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Abstract: Attempts are made in this paper to improve the quality of the stitching between adjacent
arc-profiles in the stitching linear-scan method for the roundness measurement of a cylinder in
a small dimension. The data in the edge region of an arc-profile, which could be influenced by
the pressure angle of the measurement probe of a linear-scan stylus profiler, are eliminated in the
stitching process to improve the quality of stitching. The effectiveness of the elimination of the edge
region of an arc-profile is evaluated by employing the cross-correlation coefficient of two adjacent
arc-profiles as an evaluation index. Furthermore, a modification is made to the experimental setup
to reduce the misalignment of a workpiece along its axial direction with respect to the scanning
probe. Experiments are carried out by using the modified setup to demonstrate the feasibility of the
stitching linear-scan method for the roundness measurement of a small cylinder, which is difficult to
measure by the conventional rotary-scan method.

Keywords: improved stitching linear-scan method; small cylinders; precision measurement;
roundness; diameter

1. Introduction

A needle roller bearing is one of the bearings employed in a variety of industrial
applications where long fatigue life is one of the most important criteria [1]. Figure 1 shows
a schematic of the needle roller bearing, which is mainly composed of an outer ring, cage
and needle rollers. The quality of a needle roller strongly affects the fatigue life of the
bearing in which the needle roller is employed [2,3]. For the manufacturing of needle
roller bearings having a long fatigue life, it is necessary to ensure the quality of needle
rollers by evaluating their dimensional parameters, such as the diameter, out-of-roundness
and so on [4,5].
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The out-of-roundness of a cylindrical workpiece can be measured by the conventional
rotary-scan method [6–9]. For the precise evaluation of the out-of-roundness, error sep-
aration methods such as the multi-step method [10] and the multi-probe method [11,12]
have often been employed. Moreover, the V-block method can be employed for the wavi-
ness and cylindricity measurement of a cylindrical workpiece [13]. Meanwhile, in the
out-of-roundness measurement, precise alignment of a target workpiece with respect to
the rotational datum is one of the necessary steps before measurement. The alignment
of a small target workpiece is not an easy task, even for the state-of-the-art roundness
measuring instruments with automatic alignment functions; for example, a decrease in the
workpiece length could affect the accuracy of the workpiece tilt adjustment. A decrease
in the workpiece diameter could also make it difficult to carry out centering alignment
in a roundness measuring instrument. An optical method has also been developed for
the measurement of a small cylinder [14]. Although the method is capable of measuring
cylindricity and/or roundness while allowing fast measurement with easy workpiece
alignment, the measurable diameter was reported to be no less than 3 mm [14].

In responding to the background described above, an alternative method referred to
as the stitching linear-scan method has been proposed [15,16]. In the method, a series of
arc-profiles of a small workpiece are obtained by a linear-scan surface form stylus profiler,
which is often employed for surface form/roughness measurement [4]. For the positioning
of a small workpiece, the unique workpiece-holding mechanism composed of a V-block
and a round magnet jig having index marks has been developed [16]. Through the stitching
process, the circumferential profile of a small workpiece can be reconstructed from the
obtained series of arc-profiles for the evaluation of the workpiece cylindricity and/or
roundness. The proposed method does not require a high-precision rotary table and is free
from the influences of the workpiece eccentricity. Although the angular misalignments of
the workpiece with respect to the scanning probe in the stylus profiler could degrade the
accuracy of stitching operations, an experimental setup capable of compensating for the
angular misalignments of a target workpiece has been developed to address the issue. Once
the V-block is aligned with respect to the stylus of the commercial stylus profiler, only the
circumferential misalignment of the workpiece will be the influence of the difference of
user/operator on the measurement. On the other hand, the circumferential misalignment
can be compensated through the circumferential stitching process—namely, a difference in
the user/operator will not affect the results of the measurement. Experimental results have
demonstrated that a workpiece having a diameter of 3 mm can successfully be evaluated by
the proposed method [17]. The stitching linear-scan method is expected to have advantages
with respect to the conventional rotary-scan method in the case where a workpiece diameter
is smaller than 3 mm. Moreover, the stitching linear-scan method can realize high-precision
measurement of a workpiece in the case where the workpiece length is not enough to be
held stably by a mechanical chuck in the conventional rotary-scan method. Meanwhile,
the improvement of the accuracy of the stitching between the neighboring arcs in the
stitching linear-scan method remains an issue that needs to be addressed.

