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Abstract: This study deals with the development of an accurate, efficient and robust method for
the numerical solution of the interaction of compressible flow and nonlinear dynamic elasticity.
This problem requires the reliable solution of flow in time-dependent domains and the solution of
deformations of elastic bodies formed by several materials with complicated geometry depending
on time. In this paper, the fluid–structure interaction (FSI) problem is solved numerically by the
space-time discontinuous Galerkin method (STDGM). In the case of compressible flow, we use
the compressible Navier–Stokes equations formulated by the arbitrary Lagrangian–Eulerian (ALE)
method. The elasticity problem uses the non-stationary formulation of the dynamic system using the
St. Venant–Kirchhoff and neo-Hookean models. The STDGM for the nonlinear elasticity is tested
on the Hron–Turek benchmark. The main novelty of the study is the numerical simulation of the
nonlinear vocal fold vibrations excited by the compressible airflow coming from the trachea to the
simplified model of the vocal tract. The computations show that the nonlinear elasticity model of the
vocal folds is needed in order to obtain substantially higher accuracy of the computed vocal folds
deformation than for the linear elasticity model. Moreover, the numerical simulations showed that
the differences between the two considered nonlinear material models are very small.

Keywords: nonlinear dynamic elasticity; non-stationary compressible Navier–Stokes equations;
time-dependent domain; ALE method; space-time discontinuous Galerkin method; vocal folds
vibrations

1. Introduction

The simulation of an interaction of flow and elastic bodies plays an important role
in a number of areas of science, engineering and technology. However, the FSI plays an
important role also in bio-medicine. Namely, the flow in veins or the heart or flow-induced
vibration of human vocal folds (VFs) producing voice is intensively studied. The problems
of FSI have been studied by a number of different methods in several books (e.g., [1–7]).

The mathematical and numerical modeling of hemodynamics uses the fact that blood
is an incompressible liquid and its flow can be described by the incompressible Navier–
Stokes (N-S) equations. The simulation of the airflow in the vocal tract is usually simulated
with the aid of the same system for the description of the airflow in spite of the air being
a compressible gas, using the fact that airflow is slow. Maximum glottal jet velocity is ca
45 m/s and computations at low Mach numbers (M < 0.1) are difficult, so the numerical
modeling of flow-induced vibrations of the VFs prevails with the usage of incompressible
flow; see, e.g., [8–10]. Nevertheless, in the solution of the compressible N-S equations, we

Appl. Sci. 2021, 11, 4748. https://doi.org/10.3390/app11114748 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7045-3070
https://www.mdpi.com/article/10.3390/app11114748?type=check_update&version=1
https://doi.org/10.3390/app11114748
https://doi.org/10.3390/app11114748
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11114748
https://www.mdpi.com/journal/applsci


Appl. Sci. 2021, 11, 4748 2 of 27

use a robust numerical method with respect to the Mach number (e.g., [11]). This is the
reason that, in our research, we prefer to use the model of compressible flow.

As for the motion, vibrations and deformation of VFs induced by the airflow in the
vocal tract, several approaches have been used. For example, in [12], the unsteadiness of
the flow is modeled by a prescribed periodic motion of a part of the channel wall with
large amplitudes, nearly closing the channel. The numerical solution is implemented using
the finite volume method and the predictor–corrector MacCormack scheme with artificial
viscosity. For computation of the acoustic output, the driven VFs oscillation can be used
for modeling the acoustic sources in incompressible, unsteady flow, followed by the usage
of an acoustic analogy method; see, e.g., [13]. Various lumped parameter dynamic models
of the VFs with several degrees of freedom are used for modeling the phonation onset and
the VFs self-sustained vibrations; see, e.g., [14–17]. The fluid flow in the glottal channel
modeled by the incompressible N-S equations in the ALE form, discretized by the finite
element (FE) method and in combination with the dynamic lumped model of the VFs
with three degrees of freedom, was recently focused on for the introduction of a new inlet
boundary condition using a penalization approach. This gives reliable results related to
the flutter analysis of the system and physically real values of pressure and flow velocities
when the channel is nearly closing during the VFs vibration; see [18].

In [19,20], the interaction of compressible flow with a linear elastic body is solved.
A survey can be found in [21].

In the numerical solution of FSI problems with compressible flow and nonlinear
dynamic elasticity, it is necessary to overcome several obstacles: the numerical solution of
compressible N-S equations in time-dependent domains, the solution of nonlinear elasticity
problems, the realization of the interaction of these problems and the solution of large
nonlinear algebraic systems.

For the numerical solution of compressible viscous flow, one of the most attractive
techniques appears to be the discontinuous Galerkin method (DGM). It is used in a number
of works (see, e.g., [22–25]). The situation is more complicated for the compressible flow
in time-dependent domains. One possibility is to combine the DGM with the arbitrary
ALE method. In [26], the ALE-DGM is applied to the solution of airfoil vibrations by the
compressible flow. In [11,19], the ALE-DGM is applied to the interaction of compressible
flow with the vibrations of a linear dynamic elastic body solved by the combination
of the standard FE method for the space discretization and the well-known Newmark
time discretization.

In this study, we are interested in the comparison of the St. Venant–Kirchhoff and neo-
Hookean nonlinear elasticity models. Because of the successful solution of compressible
flow by the DGM, we discretize the elasticity problems also by the discontinuous Galerkin
method. Our goal is to compare these nonlinear elasticity models and their application
to the linear elasticity model in a simulation of VF vibrations excited by airflow. Both
compressible flow and elasticity problems are solved by the STDGM. The interaction of
flow and elastic deformation is via transmission conditions on the boundary between the
flow domain and the elastic body.

As follows from above, the novelty of this study is the application of the STDGM to
the solution of the compressible N-S equations in the conservative ALE form in a time-
dependent domain coupled with two nonlinear elasticity models; the St. Venant–Kirchhoff
and the neo-Hookean model. The developed method is applied to the numerical simulation
of airflow in a simplified model of the human vocal tract and flow-induced VF vibrations.

In Section 2, the definition and STDGM discretization of the flow problem are for-
mulated. Section 3 contains the formulation and discretization of elasticity problems.
The transmission between the flow and elasticity coupled problems and the description
of the ALE mapping construction are contained in Section 4. Further, Section 5 contains
algorithmization and realization of the discrete coupled problem, including necessary
details for the iterative algorithm of computing the nonlinear elasticity discrete problem.
Section 6 is devoted to testing the method for the solution of the dynamic elasticity method.
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Finally, Section 7 presents numerical experiments showing the robustness of the developed
method by simulations of air-flow-induced vibration of the VFs in the model of the vocal
tract. The results suggest the importance of nonlinear elasticity in such a study.

2. Compressible Flow

First, we describe the formulation and discretization of compressible flow in a time-
dependent domain. We proceed briefly, because it is described in several of our previous
works, such as [11,21,26–28].

2.1. Continuous Flow Problem

We consider compressible flow in a bounded domain Ωt ⊂ R2 for t ∈ [0, T]. The
boundary of Ωt consists of four disjointed parts: ∂Ωt = ΓI ∪ ΓO ∪ ΓW ∪ ΓWt , where ΓI
represents the inlet, ΓO is the outlet and boundaries ΓW and ΓWt denote impermeable fixed
and moving walls, respectively.

