˜̃w ˜̃wH}
= σ2I.

2.2. Mutual Information for Finite-Alphabet Inputs

When a linear unitary transform UH
R is applied on the receiving signal ˜̃y, the MIMO

model in (1) is equivalent to a model with channel matrix UH
R
˜̃H and noise UH

R
˜̃w [16], which

is written as
y = UR

H˜̃y = ΣR
1/2HWGΣT

1/2UT
H˜̃x + w (3)

where HWG = UR
H ˜̃HWGUT and w = UH

R
˜̃w. ˜̃x is selected equiprobably from NT-dimension

constellation consisted of N = ∏NT
I=1 NI vectors, where NI denotes the number of symbols

in the i-th discrete constellation ΩI . The mutual Information for Finite-Alphabet inputs
between x and y is given by [22]

I(˜̃x; ˜̃y) = I(UT
H˜̃x; y)

= log2 N + 1
N

N
∑

m=1
EHWG,w

{
log2

[
exp

(
− ||w||

2

σ2

)
/

N
∑

k=1
exp

(
− ||cm,k+w||2

σ2

)]}
(4)

where cm,k = ΣR
1/2HWGΣT

1/2UT
Hdm,k and dm,k = qm − qk. qm and qk are the m-th and k-th

points in the constellation of ˜̃x, and ||•|| stands for the Euclidean norm of the variable •.
Since the statistical Channel State Information (CSI) is varying much slower than

instantaneous ˜̃H, and can be obtained by channel estimation, this work assumed the
statistical CSI was a perfectly-known constant. Consequently, the problem was to calculate
the average mutual information with given statistical CSI.

3. Saddle Point Approximation for Mutual Information

Mutual information by (4) needs multiple integrals to compute expectation over HWG
and w. As N increases, it leads to prohibitive complexity and becomes the most significant
obstacle in achieving accurate mutual information. Therefore, we used the idea of the
mean value theorem of integrals to simplify multiple integrals by finding an appropriate
point. In this section, we explore the saddle point approximation method and highlight
the convenient calculation with a weighted mean over constellation set of x, instead of
expectation over all possible samples of random HWG and w.

3.1. Saddle Point Approximation

We first considered the expectation over the AWGN vector w. The Taylor series of (4)
is expanded to

I(x; y|H) = log2 N − 1
N ln 2

N

∑
m=1

+∞

∑
σ=1

1
σ

σ

∑
q=0

σ!(−1)q

q!(σ− q)!
1

πNR σ2NR

∫
w

(
N

∑
k=1

σm,k(w)

)−q

dw (5)
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where

pm,k(w) = exp

(
||w− qcm,k||2

qσ2 −
(q + 1)||cm,k||2

σ2

)
and H = ΣR

1/2HWGΣT
1/2 (6)

Before proceeding to the saddle point approximation, we needed to establish the
following lemma, which guarantees the existence of the saddle point.

Lemma 1. For non-zero natural number q, the maximum of
(

∑N
k=1 σm,k(w)

)−q
exists and is

achieved at w = w0, where w0 is the weighted average vector of cm,1, cm,2, . . . , and cm,N.

w0 =
N

∑
k=1

qρm,kcm,k , q
¯
c m (7)

where ρm,k = σm,k(w0)/∑N
k=1 σm,k(w0) = σm,k(w0)/σm(w0) is a positive real number over

an open interval (0, 1) and satisfies ∑N
k=1 ρm,k = 1.

The proof of Theorem 1 is shown in Appendix A.
We are now at w = w0 to perform saddle point approximation.

