
applied
sciences

Article

A Performance Analysis of Internet of Things Networking
Protocols: Evaluating MQTT, CoAP, OPC UA

Daniel Silva 1,* , Liliana I. Carvalho 1 , José Soares 1 and Rute C. Sofia 2,3

����������
�������

Citation: Silva, D.; Carvalho, L.I.;

Soares, J.; Sofia, R.C. A Performance

Analysis of Internet of Things

Networking Protocols: Evaluating

MQTT, CoAP, OPC UA. Appl. Sci.

2021, 11, 4879. https://doi.org/

10.3390/app11114879

Academic Editor: Fabrizio Granelli

Received: 11 May 2021

Accepted: 18 May 2021

Published: 26 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Cognitive and People-Centric Research Unit (COPELABS), University Lusofona de Humanidades e
Tecnologias, 1749-024 Lisbon, Portugal; lilinocencio@gmail.com (L.I.C.); jose94soares@gmail.com (J.S.)

2 Fortiss—Research Institute of the Free State of Bavaria for Software Intensive Services and Systems,
80805 Munich, Germany; sofia@fortiss.org

3 Department of Informatics Engineering, University Lusofona de Humanidades e Tecnologias,
1749-024 Lisbon, Portugal

* Correspondence: danielmanilha@hotmail.com

Abstract: IoT data exchange is supported today by different communication protocols and different
protocolar frameworks, each of which with its own advantages and disadvantages, and often co-
existing in a way that is mandated by vendor policies. Although different protocols are relevant in
different domains, there is not a protocol that provides better performance (jitter, latency, energy
consumption) across different scenarios. The focus of this work is two-fold. First, to provide a
comparison of the different available solutions in terms of protocolar features such as type of transport,
type of communication pattern support, security aspects, including Named-data networking as
relevant example of an Information-centric networking architecture. Secondly, the work focuses
on evaluating three of the most popular protocols used both in Consumer as well as in Industrial
IoT environments: MQTT, CoAP, and OPC UA. The experimentation has been carried out first on
a local testbed for MQTT, COAP and OPC UA. Then, larger experiments have been carried out for
MQTT and CoAP, based on the large-scale FIT-IoT testbed. Results show that CoAP is the protocol
that achieves across all scenarios lowest time-to-completion, while OPC UA, albeit exhibiting less
variability, resulted in higher time-to-completion in comparison to CoAP or MQTT.

Keywords: Internet of Things; networking protocols; networking architectures; performance evaluation

1. Introduction

Internet of Things (IoT) communication architectures and protocols have been evolving
in order to cope with new challenges derived from environments involving a large num-
ber of heterogeneous, resource-constrained devices. Examples of such challenges are the
support for intensive processing of large amounts of data; data filtering; data mining and
classification; supporting high heterogeneity in terms of device hardware and software,
as well as types of traffic. Moreover, IoT end-to-end services are supported by the Transmis-
sion Control Protocol/Internet Protocol (TCP/IP). TCP/IP allows for interoperability, but faces
limitations in IoT scenarios due to the large-scale heterogeneous IoT environments require-
ments, such as: time sensitive data, power constrains, or the need to support low latency
(often, sub-second responses), and low jitter. Therefore, IoT scenarios rely on IP-based
messaging protocols, or protocolar frameworks such as OPC UA to meet the required appli-
cation requirements, by providing support to asynchronous communication mediated via a
server, or a broker entity. In other words, in practice, IoT scenarios rely on communication
protocols and architectures that follow a broker-based publish/subscriber approach, which
creates an abstraction between data sources (producers), data receivers (consumers).

Albeit these solutions assist, for instance, frequent data polling, issues concerning
mobility management, privacy, security, or resource consumption subsist. The root of this

Appl. Sci. 2021, 11, 4879. https://doi.org/10.3390/app11114879 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9821-2738
https://orcid.org/0000-0002-4535-4465
https://orcid.org/0000-0003-2083-366X
https://orcid.org/0000-0002-7455-5872
https://www.mdpi.com/article/10.3390/app11114879?type=check_update&version=1
https://doi.org/10.3390/app11114879
https://doi.org/10.3390/app11114879
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11114879
https://www.mdpi.com/journal/applsci

Appl. Sci. 2021, 11, 4879 2 of 30

problem derives from the underlying networking semantics of TCP/IP, which follow a
host-based reachability approach.