The time dependence of the domain Ωt is taken into account by using a regular one-
to-one ALE mapping of the reference domain Ω0 onto the current configuration Ωt : At :
Ω̄0 −→ Ω̄t. Next, we define the domain velocity z̃(X, t) = ∂

∂tAt(X), t ∈ [0, T], X ∈ Ω0,
z(x, t) = z̃(A−1

t (x), t), t ∈ [0, T], x ∈ Ωt and the ALE derivative of the vector function
w = w(x, t), where x ∈ Ωt and t ∈ [0, T]: DA

Dt w(x, t) = ∂w̃
∂t (X, t), where w̃(X, t) =

w(At(X), t), X ∈ Ω0, x = At(X). Then the continuity equation, the N-S equations and
the energy equation can be written in the ALE form

DAw
Dt

+
2

∑
s=1

∂gs(w)

∂xs
+ wdivz =

2

∑
s=1

∂Rs(w,∇w)

∂xs
, (1)

where w = (ρ, ρv1, ρv2, E)T ∈ R4, gs(w) = f s(w)− zsw, f s(w) = (ρvs, ρv1vs + δ1s p, ρv2vs

+ δ2s p, (E+ p)vs)T , Rs(w,∇w) = (0, τV
s1, τV

s2, τV
s1v1 + τV

s2v2 + k ∂θ
∂xs

)T , s = 1, 2, τV
ij = λδijdivv

+ 2µdij(v), dij(v) = 1
2

(
∂vi
∂xj

+
∂vj
∂xi

)
, i, j = 1, 2.

We have Rs(w,∇w) = ∑2
k=1 Ks,k(w) ∂w

∂xk
, where Ks,k(w) are 4× 4 matrices depending

on w, and f s(w) = A(w)w with A(w) = D f s(w)/Dw, see [11].
We use the following notation: p—pressure, ρ—fluid density, E—total energy,

v = (v1, v2)—velocity vector, θ—absolute temperature, cv > 0—specific heat at constant
volume, γ > 1—Poisson adiabatic constant, µ > 0—dynamic viscosity, λ = −2µ/3—
second viscosity coefficients, k > 0—heat conduction coefficient, τV

ij —components of the
viscous part of the stress tensor.

Equation (1) is completed by the following thermodynamical relations for pressure
and absolute temperature

p = (γ− 1)

(
E− ρ

|v|2

2

)
, θ =

1
cv

(
E
ρ
− |v|

2

2

)
(2)

and equipped with initial and boundary conditions

w(x, 0) = w0(x), x ∈ Ω0,
ρ = ρD, v = vD on ΓI ,

2
∑

j=1

(
2
∑

i=1
τV

ij ni

)
vj + k ∂θ

∂n = 0 on ΓI ,

v = 0 on ΓW ,
v = zD(t), ∂θ

∂n = 0 on ΓWt ,
2
∑

j=1
τV

ij nj = 0, i = 1, 2, ∂θ
∂n = 0, on ΓO,

(3)
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with prescribed data w0, ρD, vD, zD is the velocity of a moving wall and n denotes the
unit outer normal.

2.2. Discrete Flow Problem

We describe the discretization, which is used in our in-house solver. We assume that
Ωt is a polygonal domain for every t ∈ [0, T]. We denote by Tht a partition of the closure Ωt
into a finite number of closed triangles with disjoint interiors satisfying standard properties
(see [29]). We suppose that Tht is an image of Th0 under the regular mapping ”t → At”.
Moreover, we assume that the ALE mapping At is continuous and affine in Ω0.

By F , we denote the system of all faces of all elements K ∈ Tht. Moreover, we
introduce the sets of boundary faces F B = {Γ ∈ F ; Γ ⊂ ∂Ωt}, “Dirichlet” boundary faces
FD = {Γ ∈ F B; a Dirichlet condition is prescribed on Γ} and inner faces F I = F \ FB.
Each Γ ∈ F is associated with a unit normal vector nΓ to Γ. For Γ ∈ F B, the normal nΓ has
the same orientation as the outer normal to ∂Ωt. For K ∈ Tht, hK denotes the average of K
and hΓ denotes the length of Γ ∈ F .

For each Γ ∈ F I , there exist two neighboring elements K(L)
Γ , K(R)

Γ ∈ Tht such that

Γ ⊂ ∂K(R)
Γ ∩ ∂K(L)

Γ . We use the convention that K(R)
Γ lies in the direction of nΓ, and K(L)

Γ lies
in the opposite direction to nΓ. If Γ ∈ FB, then the element adjacent to Γ will be denoted
by K(L)

Γ .
Now we introduce the space of piecewise polynomial functions

Sr
ht = [Sr

ht]
4, (4)

with Sr
ht = {v; v|K ∈ Pr(K) ∀K ∈ Tht}, where r > 0 is an integer and Pr(K) denotes

the space of all polynomials on K of degree ≤ r. It is possible to see that Sr
ht = {v; v =

At(v̂), v̂ ∈ Sr
h0}. A function ϕ ∈ Sr

ht is, in general, discontinuous on interfaces Γ ∈ F I . If ϕ

is a function defined on K(L)
Γ ∪ K(R)

Γ , then by ϕ
(L)
Γ and ϕ

(R)
Γ , we denote the values of ϕ on

Γ considered from the interior of K(L)
Γ and K(R)

Γ , respectively, (if these values make sense)

and set 〈ϕ〉Γ = (ϕ
(L)
Γ +ϕ

(R)
Γ )/2, [ϕ]Γ = ϕ

(L)
Γ −ϕ

(R)
Γ .

Thanks to properties of the expressions in the N-S equations, similarly as in [11], the
following forms are derived:

âh(wh, wh,ϕh, t)
= ∑K∈Tht

∫
K ∑2

s=1 ∑2
k=1 Ks,k(wh)

∂wh
∂xk
· ∂ϕh

∂xs
dx

−∑Γ∈F I
ht

∫
Γ ∑2

s=1

〈
∑2

k=1 Ks,k(wh)
∂wh
∂xk

〉
(nΓ)s · [ϕh] dS

−∑Γ∈FD
ht

∫
Γ ∑2

s=1 ∑2
k=1 Ks,k(wh)

∂wh
∂xk

(nΓ)s ·ϕh dS

−Θ ∑Γ∈F I
ht

∫
Γ ∑2

s=1

〈
∑2

k=1 KT
k,s(wh)

∂ϕh
∂xk

〉
(nΓ)s · [wh] dS

−Θ ∑Γ∈FD
ht

∫
Γ ∑2

s=1 ∑2
k=1 KT

k,s(wh)
∂ϕh
∂xk

(nΓ)s ·wh dS,

(5)

dh(wh,ϕh, t) = ∑
K∈Tht

∫
K
(wh ·ϕh)divz dx, (6)

Jh(wh,ϕh, t) = ∑
Γ∈F I

ht

∫
Γ

µCW
hΓ

[wh] · [ϕh] dS

+ ∑
Γ∈FD

ht

∫
Γ

µCW
hΓ

wh ·ϕh dS,
(7)

`h(wh, wB,ϕh, t) = ∑
Γ∈FD

ht

∫
Γ

µCW
hΓ

wB ·ϕh dS

− Θ ∑
Γ∈FD

ht

∫
Γ

2
∑

s=1

2
∑

k=1
KT

k,s(wh)
∂ϕh
∂xk

(nΓ)s ·wB dS,
(8)
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b̂h(wh, wh,ϕh, t) =

− ∑
K∈Thtk+1

∫
K

2
∑

s=1
(As(wh(x))− zs(x))I)wh(x))· ∂ϕh(x)

∂xs
dx

+ ∑
Γ∈F I

ht

∫
Γ

(
P+

g
(〈

wh
〉

Γ, nΓ
)
w(L)

h + P−g
(〈

wh
〉

Γ, nΓ
)
w(R)

h

)
· [ϕh] dS

+∑Γ∈FB
ht

∫
Γ

(
P+

g
(〈

wh
〉

Γ, nΓ
)
w(L)

h + P−g
(〈

wh
〉

Γ, nΓ
)
w(R)

h

)
·ϕh dS.