Proposition 1. For non-zero natural number q, integral over complex AWGN vector w is approxi-
mated by

∫
w

1
πNR σ2NR

(
N

∑
k=1

σm,k(w)

)−q

dw ≈
[

N

∑
k=1

exp

(
−

αm,k||cm,k||2
σ2

)]−q

(8)

where

αm,k =

1− q
||¯c m||2
||cm,k||2

+ q
cm,k

H¯
c m +

¯
c m

Hcm,k

||cm,k||2
−
(
||cm,k||2

σ2

)−1

ln

 N

∑
k=1

ρm,k||cm,k||2
σ2 − ||

¯
c m||2
σ2

 (9)

The proof of Proposition 1 is shown in Appendix B.
Mutual information is approximated by (5) and (8) as

I(x; y|H) ≈ I(αm,k, H) = log2 N− 1
N

N

∑
m=1

log2

[
N

∑
k=1

exp

(
−

αm,k||cm,k||2
σ2

)]
(10)

Generally speaking, the close-form solution is hardly obtained. That is to say, we
cannot write down the exact expression of αm,k. Optionally, we adopt a numerical method
to obtain approximated αm,k,

argmin
αm,k :k=1,2

{
|I(x; y|1)− I(αm,k, 1)

}
≈
{

3− exp[−||cm,k||2/(4σ2)]
}−1

(11)

where I(x; y|1) is computed by Monte Carlo method by taking BPSK over single-input
and single-output (SISO) over AWGN channel (that is H = 1) as an example, and αm,k is
fixed at each signal to noise ratio (SNR). Thus, (10) can be written as

I(x; y|H) ≈ log2 N − 1
N

N
∑

m=1
log2

[
N
∑

k=1
exp

(
− ||cm,k ||2

σ2
1

3−exp[−||cm,k ||2/(4σ2)]

)]
= log2 N − 1

N

N
∑

m=1
log2

[
N
∑

k=1
exp

(
− ||Hdm,k ||2

σ2
1

3−exp[−||Hdm,k ||2/(4σ2)]

)] (12)
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3.2. Average Mutual Information over Doubly Correlated MIMO Rayleigh Fading Channels

The average mutual information over doubly correlated MIMO Rayleigh fading
channels is computed as below,

I(x; y) ≈ log2 N− 1
N

N

∑
m=1

EHWG

{
log2

[
N

∑
k=1

exp

(
−
||cm,k||2

σ2 αm,k

)]}
(13)

Since cm,k = ΣR
1/2HWGΣT

1/2UT
Hdm,k, it is still quite hard to compute the expectation

of HWG. Consequently, (13) remains unsuitable for theoretical applications. Obviously,
when SNR varies from −∞ to +∞, αm,k satisfies 1/3 < αm,k < 1/2 by (11), so average
mutual information is approximated by

I(x; y) ≈ log2 N − 1
2N

N
∑

m=1
EHWG

{
log2

[
N
∑

k=1
exp

(
− ||cm,k ||2

2σ2

)]}
− 1

2N

N
∑

m=1
EHWG

{
log2

[
N
∑

k=1
exp

(
− ||cm,k ||2

3σ2

)]} (14)

For the simplified calculation, the following proposition provides approximate solution:

Proposition 2. Average mutual information integral over HWG is lower bounded by

I(x; y) ≥ log2 N − 1
2N

N
∑

m=1
log2

[
N
∑

k=1

NR
∏
l=1

(
1 +

[ΣR]l,l
2σ2 dm,k

HσHΣTσdm,k

)−1
]

− 1
2N

N
∑

m=1
log2

[
N
∑

k=1

NR
∏
l=1

(
1 +

[ΣR]l,l
3σ2 dm,k

HσHΣTσdm,k

)−1
] (15)

where P = UT
H.

The proof of Proposition 2 is shown in Appendix C.

4. Simulation Verification and Result Analysis

This section presents examples to illustrate that the saddle point approximation
method is very accurate. We considered an exponential correlation model. According
to [23], the correlation matrix elements of transmitting and receiving antennas can be
expressed as: {

[ΨT(ρT)]IT, jT = ρT
|IT−jT|

[ΨR(ρR)]IR, jR = ρR
|IR−jR| and

{
IT, jT = 1, 2, . . . , NT
IR, jR = 1, 2, . . . , NR

(16)

where ρT, ρR ∈ [0, 1).

4.1. Accuracy of Saddle Point Approximation

In Figures 1 and 2, doubly correlated Rayleigh fading and Rice fading channel models
were considered, respectively. We compared the average mutual information by the Monte
Carlo method and saddle point approximation method by (12). Different input types
(BPSK, QPSK, QAM, 8PSK, and 16QAM) were assigned to transmitting antennas to ensure
generality. Obviously, with the increase in SNR, mutual information presented an upward
trend. When the SNR was greater than 15dB, mutual information tended to be stable. In
these cases, (12) offered a very good approximation to the average mutual information for
known channel state information.
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different input types and correction parameters (ρT = ρR = ρ) over doubly correlated Rice fading
channel model.