In this paper, an attempt is made to improve the stitching accuracy in the stitching
linear-scan method. Investigation of the effect of eliminating the data at the edge regions
of the arc-profiles in the circumferential stitching process is carried out. A modification is
also made to the workpiece-holding mechanism, while paying attention to the reduction of
the misalignment of the workpiece axis with respect to the V-groove in the V-block. The
feasibility of the modified stitching operation, as well as that of the modified workpiece-
holding mechanism, is verified by measuring a small workpiece having a diameter and
a length of 1.5 mm and 5.8 mm, which is difficult to be measured by the conventional
rotary-scan method.

2. Principle of the Stitching Linear-Scan Method

A schematic of the setup for the stitching linear-scan method is shown in Figure 2.
As can be seen in the figure, the target workpiece is mounted on the V-groove in the
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V-block, while a round magnet is attached to one end of the workpiece. It should be
noted that the centering alignment of the workpiece with respect to the round magnet can
automatically be carried out by the magnetic force between them. Since the round magnet
has n indexing marks, the workpiece can coarsely be positioned in a step of 360/n degrees
in the circumferential direction. By repeating the workpiece rotation and the linear scan of
the arc-profile of the workpiece, a series of arc-profiles covering 360◦ of the circumferential
profile of the workpiece can be obtained.
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Figure 2. A schematic of the stitching linear-scan method.

The reconstruction of the circumferential profile of the workpiece can be carried
out through the stitching process, which mainly consists of the radial stitching and the
circumferential stitching. Figure 3 shows a schematic of the whole stitching process. Details
of the stitching process can be found in [15–17].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 17 
 

length of 1.5 mm and 5.8 mm, which is difficult to be measured by the conventional rotary-

scan method. 

2. Principle of the Stitching Linear-Scan Method 

A schematic of the setup for the stitching linear-scan method is shown in Figure 2. 

As can be seen in the figure, the target workpiece is mounted on the V-groove in the V-

block, while a round magnet is attached to one end of the workpiece. It should be noted 

that the centering alignment of the workpiece with respect to the round magnet can auto-

matically be carried out by the magnetic force between them. Since the round magnet has 

n indexing marks, the workpiece can coarsely be positioned in a step of 360/n degrees in 

the circumferential direction. By repeating the workpiece rotation and the linear scan of 

the arc-profile of the workpiece, a series of arc-profiles covering 360° of the circumferential 

profile of the workpiece can be obtained. 

 

Figure 2. A schematic of the stitching linear-scan method. 

The reconstruction of the circumferential profile of the workpiece can be carried out 

through the stitching process, which mainly consists of the radial stitching and the cir-

cumferential stitching. Figure 3 shows a schematic of the whole stitching process. Details 

of the stitching process can be found in [15–17]. 

 

Figure 3. Stitching process. 

After the radial stitching, the circumferential stitching is carried out. In the circum-

ferential stitching, the arc-profiles in the Cartesian coordinates are at first transformed into 

Probe Round magnet

Small cylinder

V-groove

V-block

Z

X

Y

Radial stitching

X
Y

Z

ith arc-roundness 

profile

i+1th arc-roundness 

profile

Reference circle

P

Rave

X
Y

Z

ith arc i+1th arc

RaveP

Reference circle Reference circle

Rave
P

X
Y

Z

ith arc i+1th arc

Circumferential stitching

Low-pass

filtering

Matching

by Ci~i+1ith arc

Coordinate transformation

i+1th arc

Apply for 
circumferential
stitching

Figure 3. Stitching process.