(9)

We set Θ = 1, Θ = 0 or Θ = −1 and get the so-called symmetric (SIPG), incomplete
(IIPG) or nonsymmetric (NIPG) version, respectively, of the discretization of viscous terms.
In (7) and (8), CW denotes a positive sufficiently large constant and KT is the transposed
matrix to K.

In the form (9), symbols P+
g (w, n) and P−g (w, n) denote the “positive” and “negative”

parts of the matrix Pg(w, n) = ∑2
s=1(As(w)− zsI)ns defined in the following way. By [30],

this matrix is diagonalizable. It means that there exists a nonsingular matrix T = T(w, n)
such that

Pg = TΛT−1, Λ = diag(λ1, . . . , λ4), (10)

where λi = λi(w, n) are eigenvalues of the matrix Pg. Now we define the “positive” and
“negative” parts of the matrix Pg by

P±g = TΛ±T−1, Λ± = diag(λ±1 , . . . , λ±4 ), (11)

where λ+ = max(λ, 0), λ− = min(λ, 0).
The boundary state wB is defined on the basis of the Dirichlet boundary conditions (3)

and extrapolation:

wB = (ρD, ρDvD1, ρDvD2, cvρDθ
(L)
Γ +

1
2

ρD|vD|2) on ΓI , (12)

wB = w(L)
Γ on ΓO, (13)

wB = (ρ
(L)
Γ , ρ

(L)
Γ zD1, ρ

(L)
Γ zD2, cvρ

(L)
Γ θ

(L)
Γ +

1
2

ρ
(L)
Γ |zD|2) on ΓWt. (14)

In order to avoid spurious oscillations in the approximate solution in the vicinity of
discontinuities or steep gradients, we apply artificial viscosity forms. They are based on
the discontinuity indicator

gt(K) =
1

hK|K|3/4

∫
∂K
[ρh]

2 dS, K ∈ Tht. (15)

By [ρh], we denote the jump of the function ρh on the boundary ∂K, and |K| de-
notes the area of the element K. Then, we define the discrete discontinuity indicator
Gt(K) = 0 if gt(K) < 1, Gt(K) = 1 if gt(K) ≥ 1, and the artificial viscosity forms
(see [31])

β̂h(wh, wh,ϕh, t) = ν1 ∑
K∈Tht

hKGt(K)
∫

K
∇wh· ∇ϕh dx, (16)

Ĵh(wh, wh,ϕh, t) = ν2 ∑
Γ∈F I

h

1
2
(
Gt(K

(L)
Γ ) + Gt(K

(R)
Γ )

) ∫
Γ
[wh]· [ϕh] dS, (17)

with parameters ν1, ν2 = O(1).
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Because of the time discretization, we consider a partition 0 = t0 < t1 < . . . <
tM = T of the time interval [0, T] and denote Im = (tm−1, tm), Im = [tm−1, tm], τm =
tm − tm−1, for m = 1, . . . , M. We define the space Srq

hτ = (Srq
hτ)

4, where

Srq
hτ =

{
φ; φ(x, t) =

q
∑

i=0
tiφi(x), φi ∈ Sr

ht,

t ∈ Im, x ∈ Ωt, m = 1, . . . , M
}

,
(18)

with integers r, q ≥ 1. Here, Pq(Im) denotes the space of all polynomials in t on Im of degree
≤ q and the space Sr

ht is defined in (4). For ϕ ∈ Srq
hτ , we introduce the following notation:

ϕ±m = ϕ(t±m) = lim
t→tm±

ϕ(t), {ϕ}m = ϕ+
m − ϕ−m . (19)

In order to bind the solution on intervals Im−1 and Im, we augment the resulting
identity by the penalty expression

(
{whτ}m−1,ϕhτ(t

+
m−1)

)
tm−1

. The initial state whτ(0−) ∈
Sr

h0 is defined as the L2(Ωh0)-projection of w0 on Sr
h0, i.e.,

(whτ(0−),ϕh)Ωt0
=
(

w0,ϕh

)
Ωt0

∀ϕh ∈ Sr
h0. (20)

Furthermore, we define the prolongation whτ(t) of whτ |Im−1 on the interval Im.
In what follows, we introduce the notation

(a, b)ω =
∫

ω
ab dx, (21)

for functions a, b defined in a set ω ⊂ R2.
Now, the space-time DG approximate solution is defined as a function whτ ∈ Srq

hτ
satisfying (20) and the following relation for m = 1, . . . , M:

∫
Im

((
DAwhτ

Dt ,ϕhτ

)
Ωt

+ âh(whτ , whτ ,ϕhτ , t)
)

dt

+
∫

Im

(
b̂h(whτ , whτ ,ϕhτ , t) + Jh(whτ ,ϕhτ , t) + dh(whτ ,ϕhτ , t)

)
dt

+
∫

Im

(
β̂h(whτ , whτ ,ϕhτ , t) + Ĵh(whτ , whτ ,ϕhτ , t)

)
dt

+({whτ}m−1,ϕhτ(tm−1+))Ωtm−1
=
∫

Im
`h(whτ , wB,ϕhτ , t) dt, ∀ϕhτ ∈ Srq

hτ .

(22)

Remark 1. In the derivation of the discrete problem, the approximate solution and the test functions
are considered as elements of the space Srq

hτ . In practical computations, integrals appearing in the
definitions of the forms âh, b̂h, dh, Jh, Ĵh and β̂h and also the time integrals over Im are evaluated
with the aid of quadrature formulas using values of the approximate solution at discrete points of
intervals Im. Therefore, the space Srq

hτ is finite-dimensional, and the discrete problem is equivalent
with a finite algebraic system for every m = 1, . . . , M.

3. Dynamic Elasticity Problem

Following [32], we consider an elastic body represented by a bounded polygonal
domain Ωb ⊂ R2. By ∂Ωb, we denote the boundary of the domain Ωb and assume that
∂Ωb = Γb

D ∪ Γb
N , where Γb

D ∩ Γb
N = ∅. The deformation of the domain Ωb is described

by the displacement u = (u1, u2) : Ωb × [0, T] → R2 and the deformation mapping
ψ(X, t) = X + u(X, t), X ∈ Ωb, t ∈ [0, T]. Further, we set

F = ∇ψ, J = det F > 0, CofF = J(F−T), (23)

where F−T = (F−1)T . By P, we denote the first Piola–Kirchhoff stress tensor, which
depends on the elasticity model. It is a function of u via F: P = P(F(u)) (we can refer
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to [32].) Piola–Kirchhoff We need to find a displacement function u : Ωb × [0, T] → R2

such that

ρb ∂2u
∂t2 + cb

Mρb ∂u
∂t
− divP(F) = f b in Ωb × [0, T], (24)

u = uD in Γb
D × [0, T], (25)

P(F) n = gN in Γb
N × [0, T], (26)

u(·, 0) = u0,
∂u
∂t

(·, 0) = y0 in Ωb, (27)

where we prescribe the following quantities: f b : Ωb × [0, T] → R2 is the density of the
volume force, gN : Γb

N × [0, T] → R2 is the surface traction, uD : Γb
D × [0, T] → R2 is the

displacement of Γb
D, u0 : Ωb → R2 is the initial displacement, y0 : Ωb → R2 is the initial

deformation velocity, ρb > 0 is the material density and cb
M ≥ 0 is the damping coefficient.