Figure 3 compares normalized MI calculated by Monte Carlo and saddle point ap-
proximation according to upper and lower bounds of αm,k by (14) over doubly correlated
Rayleigh fading channels. At low SNR, the normalized average mutual information of
different modulation signals had little difference. With the increase in SNR, the normalized
average mutual information of different input types tended to 1, and the growth rate of
BPSK was the fastest. All simulation values were very close to the approximation values.
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Figure 3. Comparison on normalized MI calculated by Monte Carlo and saddle point approximation
according to upper and lower bounds of αm,k by (14) under different input types, correction parame-
ters (ρT = ρR = ρ = 0.5) over doubly correlated Rayleigh fading channel model (NT = NR = 2).

Comparison of MI calculated by Monte Carlo and the lower bound of saddle point
approximation methods by (15) over doubly correlated Rayleigh fading channel are shown
in Figure 4. With the increase in SNR, the mutual information increased, and the accuracy
of saddle point approximation became higher. It was also clear that the lower bound of
saddle point approximation achieved considerable accuracy for different doubly correlated
MIMO fading channel scenarios.
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4.2. Conciseness of Saddle Point Approximation

The average mutual information has no closed-form expression, so it is usually cal-
culated by the Monte Carlo method. The more sample points, the more accurate the
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calculation result is. We denoted the sample points as NW. In order to obtain a relatively
accurate value of mutual information, NW was at least 104. Tables 1 and 2 compare the
computational complexity of the Monte Carlo method and the saddle point approximation
method according to the number of operations and CPU time under the condition that NW
was 104. The codes of mutual information calculation based on the Monte Carlo method
and the saddle point approximation method were executed on an Intel Core i5-5200U
2.20 GHz processor. The results showed that the computational complexity of the proposed
saddle point approximation method was much lower than that of the traditional Monte
Carlo method. For example, as shown in Table 2, when NT and NR were equal to 2 and the
input type of the two transmitting antennas was 16QAM, the CPU time of saddle point
approximation methods by (15) was several orders of magnitude less than that of Monte
Carlo method.

Table 1. Comparison of computational complexity between Monte Carlo method and saddle point
approximation method according to the number of operations.

Number of Operations Monte Carlo Method Formula (15)

Exponential operation NW * (N2 + 1) 0
Logarithm operation NW * N 2N + 1

Table 2. Comparison of computational complexity between Monte Carlo method and saddle point
approximation method according to CPU time (seconds) under different input types and correction
parameters (ρT = ρR = 0.4). The symbol/indicates the CPU time is more than half an hour.

Cases Input Type Monte Carlo Method Formula (15)

NT = NR = 2 BPSK 3.043959 0.001049
NT = NR = 3 BPSK 4.444435 0.019326
NT = NR = 4 BPSK 8.427808 0.029586
NT = NR = 2 QPSK 7.457080 0.027120
NT = NR = 3 QPSK 69.558626 0.081062
NT = NR = 4 QPSK / 0.558082
NT = NR = 2 8PSK 58.627341 0.070549
NT = NR = 3 8PSK / 1.573137
NT = NR = 4 8PSK / /
NT = NR = 2 16QAM 1281.853 0.612448
NT = NR = 3 16QAM / 255.736633
NT = NR = 4 16QAM / /

5. Conclusions

This paper studied the numerical calculation of mutual information for finite-alphabet-
based transmissions over doubly correlated MIMO fading channels. The average mutual
information was dominated by statistical CSI, and the obstacle of computation was com-
plexity. We examined the appropriateness of the saddle point method first. Then mutual
information over any known channel model was calculated by saddle point approximation.
Furthermore, we induced the expectation of mutual information over doubly correlated
MIMO Rayleigh-fading channels. Numerical results for various MIMO scenarios showed
the efficacy of the proposed method. Compared to existing conclusions, the proposed
approximation is of considerable accuracy in estimating the average mutual information
with radically reduced complexity. It is promising that its accuracy and convenience will
facilitate the practical application of mutual information.
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Appendix A