After the radial stitching, the circumferential stitching is carried out. In the circum-
ferential stitching, the arc-profiles in the Cartesian coordinates are at first transformed
into polar coordinates. Then, the overlapped part of two adjacent arcs can be matched by
referring to the following cross-correlation function [18–20]:

Ci~i+1 =
∫ ∞

−∞
fi(θ) fi+1(θ+∆θ)dθ (1)

where Ci~i+1 is the cross-correlation coefficient between the ith and (i + 1)th arc-profiles
fi(θ) and fi+1(θ + ∆θ), respectively, while ∆θ is the adjusted angle of the (i + 1)th arc-profile.
When Ci~i+1 is close to 1, this means that the two arcs match well. In the circumferential
stitching process, the stitching of the adjacent arcs is performed in such a way that the
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calculation based on Equation (1) is carried out by changing ∆θ step by step to find out
∆θ = ∆θi~i+1 that can maximize Ci~i+1, since a higher cross-correlation coefficient means
better stitching.

Meanwhile, in the stitching linear-scan method, there are two major issues that need to
be addressed to improve the quality of stitching. The first issue is related to the geometric
relationship between the stylus of a linear-scan surface form stylus profiler and the cylindri-
cal form of a workpiece. As can be seen in Figure 4, the pressure angle of the stylus becomes
different at each point on the surface of measurement target; namely, in the overlapped
region between the ith and (i + 1)th arc-profiles, the same point in the adjacent arc-profiles
will be measured with different pressure angles. As a result, due to the influences of the
shape of the probe tip and the local slope of the target surface, the profile of the overlapped
region to be obtained in the ith arc-profile and that in the (i + 1)th profile become slightly
different from each other. The discrepancy between the two adjacent arc-profiles in the
overlapped region could become significant at the edge of each arc-profile measured by
the stylus with a large pressure angle.
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Figure 4. The influence of the pressure angle of a probe of the linear-scan stylus profiler.

According to the uncertainty analysis performed in the previous study by the au-
thors [17], the reading of the X-coordinate in the stylus profiler is one of the main uncertainty
sources. Uncertainty of the reading of the Z-coordinate in the stylus profiler, including
the calibration uncertainty of the probe, could also be a major component of measurement
uncertainty; it is not easy to reduce these components of measurement uncertainty. On
the other hand, the influences of the workpiece misalignments can be suppressed by some
efforts. The influence of the workpiece tilt was successfully suppressed by the tilt alignment
technique [17]. Meanwhile, another issue that needs to be addressed is the misalignment of
the workpiece along its axial direction. In the developed setup for the proposed stitching
linear-scan method, the alignment of the workpiece along its axial direction is carried
out with respect to the datum surface determined by the round magnet surface and the
side face of the workpiece holder. Therefore, the out-of-flatness of these surfaces could
induce the axial misalignment of the workpiece. In this case, as can be seen in Figure 5,
different positions on the workpiece surface could be measured in the ith and (i + 1)th
arc-profiles at their overlapped region. Since a cylindrical workpiece tends to have a similar
circular profile along its axial direction, a certain amount of the axial misalignment can be
accepted. Meanwhile, the existence of a local profile error could generate a discrepancy
between the obtained arc-profiles in the overlapped region, resulting in a decrease in the
cross-correlation coefficient.
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Some attempts are thus made in this paper to address the aforementioned issues.
An attempt is made to eliminate the data at the edge regions of the arc-profiles in the
circumferential stitching process based on Equation (1). A modification is also made to
the experimental setup in such a way that a small round magnet is added between the
round magnet and workpiece; this modification is expected to reduce the influences of
out-of-flatness of the round magnet surface and the side face of the workpiece holder by
reducing the contact area between them.