We consider the following cases.
(a) Linear elasticity: In this case the stress tensor P(F) = σ(u) depends linearly on the

strain tensor e(u) = (∇u +∇uT)/2, i.e., eij =
1
2

(
∂ui
∂xj

+
∂uj
∂xi

)
, according to the relations

tr(e(u)) =
2

∑
i=1

∂ui
∂xi

, (28)

P(F) := σ(u) = λb tr(e(u))I+ 2µbe(u). (29)

Here, λb and µb are the Lamé parameters that can be expressed with the aid of the
Young modulus Eb and the Poisson ratio νb:

λb =
Ebνb

(1 + νb)(1− 2νb)
, µb =

Eb

2(1 + νb)
. (30)

(b) Nonlinear elasticity: In the case of nonlinear models, we introduce the Green strain
tensor E ∈ R2×2 defined by

E =
1
2

(
FT F − I

)
, E = (Eij)

2
i,j=1 (31)

with components

Eij =
1
2

(
∂ui
∂xj

+
∂uj

∂xi

)
︸ ︷︷ ︸

eij−linear part

+
1
2

2

∑
k=1

∂uk
∂xi

∂uk
∂xj︸ ︷︷ ︸

E∗ij−nonlinear part

. (32)

One possibility is the model of neo-Hookean material with the stress tensor

P(F) = µb(F − F−T) + λblog(detF)F−T . (33)

Another possibility is the use of the St.Venant–Kirchhoff model, when the second
Piola–Kirchhoff stress tensor and the first Piola–Kirchhoff stress tensor are defined by

Σ = λbtr(E)I + 2µbE, P(F) = FΣ. (34)

3.1. Discretization of the Elasticity Problem

In the discretization problem, we consider the displacement u and the deformation
velocity y and split the basic system into two systems of first-order in time

ρb ∂y
∂t + cb

Mρby− divP(F) = f in Ωb × [0, T],
∂u
∂t − y = 0 in Ωb × [0, T],

(35)
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u = uD in Γb
D × [0, T], (36)

P(F)n = gN in Γb
N × [0, T], (37)

u(·, 0) = u0, y(·, 0) = y0 in Ωb. (38)

We construct a triangulation T b
h of Ωb with standard properties. The approximate

solution at every time instant t ∈ [0, T] will be sought in the finite-dimensional space

Sb,s
h =

{
v ∈ L2(Ωb); v|K ∈ Ps(K), K ∈ T b

h

}2
, (39)

where s > 0 is an integer. By F b
h , we denote the system of all faces of all elements

K ∈ T b
h and distinguish their sets of boundaries, “Dirichlet”, “Neumann” and inner faces:

F b,B
h =

{
Γ ∈ F b

h ; Γ ⊂ ∂Ωb
}

, F b,D
h =

{
Γ ∈ F b

h ; Γ ⊂ ΓD
b

}
, F b,N

h =
{

Γ ∈ F b
h ; Γ ⊂ Γb

N

}
and

F b,I
h = F b

h\F
b,B
h . For Γ ∈ F b

h , the symbols nΓ, hΓ, K(L)
Γ , K(R)

Γ and for ϕ ∈ Sb,s
h symbols ϕ

(L)
Γ ,

ϕ
(R)
Γ , 〈ϕ〉Γ and [ϕ]Γ have the same meaning as in Section 2.2.

If a = (aij)
2
i,j=1, b = (bij)

2
i,j=1 are tensors, then we define the tensor product by

a : b = ∑2
i,j=1 aijbij.

The DG discretization in space is formulated with the use of the following forms.
Linear elasticity form:

ab
h(u,ϕ)
= ∑

K∈T b
h

∫
K σ(u) : e(ϕ)dx− ∑

Γ∈F b,I
h

∫
Γ(〈σ(u)〉 · n) · [ϕ]dS

− ∑
Γ∈F b,D

h

∫
Γ(σ(u) · n) ·ϕdS

−Θ ∑
Γ∈F b,I

h

∫
Γ(〈σ(ϕ)〉 · n) · [u]dS

−Θ ∑
Γ∈F b,D

h

∫
Γ(σ(ϕ) · n) · u dS,

(40)

where σ(u) is defined by (29). Here, the parameter Θ is chosen as 1, 0,−1 for SIPG, IIPG,
NIPG, respectively, version of the elasticity form.
Nonlinear IIPG elasticity form (Θ = 0):

ab
h(u,ϕ) = ∑

K∈T b
h

∫
K P(F) : ∇ϕdx

− ∑
Γ∈F b,I

h

∫
Γ(〈P(F)〉n) · [ϕ]dS

− ∑
Γ∈F b,D

h

∫
Γ(P(F)n) ·ϕdS.

(41)

Penalty form:

Jb
h(u,ϕ) = ∑

Γ∈F I
h

∫
Γ

Cb
W

hΓ
[u] · [ϕ]dS

+ ∑
Γ∈FD

h

∫
Γ

Cb
W

hΓ
u ·ϕ dS.

(42)

Here, Cb
W > 0 is a sufficiently large constant.
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Right-hand side form (with Θ = 0 in the case of nonlinear elasticity):

`b
h(ϕ)(t)
= ∑

K∈T b
h

∫
K f (t) ·ϕdx + ∑

Γ∈F b,N
h

∫
Γ gN(t) ·ϕdS

−Θ ∑
Γ∈F b,D

h

∫
Γ(σ(ϕ) · n) · uD(t)dS

+ ∑
Γ∈F b,D

h

∫
Γ

Cb
W

hΓ
uD(t) ·ϕdS.

(43)

Finally, we set Ab
h = ab

h + Jb
h and

(u,ϕ)Ωb =
∫

Ωb
u ·ϕdx.

In the nonlinear case, it is not clear how to define the SIPG and NIPG versions of the
elasticity forms so that the form ab

h is linear with respect to the test function ϕ.

3.2. STDGM for the Structural Problem

In the time interval [0, T], we consider the same partition 0 = t0 < t1 < . . . < tM = T
and use the same notation as in Section 2.2. An approximate solution of problems (35)–(38),
i.e., the approximations of the functions u, y will be sought in the space of piecewise
polynomial vector functions Sb,sq∗

hτ = [Sb,sq∗

hτ ]2, where

V = Sb,sq∗

hτ =
{

v ∈ L2(Ωb × (0, T)); v|Im =
q∗

∑
i=0

ti ϕi

with ϕi ∈ Sb,s
h , m = 1, . . . , M

}
.

(44)

By s and q∗, we denote positive integers representing the degrees of polynomial
approximations in space and time. We introduce the one-sided limits and jump of a
function ϕ ∈ [Sb,sq∗

hτ ]2 at time tm similarly as in (19). Now, the approximate STDG solution

of problem (35)–(38) is defined as a couple uhτ , yhτ ∈ Sb,sq∗

hτ such that

∫
Im

(
ρb(∂yhτ

∂t
,ϕhτ

)
Ωb + cM

(
ρbyhτ ,ϕhτ

)
Ωb

+ab
h(uhτ ,ϕhτ) + Jb

h(uhτ ,ϕhτ)
)

dt

+({yhτ}m−1,ϕhτ(tm−1+))Ωb

=
∫

Im
`b

h(ϕhτ)dt ∀ϕhτ ∈ Sb,sq∗

hτ ,

(45)

∫
Im

((
∂uhτ

∂t
,ϕhτ

)
Ωb
− (yhτ ,ϕhτ)Ωb

)
dt

+({uhτ}m−1,ϕhτ(tm−1+))Ωb = 0,
∀ϕhτ ∈ Sb,sq∗

hτ , m = 1, . . . , M.

(46)

The initial states uh(0−), yh(0−) ∈ Sb,s
h are defined by

(uh(0−),ϕh)Ωb = (u0,ϕh)Ωb ∀ϕh ∈ Sb,s
h ,

(yh(0−),ϕh)Ωb = (y0,ϕh)Ωb ∀ϕh ∈ Sb,s
h .