Define c̃m,k and w̃ for computational simplicity,

c̃m,k =

[
Re
{

cm,k
}

Im
{

cm,k
} ] and w̃ =

[
Re{w}
Im{w}

]
(A1)

where Re{•} and Im{•} stand for the real and imaginary components of a complex number
•. c̃m,k and w̃ are 2NR × 1 dimensional real vectors (̃cm,k ∈ R2NR×1 and w̃ ∈ R2NR×1) that
satisfy ||̃cm,k||2 = ||cm,k||2 and ||w̃||2 = ||w||2.

By (6) and (A1), we have

(
∑N

k=1σm,k(w̃)
)−q

= σm
−q(w̃) =

[
N

∑
k=1

exp

(
||w̃− qc̃m,k||2

qσ2 −
(q + 1)||̃cm,k||2

σ2

)]−q

(A2)

Since q is positive integers, it is easy to verify that

σm
−q(w̃) =

[
N
∑

k=1
exp

(
||w̃−qc̃m,k ||2

qσ2 − (q+1)||̃cm,k ||2
σ2

)]−q

> 0

lim
[w̃]l→+∞

{σm
−q(w̃)} = lim

[w̃]l→+∞

[
N
∑

k=1
exp

(
||w̃−qc̃m,k ||2

qσ2 − (q+1)||̃cm,k ||2
σ2

)]−q

→ 0

lim
[w̃]l→−∞

{σm
−q(w̃)} = lim

[w̃]l→−∞

[
N
∑

k=1
exp

(
||w̃−qc̃m,k ||2

qσ2 − (q+1)||̃cm,k ||2
σ2

)]−q

→ 0

(A3)

Therefore, there is a maximum value of σm
−q(w̃), which satisfies the conditions of

saddle point approximation calculation. Assuming σm
−q(w̃) achieves the maximum at

w̃ = w̃0, w̃0 satisfies {
grad{ln[σm

−q(w̃)]}|w̃0 = 0
H{ln[σm

−q(w̃)]}|w̃0 ≺ 0
(A4)

where H{ln[σm
−q(w̃)]}|w̃0 is the Hessian matrix of ln[σm

−q(w̃)] at w̃ = w̃0. By the fact of
σm(w̃) > 0 and q > 0, for I = 1, 2, . . . , 2NR, grad{ln[σm

−q(w̃)]}|w̃0 = 0 is equivalent to

N

∑
k=1

2(w̃− qc̃m,k)

qσ2 exp

(
||w̃− qc̃m,k||2

qσ2 −
(q + 1)||̃cm,k||2

σ2

)∣∣∣∣∣
w̃=w̃0

= 0 (A5)

and then the Hessian matrix H{ln[σm
−q(w̃)]}I,j(w̃)|w̃0 is rewritten as

H{ln[σm
−q(w̃)]}I, j(w̃)|w̃0 = −qH{ln[σm(w̃)]}I, j(w̃)|w̃0

= − q
σm(w̃)

[{
∂2

∂[w̃]I∂[w̃]j
σm(w̃)

}
I,j=1,2,...,2NR

]
|
w̃=w̃0

= −
N
∑

k=1

4(w̃0−qc̃m,k)(w̃0−qc̃m,k)
Tσ̃m,k(w̃0)

qσ4σm(w̃0)
− 2

σ2 I2NR ≺ 0

(A6)
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Note that (A5) is equivalent to an implicit function of c̃m,1, c̃m,2, . . . , c̃m,N and w̃0
as below

F (c̃m,1, . . . , c̃m,N , w̃0) =
[
{ fI(c̃m,1, . . . , c̃m,N , w̃0)}|I=1,2,...,2NR

]
= 0 (A7)

where

fI(c̃m,1, . . . , c̃m,N , w̃)

=
N
∑

k=1
([w̃]j − q[̃cm,k]j) exp

(
1

qσ2

2NR
∑

l=1
([w̃]l − q[̃cm,k]l)