3. Improvement in the Implementation of Stitching Linear-Scan Method
3.1. Improvement of the Cross-Correlation Coefficient in the Circumferential Stitching Process by
the Elimination of the Data in the Edge Region of an Arc

The feasibility of eliminating the edge part of an arc in the stitching process for
the improvement of a cross-correlation coefficient was at first verified in experiments.
Figure 6 shows a schematic of the setup employed in the following experiments. A
workpiece-holding mechanism with a V-groove having a depth of 2.5 mm and an angle
of 90◦ was mounted on a two-axis manual rotary stage so that the fine adjustment of the
three-axis tilt of a workpiece could be carried out. As reported in the previous work [17],
angular misalignments of a workpiece about the X- and Z-axes can be reduced to less
than 0.1 arc-seconds by using a stylus profiler [17]. A commercial stylus profiler (Form
Talysurf PGI-420, Taylor-Hobson) was employed as the linear-scan stylus profiler for the
stitching linear-scan method. A cylindrical workpiece with a radius of 3.0 mm and a length
of 50 mm was employed as the specimen for measurement. The circumferential profile of
the workpiece was obtained as the eight-divided arc-profiles. After the linear scan of each
arc, the workpiece was rotated 45 degrees manually by referring to the index mark on the
round magnet. Measurement conditions are summarized in Table 1. The scanning speed
was set to be 0.1 mm/s; this is the lowest speed allowed in the employed stylus profiler.
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Figure 6. Schematic of the setup employed in experiments.
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Table 1. Measurement conditions.

Item Value Unit

Straightness ≤0.5 µm
Measurement range 0.1–120 mm

Resolution 0.125 µm
Tip angle of the stylus 60 degree
Tip radius of the stylus 2 µm

Scanning speed 0.1 mm/s

Figure 7a,b show the profiles of Arc1 and Arc2, respectively, after the low-pass filtering
and the radial stitching [15,16]. Figure 7c shows the variation in the cross-correlation
coefficient due to the change in ∆θ calculated based on Equation (1) with the employment
of the profile data in the highlighted region in Arc2. From the obtained plot in Figure 7c,
∆θ (=∆θ1~2), providing the maximum cross-correlation coefficient, was subtracted. By
using the obtained ∆θ1~2, Arc1 was stitched with Arc2 as shown in Figure 7d. It should be
noted that the difference between Arc1 and Arc2 in the overlapped region is also plotted in
Figure 7d. The maximum cross-correlation coefficient C1~2 was evaluated to be 0.64.
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Figure 7. The stitching of the Arc2 with respect to Arc1 by employing all data in the overlapped
region: (a) Arc1; (b) Arc2; (c) Variation in the cross-correlation coefficient C1~2 due to the change in
∆θ; (d) The stitched Arc1 and Arc2 at ∆θ = ∆θ1~2.

Experiments were extended to carry out the stitching process with the limited data in
the overlapped region in an arc-profile to be stitched with the neighboring arc. Figure 8
shows a schematic of the exclusion of the edge data in the arc-profiles for the circumferential
stitching. In the circumferential stitching process, arc-profile data in the angular range
of φe is excluded from the neighboring ith and (i + 1)th arc-profiles for the calculation of
the cross-correlation coefficient Ci~i+1 based on Equation (1). In the (i + 1)th arc-profile,
the profile data in the angular range of φu next to the excluded region is employed for the
calculation of Ci~i+1. In the calculation process, the angular position of the ith arc-profile
is fixed, while the (i + 1)th arc-profile is shifted along the circumferential direction to
maximize Ci~i+1.
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Figure 8. Exclusion of the edge data in the arc-profiles for the circumferential stitching.