(47)

The discrete nonlinear problem is solved on every time interval [tk−1, tk] by the New-
ton method (cf. e.g., [33]). Some details are contained in Section 5. The resulting linear
algebraic systems in the flow and elasticity problems are solved by the direct solver UMF-
PACK (see [34]) or the GMRES method with block diagonal preconditioning (see, e.g., [35]).
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4. Fluid–Structure Coupling Implementation
4.1. Transmission Conditions

On the fluid–structure boundary

Γ̃Wt =
{

x ∈ R2; x = X + u(X, t), X ∈ Γb
N

}
we consider interface conditions representing the continuity of the normal stress and velocity:

(a) linear elasticity:

2

∑
j=1

σb
ij(X)nj(X) =

2

∑
j=1

τ
f

ij (x)nj(X), i = 1, 2,

v(x, t) =
∂u(X, t)

∂t
,

(b) nonlinear elasticity:

P(F(u(X, t)))n(x) = τ f (x, t)Cof(F(u(X, t)))n(x),

v(x, t) =
∂u(X, t)

∂t
.

Here, τ f = {τ f
ij}

2
i,j=1 is the stress tensor of the fluid, σb

ij—stress tensor of the structure,

i, j = 1, 2. n(X) = (n1(X), n2(X))—the unit outer normal to the body Ωb on Γb
N at point X.

4.2. Construction of the ALE Mapping

ALE mapping At is constructed by means of a solution of an artificial static linear
elasticity problem according to [36]. We define d = (d1, d2) in Ω0 as a solution of the
static problem

2

∑
j=1

∂τa
ij(d)

∂Xj
= 0 in Ω0, i = 1, 2, (48)

where τa
ij are the components of the artificial stress tensor τa

ij = δijλ
adivd + 2µaea

ij(d), ea
ij(d)

= 1
2

(
∂di
∂Xj

+
∂dj
∂Xi

)
, i = 1, 2. The Lamé coefficients λa and µa are related to the artificial Young

modulus Ea and the Poisson number νa as in (30). The boundary conditions for d are
prescribed by

d|ΓI∪ΓO = 0, d|ΓW0\Γ
b
N
= 0,

d(X, t) = u(X, t), X ∈ Γb
N .

(49)

The solution of the problem (48) and (49) provides the ALE mapping of Ω0 onto Ωt in
the form

At(X) = X + d(X, t), X ∈ Ω0, (50)

for each time instant t. In our computations, piecewise linear approximations of the
function d, and thus At, are used.

4.3. Coupling Procedure

In the solution of the complete coupled FSI problem, it is necessary to apply a suitable
coupling procedure. See, e.g., [37], for a general framework. Here, we apply the following
so-called strong coupling algorithm, in which we proceed successively from one time
interval [tk, tk+1] to the next interval [tk+1, tk+2].

1. Let us assume the approximate solutions of the flow problem and the deformation of
the structure uhτ,k on the time level tk are known.

2. Set u0
hτ,k+1 := uhτ,k, l := 1, and start the iterations:
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(a) Compute the stress tensor τ f and the aerodynamic force loading the structure
and transform it to the interface Γb

N .
(b) Solve the elasticity problem, compute the deformation ul

hτ,k+1 at time tk+1 and
approximate the flow domain Ωl

tk+1
.

(c) Determine the ALE mapping Al
tk+1h and approximate the domain velocity

zl
h,k+1.

(d) Solve the flow problem on the approximation of Ωl
tk+1

.
(e) If the variation of the displacement∣∣∣ul

hτ,k+1 − ul−1
hτ,k+1

∣∣∣
is larger than the prescribed difference, then set l := l + 1 and go to (a).
Otherwise, k := k + 1 and go to (2).

5. Realization of the Discrete Nonlinear Elasticity Problem
5.1. Newton Method

The elasticity form ab
h(u,ϕ) given by (41) is linear with respect to ϕ, but nonlinear

in u. This results in systems of nonlinear algebraic equations solved by the Newton
method (see [33]), which was applied in, e.g., [38,39], where incompressible flow model
and conforming FE discretization were employed.

Let f : RN → RN . We seek a solution α ∈ RN such that f (α) = 0. The Newton
algorithm to obtain a solution is the following: let α(0) be an initial guess of the solution
and let ε > 0 be a tolerance. For i ≥ 0 proceed as follows:

1. Compute the residual r(i) = f
(

α(i)
)

.

2. Stop iterations with α := α(i), if
∥∥∥r(i)

∥∥∥ ≤ ε.

3. Compute δα from

∇α f
(

α(i)
)

δα = r(i). (51)

4. Update α(i+1) := α(i) − δα, set i := i + 1 and go to 1.

Equation (51) is equivalent to a system of linear algebraic equations.

5.2. Important Ingredients of the Newton Method Implementation

Let ψi, i = 1, . . . , N = dimV , be a basis of V . The solution uhτ can be expressed as

uhτ = uhτ(α) =
2N

∑
i=1

αiφi, (52)

where α = (αi)
2N
i=1 are the FE coefficients and φi = (ψi, 0) for 1 ≤ i ≤ N and φi = (0, ψi−N)

for N < i ≤ 2N form the basis of [V ]2.
In order to apply the Newton method as defined in Section 5.1, it is necessary to

differentiate the form ab
h(uhτ(α),ϕ) (and subsequently the tensor P) with respect to the

coefficients α. For clarity, we shall denote the gradient with respect to α by ∇α and the
gradient with respect to X by ∇X . Obviously,

∂
∂αk

uhτ = (ψi, 0), 1 ≤ k ≤ N, i = k,
∂

∂αk
uhτ = (0, ψi), N < k ≤ 2N, i = k− N,

(53)
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and

∇X uhτ =
N
∑

i=1
αi∇X(ψi, 0) +

N
∑

i=1
αi+N∇X(0, ψi)

=

(
∑N

i=1 αi
∂ψi
∂x1

, ∑N
i=1 αi

∂ψi
∂x2

∑N
i=1 αi+N

∂ψi
∂x1

, ∑N
i=1 αi+N

∂ψi
∂x2

)
.

(54)

By (23),
P(F) = P(∇X X +∇X u) (55)

Since ∇X(X) is the constant unit matrix I, we introduce the simplified notation

P̃(∇X u) = P(I+∇X u). (56)

Now, the gradient of the form ab
h can be expressed as

∇αab
h(uhτ(α),ϕ)

= ∑
K∈Th

b

∫
K∇α

(
P̃(∇X uhτ(α)) : ∇Xϕ

)
dx

− ∑
Γ∈F b,I

h ∪F
b,D
h

∫
Γ∇α

(〈
P̃(∇X uhτ(α))

〉
n · [ϕ]

)
dS

+ ∑
Γ∈F b,I

h ∪F
b,D
h

∫
Γ

Cb
W

hΓ
∇α([uhτ(α)] · [ϕ])dS.

(57)

Let P̃(∇X uhτ(α)) = (Pij)
2
i,j=1 (here, for simplicity, we do not explicitly write the

dependence of Pij on ∇X uhτ(α)) and let ϕ = (ϕ1, ϕ2). Since

P̃(∇X uhτ(α)) : ∇Xϕ

= P11
∂ϕ1
∂x1

+ P12
∂ϕ1
∂x2

+ P21
∂ϕ2
∂x1

+ P22
∂ϕ2
∂x2

,
(58)

we have

∂

∂αk

(
P̃(∇X uhτ(α)) : ∇Xϕ

)
=

∂

∂αk
P11

∂ϕ1

∂x1
+

∂

∂αk
P12

∂ϕ1

∂x2

+
∂

∂αk
P21

∂ϕ2

∂x1
+

∂

∂αk
P22

∂ϕ2

∂x2
,

∂

∂αk

(〈
P̃(∇X uhτ(α))

〉
n · [ϕ]

)
=

(
∂

∂αk
〈P11〉n1 +

∂

∂αk
〈P12〉n2

)
[ϕ1]

+

(
∂

∂αk
〈P21〉n1 +

∂

∂αk
〈P22〉n2

)
[ϕ2].