2 − q+1
σ2

2NR
∑

l=1
[̃cm,k]l

2

)
(A8)

for i = 1, 2, . . . , 2NR. Then the Jacobi matrix of F (c̃m,1, . . . , c̃m,N , w̃) is computed as below

JF |(c̃m,1,...,̃cm,N ,w̃) =

[{
∂

∂[w̃]j
fI(c̃m,1, . . . , c̃m,N , w̃)

}
I,j=1,2,...,2NR

]
= σm(w̃)

(
I2NR + 2

qσ2σm(w̃)

N
∑

k=1
(w̃− qc̃m,k)(w̃− qc̃m,k)

Tσm,k(w̃)

) (A9)

Recalling (A6), JF |(c̃m,1,...,̃cm,N ,w̃) is a positive definite matrix at w̃0, so it is invertible.
Consequently, w̃0 can, in principle, express in terms of c̃m,1, c̃m,2, . . . , c̃m,N by implicit
function theorem. Namely, the maximum of σm

−q(w̃) is achieved on the condition that w̃0
satisfies (A5). Note that a complex number is zero when and only when both its real and
imaginary parts are zero vectors, so we have,

w0 =
N

∑
k=1

qρm,kcm,k , q
¯
c m (A10)

where ρm,k = σm,k(w0)/σm(w0) is a positive real number over an open interval (0, 1) and

satisfies ∑N
k=1 ρm,k = 1. So w0 and

¯
c m are both weighted average vectors of cm,1, cm,2, . . . ,

and cm,N .

Appendix B

Lemma 1 denotes that σm
−q(w̃) is maximized at w̃0. By (A5), we have,

grad
{

ln[pm
−q(w̃)]

}
|w̃0 = − q

pm(w̃)

{∂σm(w̃)

∂[w̃]j

}∣∣∣∣∣
I=1,2,...,2NR

∣∣∣∣∣∣
w̃=w̃0

= 0 (A11)

By (A5), (A6), and (A10), the Taylor series of ln[σm
−q(w̃)] is expanded to

ln[σm
−q(w̃)] ≈ ln[σm

−q(w̃0)] +
1
2
(w̃− w̃0)

THw̃0(w̃− w̃0) (A12)

Note that a positive definite matrix A is invertible, and the determinant of A can be
computed by exp[Tr ln(A)], where TrA stands for the trace of A. Recalling (A1) and (A6),
the saddle point approximation can be computed by Gaussian integral∫

w
pm
−q(w)

πNR σ2NR
dw ≈ pm

−q(w̃0)

πNR p2NR

∫
w̃ exp

(
1
2 (w̃− w̃0)

THw̃0(w̃− w̃0)
)

dw̃

=
{

pm(w̃0)det1/2q
(
− σ2

2 Hw̃0

)}−q
≥
{

pm(w̃0) ∗ 1
2q Tr

(
− σ2

2 Hw̃0

)}−q

≥
N
∑

k=1
exp


− ||cm,k ||2

σ2 1− q ||
¯
c m ||2
||cm,k ||2

+ q cm,k
H¯

c m+
¯
c m

Hcm,k
||cm,k ||2

−
(
||cm,k ||2

σ2

)−1

ln
(

N
∑

k=1

[ρm ]k ||cm,k ||2
σ2 − ||

¯
c m ||2
σ2

)




−q

(A13)
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According to (A5), we can induce

N

∑
k=1

(
¯
c m − cm,k) exp[−

||cm,k||2
σ2

1 + q
cm,k

H¯
c m +

¯
c m

Hcm,k

σ2 − q
||¯c m||2

σ2

] = 0 (A14)

Therefore, (A13) and (A14) demonstrate that Gaussian integral is dominated by
||cm,k||2/σ2 in terms of exponential. Define a multiplier αm,k dominated by ||cm,k||2/σ2,

αm,k =

 1− q ||
¯
c m ||2
||cm,k ||2

+ q cm,k
H¯

c m+
¯
c m

Hcm,k
||cm,k ||2

−
(
||cm,k ||2

σ2

)−1

ln
(

N
∑

k=1

[ρm ]k ||cm,k ||2
σ2 − ||

¯
c m ||2
σ2

)
 (A15)

So ∫
w

1
πNR σ2NR

(
N

∑
k=1

pm,k(w)