Figure 9a,b show the profiles of Arc1 and Arc2, respectively, which are the same as
those in Figure 7a,b. The stitching process was carried out in the same manner as described
above, while excluding the data in the edge region of Arc2. The parameters φe and φe were
set to be 10◦ and 20◦, respectively. Figure 9c shows the variation of the cross-correlation
coefficient due to the change in ∆θ, and Figure 9d shows the stitched Arc1 and Arc2 with
∆θ1~2 obtained from the plot shown in Figure 9c. In Figure 9d, the region in Arc2 employed
in the stitching process, in which the data corresponding to 10◦ from the edge of Arc2 is
excluded, is highlighted. The maximum cross-correlation coefficient C1~2 was evaluated to
be 0.89; this value is larger than that obtained by the stitching with the data in Arc2 shown
in Figure 7b.
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Figure 9. The stitching of the Arc2 with respect to Arc1 by employing the profile data excepting the
edge region in Arc2 in the overlapped region: (a) Arc1; (b) Arc2; (c) Variation of the cross-correlation
coefficient C1~2 due to the change in ∆θ; (d) The stitched Arc1 and Arc2 at ∆θ = ∆θ1~2.

To further verify the effect of eliminating the data in the edge region of an arc on
the improvement of the cross-correlation coefficient in the stitching process, stitching
operations of two neighboring arcs in the eight arc-profiles were carried out. Figure 10
shows the results.
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Figure 10. Stitched neighboring arc-profiles from the eight arc-profiles: (a) Stitching by employing all data in the overlapped
region; (b) Stitching by employing the profile data in the overlapped region except the edge region in an arc to be stitched.

Cross-correlation coefficients obtained in the stitching operations are also summarized
in Figure 11. As can be seen in the figures, the elimination of the data in the edge region
of an arc was found to be effective in improving the cross-correlation coefficient in each
stitching operation.
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Figure 11. Cross-correlation coefficients observed in the stitching operation.

Figure 12 shows the relationship between Arc8 and Arc1 after the stitching operations.
It should be noted that the angular position of Arc8 is determined by the sum of ∆θi~i+1
(i = 1~7), and the cross-correlation coefficient between Arc8 and Arc1 (C8~1) could be a
parameter indicating the quality of circumferential stitching operations. In the case of the
stitching operations employing the full data in the overlapped region between the two
neighboring arcs, C8~1 was evaluated to be 0.44. Meanwhile, in the case of the stitching
operations with the data eliminating the edge region of an arc to be stitched, C8~1 was
evaluated to be 0.66; these results indicate that the quality of the stitching was improved
by eliminating the data in the edge region of an arc to be stitched.
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Figure 12. The relationship between Arc8 and Arc1 after the stitching operations: (a) Stitching by employing all data in the
overlapped region; (b) Stitching by employing the profile data in the overlapped region except the edge region in an arc to
be stitched.

3.2. A Hardware Modification for the Improvement of the Cross-Correlation Coefficient in the
Circumferential Stitching Process

A hardware modification was also made to the experimental setup for the improve-
ment of the quality of the stitching of arc-profiles. Figure 13 shows a schematic of the
setup before and after the modification. In the modified setup, a small round magnet was
sandwiched between the round magnet and workpiece as shown in Figure 13b; this modifi-
cation was expected to reduce the influences of out-of-flatness of the round magnet surface
and the side face of the workpiece holder by reducing the contact area between them.

Experiments were carried out to verify the feasibility of the modified workpiece-
holding mechanism. Figure 14 shows a photograph of the modified setup. A small magnet
with a diameter and a thickness of 1.5 mm and 4.0 mm, respectively, was placed between
the round magnet and workpiece. The workpiece having a diameter and a length of 3.0 mm
and 50 mm, respectively, evaluated in the previous section was also employed. Moreover,
the experimental conditions except the modified workpiece-holding mechanism were set
to be the same as those in the previous experiments described in Section 3.1.
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Figure 13. A schematic of the workpiece-holding mechanism: (a) Before modification; (b)
After modification.
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Figure 14. A photograph of the modified setup.