Now, for ϕ =
(
ψj, 0

)
, we find that

P̃(∇X uhτ(α)) : ∇Xϕ = P11
∂ψj

∂x1
+ P12

∂ψj

∂x2
, (59)

∂

∂αk

(
P̃(∇X uhτ(α)) : ∇Xϕ

)
=

∂

∂αk
P11

∂ψj

∂x1
+

∂

∂αk
P12

∂ψj

∂x2
, (60)

∂

∂αk

(〈
P̃(∇X uhτ(α))

〉
n · [ϕ]

)
=

(
∂

∂αk
〈P11〉n1 +

∂

∂αk
〈P12〉n2

)[
ψj
]
. (61)
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Further, for ϕ =
(
0, ψj

)
, we have

P̃(∇X uhτ(α)) : ∇Xϕ = P21
∂ψj

∂x1
+ P22

∂ψj

∂x2
, (62)

∂

∂αk

(
P̃(∇X uhτ(α)) : ∇Xϕ

)
=

∂

∂αk
P21

∂ψj

∂x1
+

∂

∂αk
P22

∂ψj

∂x2
, (63)

∂

∂αk

(〈
P̃(∇X uhτ(α))

〉
n · [ϕ]

)
=

(
∂

∂αk
〈P21〉n1 +

∂

∂αk
〈P22〉n2

)[
ψj
]
. (64)

In what follows, we express the derivatives of the tensor P̃.

5.3. Derivatives in the Case of the Neo-Hookean Material

Let P̃ = P̃(uhτ(α)) = (Pij)
2
i,j=1 be the first Piola–Kirchhoff tensor of the neo-Hookean

material as defined in (33). Let uhτ(α) = (u1, u2). From (23) and (33), we get

P11 = µb
(

1 +
∂u1

∂x1

)
+ c1

(
1 +

∂u2

∂x2

)
, (65)

P12 = µb ∂u1

∂x2
− c1

∂u2

∂x1
, (66)

P21 = µb ∂u2

∂x1
− c1

∂u1

∂x2
, (67)

P22 = µb
(

1 +
∂u2

∂x2

)
+ c1

(
1 +

∂u1

∂x1

)
, (68)

where

c1 =
λb log(det F)− µb

det F
. (69)

Let uhτ(α) = (u1, u2) = ∑2N
k=1 αkφk, where φk = (ψk, 0) for 1 ≤ k ≤ N and φk =

(0, ψk−N) for N < k ≤ 2N.
Let us first express the derivatives of the determinant of F with respect to the coefficient

αk. If 1 ≤ k ≤ N and i := k, then

∂

∂αk
(det F) =

∂ψi
∂x1

(
∂u2

∂x2
+ 1
)
− ∂ψi

∂x2

∂u2

∂x1
, (70)

and for N < k ≤ 2N, i := k− N:

∂

∂αk
(det F) =

∂ψi
∂x2

(
∂u1

∂x1
+ 1
)
− ∂ψi

∂x1

∂u1

∂x2
. (71)

The derivatives of P̃(uhτ(α)) with respect to the coefficient αk are given as follows: If
1 ≤ k ≤ N and i := k, then

∂

∂αk
P11 = µb ∂ψi

∂x1
+ c2

∂

∂αk
(det F)

(
1 +

∂u2

∂x2

)
, (72)

∂

∂αk
P12 = µb ∂ψi

∂x2
− c2

∂

∂αk
(det F)

∂u2

∂x1
, (73)

∂

∂αk
P21 = −c1

∂ψi
∂x2
− c2

∂

∂αk
(det F)

∂u1

∂x2
, (74)

∂

∂αk
P22 = c1

∂ψi
∂x1

+ c2
∂

∂αk
(det F)

(
1 +

∂u1

∂x1

)
, (75)
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where c1 is the same as in (69),

c2 =
λb − λb log(det F) + µb

(det F)2 , (76)

and ∂
∂αk

(det F) is expressed in (70).
Finally, for N < k ≤ 2N, we set i = k− N and get

∂

∂αk
P11 = c1

∂ψi
∂x2

+ c2
∂

∂αk
(det F)

(
1 +

∂u2

∂x2

)
, (77)

∂

∂αk
P12 = −c1

∂ψi
∂x1
− c2

∂

∂αk
(det F)

∂u2

∂x1
, (78)

∂

∂αk
P21 = µb ∂ψi

∂x1
− c2

∂

∂αk
(det F)

∂u1

∂x2
, (79)

∂

∂αk
P22 = µb ∂ψi

∂x2
+ c2

∂

∂αk
(det F)

(
1 +

∂u1

∂x1

)
, (80)

where c1 is the same as in (69), c2 the same as in (76) and ∂
∂αk

(det F) is expressed in (71).

5.4. Derivatives in the Case of the St. Venant–Kirchhoff Material

Let P̃ = P̃(∇uh(α)) = (Pij)
2
i,j=1 be the first Piola–Kirchhoff tensor of the St. Venant–

Kirchhoff material as defined in (34). Let uh(α) = (u1, u2). Then, we have

P11 = µ ∂u1
∂x2

∂u2
∂x1

(
∂u2
∂x2

+ 1
)
+ λ

2

(
∂u1
∂x1

+ 1
)((

∂u2
∂x2

+ 1
)2
− 1
)

+
(

µ + λ
2

)(
∂u1
∂x1

+ 1
)(

∂u1
∂x2

2
+ ∂u2

∂x1

2
+
(

∂u1
∂x1

+ 1
)2
− 1
)

,
(81)

P12 = µ
(

∂u1
∂x1

+ 1
)

∂u2
∂x1

(
∂u2
∂x2

+ 1
)
+ λ

2
∂u1
∂x2

(
∂u2
∂x1

2
− 1
)

+
(

µ + λ
2

)
∂u1
∂x2

(
∂u1
∂x2

2
+
(

∂u1
∂x1

+ 1
)2

+
(

∂u2
∂x2

+ 1
)2
− 1
)

,
(82)

P21 = µ
(

∂u2
∂x2

+ 1
)

∂u1
∂x2

(
∂u1
∂x1

+ 1
)
+ λ

2
∂u2
∂x1

(
∂u1
∂x2

2
− 1
)

+
(

µ + λ
2

)
∂u2
∂x1

(
∂u2
∂x1

2
+
(

∂u1
∂x1

+ 1
)2

+
(

∂u2
∂x2

+ 1
)2
− 1
)

,
(83)

P22 = µ ∂u2
∂x1

∂u1
∂x2

(
∂u1
∂x1

+ 1
)
+ λ

2

(
∂u2
∂x2

+ 1
)((

∂u1
∂x1

+ 1
)2
− 1
)

+
(

µ + λ
2

)(
∂u2
∂x2

+ 1
)(

∂u1
∂x2

2
+ ∂u2

∂x1

2
+
(

∂u2
∂x2

+ 1
)2
− 1
)

.
(84)

Now let uh(α) = (u1, u2) = ∑2N
k=1 αkφk, where φk = (ψk, 0) for 1 ≤ k ≤ N and

φk = (0, ψk−N) for N < k ≤ 2N. The derivatives of P(∇xuh(α)) with respect to the
coefficient αk are given as follows: for 1 ≤ k ≤ N, i = k:

∂
∂αk

P11 = µ
∂ψi
∂x2

∂u2
∂x1

(
∂u2
∂x2

+ 1
)
+ λ

2
∂ψi
∂x1

((
∂u2
∂x2

+ 1
)2
− 1
)

+
(

µ + λ
2

)
∂ψi
∂x1

(
∂u1
∂x2

2
+ ∂u2

∂x1

2
+
(

∂u1
∂x1

+ 1
)2
− 1
)

+2
(

µ + λ
2

)(
∂u1
∂x1

+ 1
)(

∂u1
∂x2

∂ψi
∂x2

+
(

∂u1
∂x1

+ 1
)

∂ψi
∂x1

)
,

(85)
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∂
∂αk
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(
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+ 1
)
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∂ψi
∂x2

(
∂u2
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2
− 1
)

+
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)
∂ψi
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(
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∂x1

+ 1
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)
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(
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)
∂u1
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(
∂u1
∂x2

∂ψi
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+
(

∂u1
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+ 1
)

∂ψi
∂x1

)
,

(86)

∂
∂αk
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(
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∂x2

+ 1
)

∂ψi
∂x2

(
∂u1
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+ 1
)
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(
∂u2
∂x2

+ 1
)

∂u1
∂x2

∂ψi
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(
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2

)
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(
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+ 1
)

∂ψi
∂x1

,
(87)
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)(
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.
(88)

For N < k ≤ 2N, i = k− N:

∂
∂αk

P11 = µ ∂u1
∂x2

∂ψi
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∂
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(92)

6. Test of the STDGM for the Dynamic Elasticity

To verify the applicability of the STDGM for studying vibration problems, the bench-
mark CSM3 with the St. Venant–Kirchhoff model introduced by Turek and Hron in [40] is
used. We consider a 2D rectangular domain representing an elastic clamped-free beam;
see Figure 1. The beam loaded only by a gravity force has length l = 0.35 m and height
h = 0.02 m. The goal is the computation of free vibrations of point A at the end of the
beam, see Figure 1.

l

hA

Figure 1. Setup of the benchmark problem: elastic beam attached to a rigid cylinder.

We apply STDGM to the solution of the benchmark with the following data: uD = 0 at
the clamped end, gN = 0 on the free surface of the beam, u0 = 0, y0 = 0, f b = (0,−ρbg),
ρb = 1000 kg/m3, g = 2 m/s2, cb

M = 0, Eb = 1.4 · 106 Pa, νb = 0.4. Moreover, we choose
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Cb
W = 6 · 106. According to [40], the numerically simulated waveforms of point A vibration

are represented by the mean value, amplitude and frequency of oscillations of the beam,
see Table 1.

The computing was realized by the STDGM for both types of nonlinear models consid-
ered in the present study using linear polynomials in space and linear time approximations
with successively decreasing time steps τ; see Tables 1 and 2. The results agree with
the benchmark for both nonlinear theories very well and the differences between the St.
Venant–Kirchhoff and neo-Hookean elasticity models are small. We can note that both the
benchmark and our results give no exactly physically true amplitudes of the beam vibra-
tions, because no positive or negative damping was included in the model, and therefore,
the simulated amplitudes should correspond to the initial position of the beam.

Finally, in Table 3, we compare results for different computational meshes obtained
for the St. Venant–Kirchhoff material with piecewise linear approximation in space and
time for the time step τ = 0.02.

Table 1. Comparison of the position of point A for the reference and STDGM results with decreasing
time step τ, for the St. Venant–Kirchhoff model. The displacements u1 and u2 are written in the
format “mean value ± amplitude” and frequency. The row marked by ”ref” shows the reference
benchmark values published in [40].

Method τ u1
(
×10−3)[mm] f [Hz] u2

(
×10−3)[mm] f [Hz]

ref −14.305± 14.305 1.0995 −63.607± 65.160 1.0995

STDGM 0.04 −14.072± 14.043 1.0925 −66.374± 61.499 1.0925

STDGM 0.02 −14.337± 14.316 1.0925 −66.456± 62.556 1.0925

STDGM 0.01 −14.546± 14.526 1.0950 −66.580± 62.994 1.0950

STDGM 0.005 −14.628± 14.608 1.0930 −66.623± 63.153 1.0930

Table 2. Comparison of the position of point A for the STDGM with decreasing time step τ for the
neo-Hookean model.

Method τ u1
(
×10−3)[mm] f [Hz] u2

(
×10−3)[mm] f [Hz]

STDGM 0.04 −14.027± 13.992 1.0937 −66.625± 61.263 1.0925

STDGM 0.02 −14.290± 14.264 1.0937 −66.710± 62.311 1.0925

STDGM 0.01 −14.505± 14.480 1.0937 −66.824± 62.277 1.0925

STDGM 0.005 −14.590± 14.566 1.0930 −66.863± 62.944 1.0930

Table 3. Comparison of the position of point A for STDGM with s = 1, q∗ = 1 for St. Venant–
Kirchhoff material and different meshes defined by number of elements.

Num. of Elem. τ u1
(
×10−3)[mm] f [Hz] u2

(
×10−3)[mm] f [Hz]

ref −14.305± 14.305 1.0995 −63.607± 65.160 1.0995

722 0.02 −14.337± 14.316 1.0925 −66.456± 62.556 1.0925

1348 0.02 −14.117± 14.112 1.0962 −64.508± 63.514 1.0962

2822 0.02 −14.113± 14.110 1.0962 −64.523± 63.518 1.0962

7. FSI Numerical Experiments Using STDGM

Here, we present numerical results of an FSI problem considering a simplified VFs
model excited by airflow. The geometry of the airflow domain Ωt, which models the
simplified subglottal, supraglottal spaces and a semicircle subdomain with an outlet ΓO
to a surrounding atmosphere, is given in Figure 2. The boundaries ΓW of the airflow
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domain Ωt are considered as the impermeable hard sidewalls of the vocal tract including
the vertical segments of the semicircle at the outlet. The computational domain Ωb marks
the elastic VFs with the surface ΓWt , which creates an interface with the airflow domain.
The VFs are fixed at the boundaries denoted by Γb

D.

HI

LI
Lg LO

ΓW

ΓW

ΓW
Γb

D

ΓI Ωt

Ωb

ΓWt

ΓO

HO

Figure 2. Computational domain at time t = 0: LI = 20.0 mm, Lg = 17.5 mm, LO = 55.0 mm, HI = 25.5 mm, HO = 2.76 mm.
The radius of the semicircle subdomain is 3.0 cm.

The fluid flow problem is computed on the triangulation with 17,652 elements; see
Figure 3.

Figure 3. Triangulation of the fluid domain.

Further, for the flow problem, the following input data are used:

inlet velocity vin = 4 m s−1,
dynamic viscosity µ = 1.80 · 10−5 kg m−1 s−1,
inlet density ρin = 1.225 kg m−3,
initial outlet pressure pout = 97, 611 Pa,
Reynolds number Re = ρinvinHI/µ = 6941.7,
heat conduction coeff. κ = 2.428 · 10−2 kg m s−3 K−1,
specific heat cv = 721.428 m2 s−2 K−1,
Poisson adiab. const. γ = 1.4.
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For the fluid solver, the STDGM with a polynomial approximation of degree 2 in
space and degree 1 in time is used. In the case of the elasticity solver, the IIPG version
of the DGM with the penalization constant CW = 500 for inner faces and CW = 5000 for
boundary edges is employed. The stabilization parameters ν1 and ν2 from (16) are set to 0.1.
The time step τ is set to 1.0 · 10−6 s. For the first 1000 time steps, the fluid flow is computed
with the fixed boundary. Then, the part ΓWt of the boundary is released and we solve the
FSI problem.