)−q

dw ≈
[

N

∑
k=1

exp

(
−

αm,k||cm,k||2
σ2

)]−q

(A16)

Appendix C

Obviously, when SNR varies from −∞ to +∞, αm,k satisfies 1/3 < αm,k < 1/2 by
(11), so the average mutual information over doubly correlated MIMO Rayleigh-fading
channels is approximated by

I(x; y) ≈ − 1
2N

N
∑

m=1
EHWG

{
log2

[
1
N

N
∑

k=1
exp

(
− ||cm,k ||2

2σ2

)]}
− 1

2N

N
∑

m=1
EHWG

{
log2

[
1
N

N
∑

k=1
exp

(
− ||cm,k ||2

3σ2

)]} (A17)

Because log2(x) is a concave function, by Jensen’s inequality, we have

EHWG

{
log2

[
N

∑
k=1

exp

(
−
||cm,k||2
αm,kσ2

)]}
≤ log2

[
N

∑
k=1

EHWG

{
exp

(
−
||cm,k||2
αm,kσ2

)}]
(A18)

where cm,k = ΣR
1/2HWGΣT

1/2UT
Hdm,k, so expectation in (A18) is rewritten as

EHWG

{
exp

(
−
||cm,k||2
αm,kσ2

)}
= EHWG

{
exp

(
−

NR

∑
l=1

[HWG]l([ΣR]l,lqm,k)[HWG]l
H

αm,kσ2

)}
(A19)

where
qm,k = ΣT

1/2σdm,kdm,k
HσHΣT

1/2 and σ = UT
H (A20)

[HWG]l stands for the lth row of HWG.
Since HWG is an independent and identically distributed complex AWGN matrix,

[HWG]l is an independent and identically distributed complex AWGN vector. So

EHWG

{
exp

(
− ||cm,k ||2

αm,kσ2

)}
= EHWG

{
exp

(
− 1

αm,kσ2

NR
∑

l=1
[HWG]l([ΣR]l,lQm,k)[HWG]l

H

)}
=

NR
∏
l=1

E[HWG]l

{
exp

(
− [HWG]l([ΣR]l,lqm,k)[HWG]l

H

αm,kσ2

)}

=
NR
∏
l=1

∫
[HWG]l

p([HWG]l) exp

 − 1
αm,kσ2

[HWG]l([ΣR]l, lqm,k)
[HWG]lH

d[HWG]l

=
NR
∏
l=1

∫
[HWG]l

1
πNT

exp

 −[HWG]l(
INT +

[ΣR]l,l
αm,kσ2 qm,k

)
[HWG]lH

d[HWG]l

(A21)
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According to [24],

∫
h∈CN×1

exp
(
−hh(A + jB)h

)
dh =

πN

det(A + jB)
(A22)

where [h1] is iid CN (0, σ). (A21) can be written as

EHWG

{
exp

(
− ||cm,k ||2

αm,kσ2

)}
=

NR
∏
l=1

[
det
(

INT +
[ΣR]l,l
αm,kσ2 Qm,k

)]−1

=
NR
∏
l=1

[
det

(
INT+

[ΣR]l,l
αm,kσ2 ΣT

1/2Pdm,kdm,k
HPHΣT

1/2

)]−1 (A23)

Note that for column vector α,

det(IN +ααH) = 1 + [Σα]1 = 1 + tr(ααH) = 1 +αHα (A24)

we have

EHWG

{
exp

(
−
||cm,k||2
αm,kσ2

)}
=

NR

∏
l=1

(
1 +

[ΣR]l,l
αm,kσ2 dm,k

HPHΣTPdm,k

)−1

(A25)

recall (A17), we have

I(x; y) ≥ log2 N − 1
2N

N
∑

m=1
log2

[
N
∑

k=1

NR
∏
l=1

(
1 +

[ΣR]l,l
2σ2 dm,k

HPHΣTPdm,k

)−1
]

− 1
2N

N
∑

m=1
log2

[
N
∑

k=1

NR
∏
l=1

(
1 +

[ΣR]l,l
3σ2 dm,k

HPHΣTPdm,k

)−1
] (A26)
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