Stitching operations of the neighboring arc-profiles were carried out by eliminating the
data in the edge region of an arc. Figure 15 shows the results of the stitching operations, and
Figure 16 compares the cross-correlation coefficients obtained in the stitching operations of
the arcs obtained by the conventional setup and the modified setup. As can be seen in the
figure, cross-correlation coefficients were found to be further improved by the employment
of the modified workpiece-holding mechanism.
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Figure 15. Stitched neighboring arc-profiles from the eight arc-profiles.
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Figure 16. Cross-correlation coefficients observed in the stitching operations.

Figure 17a,b show the degree of agreement between Arc8 and Arc1 obtained through
the stitching operations of the arc data measured by the conventional and modified setups,
respectively. It should be noted that the angular positions of Arc8 with respect to Arc1 in
the figure were determined by the sequential stitching operations of ith and (i + 1)th arcs
(i = 1~7). As can be seen in the figures, a better cross-correlation coefficient was obtained in
the case with the modified workpiece-holding mechanism. These results demonstrated the
feasibility of the modified workpiece-holding mechanism.
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Figure 17. The relationship between Arc8 and Arc1 after the stitching operations: (a) Stitching of
the arc-profiles obtained by the conventional setup; (b) Stitching of the arc-profiles obtained by the
modified setup.

3.3. Implementation of the Stitching Linear-Scan Method for a Workpiece with a Small Dimension

Experiments with the modified setup were then extended to evaluate a workpiece in
a smaller dimension, which is difficult to evaluate by the conventional rotary-scan method.
In the following, a small workpiece with a diameter and a length of 1.5 mm and 5.8 mm,
respectively, was employed as the measurement specimen. A V-groove having a depth
of 1 mm and an angle of 90◦ was employed. With decreases in the diameter and the
length of a workpiece, the holding of a workpiece on the workpiece-holding mechanism
in the stitching linear-scan method becomes difficult. To achieve the stable holding of the
workpiece in a small dimension, a counter-mass was employed in this paper. Figure 18
shows a photograph of the setup. As can be seen in the figure, a long cylindrical magnet
having a diameter slightly smaller than that of the workpiece was attached to another end
of the workpiece. The added long cylindrical magnet acted as a counter-mass for stable
mounting of the workpiece. It should be noted that the long cylindrical magnet can be
centered due to the magnetic force.
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Figure 18. A photograph of the setup with a small magnet.

Figure 19 shows the results of the stitching operation of the neighboring two arcs,
and the cross-correlation coefficients obtained in the series of stitching operations are sum-
marized in Figure 20. The relationship between Arc8 and Arc1 after the stitching operations
is also indicated in Figure 21. The mean value of the obtained cross-correlation coefficients
was evaluated to be 0.81; this value is much higher than the maximum value (0.58) observed
in the previous study by the authors’ group [16]. Figure 22a shows the circumferential
profile of the workpiece obtained through the stitching operations. Figure 22b shows the
circumferential profile shown in Figure 22a after the simple filtration by a low-pass filter
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with a cut-off frequency expressed in terms of undulations per revolution (upr) of 50. The
diameter and out-of-roundness of the workpiece evaluated from the obtained circum-
ferential profile are summarized in Table 2. The evaluated values of the diameter and
out-of-roundness were found to be almost identical to those indicated in the specification
sheet of the workpiece (diameter: 1.50 mm, out-of-roundness: <0.15 µm).
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Figure 19. Stitched neighboring arc-profiles from the eight arc-profiles obtained by measuring the workpiece with a diameter
of 1.5 mm.
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Figure 20. Relationship between Arc8 and Arc1 after the stitching operations.
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Figure 21. Cross-correlation coefficients observed in the stitching operations of the arc-profiles
obtained by measuring the workpiece with a diameter of 1.5 mm.
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Figure 22. The circumferential profile of the workpiece obtained through the stitching operation: (a) Before the filtering
process; (b) After the filtering process.

Table 2. The diameter and out-of-roundness of the workpiece evaluated from the circumferential
profile obtained by the stitching linear-scan method.