The elastic VFs are modeled by isotropic material of the density ρb = 1040 kg m−3.
The VF model is formed by four subdomains with different elastic properties, as shown in
Figure 4 and Table 4. Every VF contains 5118 elements.

Figure 4. Nonhomogeneous model of VFs formed by four layers with triangulation. Modeled layers:
1. muscle, 2. ligament, 3. superficial lamina propria and 4. epithelium.

Table 4. Prescribed material constants for the VFs model: Young modulus, Poisson ratio and Lamé
parameters for different layers, ordered from the lower layer to the upper layer. See Figure 4 for the
visualization of the corresponding subdomains.

Layer Eb νb λb µb

1. layer (orange) 12 · 103 0.4 17,143 4285

2. layer (yellow) 8 · 103 0.4 11,430 2857

3. layer (blue) 1 · 103 0.495 33,110 335

4. layer (red) 100 · 103 0.4 142,857 35,714

The initial displacement and the initial deformation velocity are set to be zero. On
the bottom, right and left straight parts of the boundary, we prescribe a homogeneous
Dirichlet boundary condition (25) and on the curved part of the boundary, the Neumann
boundary condition (26). The damping coefficient cb

M is set to 1.0 s−1. For the solution
of the dynamic elasticity problem, we employ the NIPG version of the DGM, where the
penalization constant is set to Cb

W = 4 · 106.
For the solution of the static elasticity problem (48), we employ the NIPG version of

the DGM with the penalization constant CW = 103. Then, the DG solution of the ALE
discrete problem (48) is interpolated to a continuous approximation.

The strong coupling algorithm described in Section 4.3 with the prescribed tolerance
10−5 is used. The prescribed tolerance was usually reached after two to three coupling
subiterations.

Figure 5 shows the airflow velocity field in the subglottal and supraglottal regions at
five time instants of the VFs self-oscillation. In these time instants, different jet declination
behind the channel constriction, i.e., the so-called ”Coanda effect”, can be observed, with the
maximum flow velocity ca. 80 m/s. It corresponds to the Mach number Ma = 0.23.
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Similarly as in Figure 5, we see the distribution of the pressure in Figure 6. The maximum
air pressure is approximately constant in the subglottic part of the computational model.
The minima of the pressure corresponds to centers of the vortices created in the supraglottal
region and traveling to the outlet. Figure 7 shows the fluid pressure fluctuations in the
middles of the inlet and outlet. The value vibrations are caused by the non-stationary flow
behavior. In Figure 8, we can see the time dependence of the average values across the inlet
and outlet. The average mean difference between the inlet and outlet pressure is around
1 kPa, which is in the range of subglottic pressure for ordinary phonation.

Figure 5. Velocity field in the glottal region at five time instants (t = 0.0074, 0.0084, 0.0094, 0.0104, 0.0114 s) of the vocal
folds self-oscillation.
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Figure 6. Distribution of the pressure in the glottal region at five time instants (t = 0.0074, 0.0084, 0.0094, 0.0104, 0.0114 s) of
the vocal folds self-oscillation.
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Figure 7. The fluid pressure fluctuation at the middle point of inlet ΓI and at the middle point of the
outlet of the vocal tract.
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Figure 8. Average fluid pressure on the inlet ΓI and on the outlet ΓO.

Figure 9 shows the displacement of the top of the vocal fold in horizontal (u1) and
vertical (u2) directions. The numerical simulation of the VF vibrations started from zero
initial conditions and static fluid forces deformed the VFs statically, predominantly in
the horizontal direction. This effect shifted the mean value of VFs self-oscillations down-
stream. The vibration amplitudes with frequency ca. 100 Hz in the horizontal direction
are dominant.
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Figure 9. Displacement of the top of the vocal fold.

Comparison of the FSI Results for Linear and Two Nonlinear Elasticity Models

This section will be devoted to the analysis of nonlinear elasticity models in compari-
son with linear ones. We compare the linear strain tensor e and the nonlinear strain tensor
E ∈ R2×2, defined by (32). For the linear elasticity, the stress tensor depends on the strain
tensor e = (eij)

2
i,j=1, and in the case of nonlinear elasticity, the stress tensor depends on

E = e + E∗, where E∗ = (E∗ij)
2
i,j=1.

The influence of the nonlinear part of the strain tensor is given by the ratio

R :=
‖e‖
‖E‖ =

‖e‖
‖e + E∗‖ . (93)

If R ≈ 1, then the nonlinear part of the strain tensor is very small and the linear elastic-
ity model is sufficient, but if R ≈ 0, then it is necessary to use a nonlinear elasticity model.

First, we are concerned with the analysis of the neo-Hookean model. In this case,
Figure 10 shows the numerical simulation of the VFs self-oscillations from the beginning
of the FSI computation at 12 time instants. Figure 11 shows in detail the deformation of
the VFs at two time instants for a maximal and minimal glottal gap. In Figures 10 and 11,
the case R ≈ 1 is depicted by white and the case R ≈ 0 by a dark red color. The nonlinear
part of the strain tensor takes effect near the VFs surface, especially in the narrowest part of
the glottal channel and on the superior surface of the VFs. Therefore, to correctly capture
deformations of the VFs, it is necessary to use a nonlinear elasticity model.

Further, we present the results obtained for the St. Venant–Kirchhoff nonlinear elas-
ticity model. From the comparison of Figures 10 and 12 and details in Figures 11 and 13,
we see that the results for deformations of the VFs during self-oscillations are very similar.
The St. Venant–Kirchhoff model shows slightly higher influence of the nonlinearity than
the neo-Hookean material model of the VFs.
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Figure 10. Visualization of the VFs vibrations and the ratios R of the norms of linear and nonlinear strain tensors at twelve
time instants. Computed by the neo-Hookean model.

Figure 11. Details of VFs deformations and the ratios R of the norms of linear and nonlinear strain
tensors for the smallest and the largest glottal gap. Computed by the neo-Hookean elasticity model.
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Figure 12. Visualization of the VFs vibrations and the ratios R of the norms of linear and nonlinear strain tensors at twelve
time instants. Computed by the St. Venant–Kirchhoff elasticity model.
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Figure 13. Details of VFs deformations and the ratios R of the norms of linear and nonlinear
strain tensors for the smallest and the largest glottal gap. Computed by the St. Venant–Kirchhoff
elasticity model.

8. Discussion and Conclusions

This paper deals with the application of the space-time discontinuous Galerkin method
to the numerical solution of the compressible flow in time-dependent domains, described by
the compressible Navier–Stokes system, and to the nonlinear dynamic elasticity problems.
This is described by the St. Venant–Kirchhoff and the neo-Hookean models. The main
novelty is the numerical simulation of the fluid–structure interaction, namely, the vocal
folds vibrations excited by the compressible flow. The elastic vocal folds consist of several
layers with different material characteristics.

First, the applicability of the STDGM to the solution of a nonlinear dynamic elasticity
is tested on a benchmark problem published in [40], where the elastic deformation of a
vibrating beam is considered. Then the coupled fluid–structure problem is numerically
solved. An important part of the presented study is oriented to the solution of the question
whether the linear or nonlinear elasticity models of the vocal folds are more suitable. It
follows from our analysis that the use of nonlinear elasticity models are more adequate
than the linear model. The differences between the results obtained by the two nonlinear
material models are very small.

In future studies, the identification of the generated acoustic signal and a remeshing in
the case of the full glottal channel closure during the vocal folds oscillation period should
be analyzed.
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