Diameter Out-of-Roundness

Nominal value 1.500 mm <0.15 µm
Measured value 1.497 mm 0.12 µm

4. Discussion

The experimental results described above demonstrate the feasibility of the elimination
of the edge part of an arc in the stitching process for the improvement of a cross-correlation
coefficient. The modified workpiece-holding mechanism was also found to be effective in
improving the quality of stitching between two neighboring arcs in the stitching linear-scan
method. Meanwhile, cross-correlation coefficients were found to become smaller with the
decrease in the workpiece diameter. The increase in the pressure angle of the stylus in the
linear-scan surface profiler due to the decrease in the workpiece diameter is one of the
main root causes of the degradation of the cross-correlation coefficients. The pressure angle
α of the stylus can be represented by the following equation:

α = arcsin

√
1 −

( x
r

)2
(2)

where r is the workpiece radius. As can be seen in the above equation, the decrease
in the workpiece diameter increases the pressure angle of the stylus even though the
same X-directional position on a workpiece surface is measured. Figure 23a,b summarize
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the differences in two neighboring arc-profiles in the overlapping regions obtained by
measuring workpieces with diameters of 3.0 mm and 1.5 mm, respectively (shown in
Figures 10 and 19). As can be seen in the figures, the well-matched region was found to
become narrower with the decrease in the workpiece diameter. Although the increase in
the eliminating region of the edge part of an arc-profile in the stitching process is expected
to improve the cross-correlation coefficient, too much data elimination in an arc-profile
could result in the degradation of the accuracy of stitching. It is, therefore, necessary to
optimize the measurement conditions by the measurement uncertainty analysis based on
GUM [21], while considering the number of arcs to reconstruct a whole circumferential
profile, the eliminating region of the edge part of an arc-profile in the stitching process,
as well as the measurement throughput.
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Figure 23. Differences of two neighboring arc-profiles in the overlapped regions obtained by measuring workpieces: (a)
With a diameter of 3.0 mm; (b) With a diameter of 1.5 mm.

5. Conclusions

For the accuracy improvement of the circumferential stitching in the stitching linear-
scan method, an attempt has been made to eliminate the data at the edge regions of the
arc-profiles in the circumferential stitching process. With a small cylindrical workpiece
having a diameter of 3.0 mm, experiments based on the stitching linear-scan method have
been carried out. Experimental results have demonstrated that the elimination of the edge
part in an arc-profile, where the influence of the pressure angle of the measurement probe
in the linear-scan stylus profiler on the measured profile becomes significant, is effective in
improving the cross-correlation coefficient of the stitched arc-profiles in the stitching opera-
tion. A hardware modification has also been made to the workpiece-holding mechanism
in the setup for the stitching linear-scan method. A small round magnet has newly been
inserted between the round magnet with the index mark and the workpiece to reduce the
influences of the out-of-roundness of the round magnet surface and the side face of the
workpiece holder by reducing the contact area between them. Experimental results have
demonstrated that the hardware modification is effective in further improving the cross-
correlation coefficient in the stitching operation. Experiments have also been extended to
evaluate the workpiece having a diameter and a length of 1.5 mm and 5.8 mm, respectively,
that cannot have been evaluated by the conventional rotary-scan method. From the whole
circumferential profile of the workpiece obtained based on the stitching linear-scan method
with improved stitching quality, the diameter and out-of-roundness of the workpiece have
successfully been evaluated quantitatively.

It should be noted that, in this paper, attention has been paid to improving the quality
of stitching in the stitching linear-scan method. The comparative tests involving the
measurement of roundness deviations of a series of cylinders with the reference method,
as well as the harmonic analysis of the profile of a workpiece obtained by the stitching
linear-scan method, remain to be addressed, and will be investigated in future work. A
comprehensive comparison between the stitching linear-scan method and the conventional
rotary-scan method for the clarification of the upper limit of the advantageous workpiece
diameter will also be carried out in future work.
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