Therefore, in order to further evolve communication protocols in a way that best sus-
tains highly heterogeneous IoT environments, there is the need to better understand current
implementation limitations, and performance aspects of the different available solutions.

The rationale for this research concerns the need to better understand the different
IoT communication protocols and architectures available; differences in their networking
semantics; and differences in performance, in particular in regards to time to completion
of requests (latency); packet loss. An hypothesis we advance in this context concerns the
fact that there may not be a single “better” performance protocol. A second hypothesis
we shall be attempting to answer concerns the potential design impact of the protocol
in the performance. This is the core of the motivation for this work. This paper main
contributions are as follows:

• the work describes the different protocols and protocolar frameworks, covering main
aspects, advantages and disadvantages in IoT scenarios.

• the work provides a thorough comparison of the studied solutions.
• the work provides a performance evaluation of 3 specific solutions: MQTT, CoAP,

OPC UA. The performance is evaluated in terms of time-to-completion of requests
(latency), and packet loss. The performance evaluation has been carried out in a local
testbed (COPELABS IoT Lab) and the large-scale testbed FIT-IoT.

The paper is organised as follows. Section 2 describes work that is related to this paper,
explaining our contributions. Section 3 goes over the available protocols and also delves
on the novel paradigm of Information-centric Networking (ICN), comparing the protocols
in terms of architectural aspects such as: transport, communication pattern. Section 4
describes the experimental environments used for experimentation, including selection of
hardware, software, as well as scripts developed. Section 5 gives input on the scenarios
created to develop experiments. Section 6 covers the performance evaluation aspects on the
local testbed, while Section 7 concerns the performance evaluation on FIT-IoT. The paper
concludes in Section 8, where directions for future work are also highlighted.

2. Related Work

Related work has been focused on comparing the performance of CoAP and MQTT
in regards to Round-trip Time (RTT) [1,2], focusing on the case of a single client directly
connected to a server (CoAP) or a broker (MQTT). For the cases deployed, usually MQTT
resulted in a lower RTT than CoAP. CoAP, on the other hand, showed positive results
in specific applications. Liri et al. evaluate the performance of MQTT, MQTT-SN, CoAP,
and QUIC in terms of task completion time (time-to-completion) for scenarios with challeng-
ing network conditions, such as varying loss, delay and disruption conditions for a simple
scenario of a client obtaining data from one sensor [3]. The purpose is to show the points
of disruption of the different protocols. The authors suggest that QUIC may be a good
alternative to CoAP and suggest specific improvement in terms of adaptive timer for CoAP,
derived from the learning in terms of delay disruption. Gündoğan et al. [4] provide an
analysis on the performance evaluation of CoAP, MQTT against the Named-data Networking
(NDN) approach. The experiments were carried out in a single-hop topology on the FIT-IoT
testbed. The authors conclude that, in a simple and reliable network, NDN provides more
robustness and less node resource consumption, while the IP-based messaging protocols
result in less overhead and lower time-to-completion.

Another line of work addresses the performance of lightweight protocols in the context
of specific environments, e.g., LTE, machine-to-machine communication over satellites,
automation. This is, for instance, the case of Durkop et al. who conducted a performance
evaluation of CoAP, MQTT, and OPC -UA in an LTE emulated environment, for RTT [5].
On the specific experimental environment, again considering one hop, OPC UA achieved
lower RTT. Bacco et al. provide a comparison between CoAP and MQTT for satellite-based
machine-to-machine communication [6]. The performance evaluation considers time-to-

Appl. Sci. 2021, 11, 4879 3 of 30

completion and average aggregated throughput at brokers/servers. Results provided
show that the performance of the two protocols, in this specific case, is dependent upon
several aspects that need to be engineered. Profanter et al. provide a comparison of the
performance of DDS, OPC UA, MQTT, and sockets in UNIX/ROS (TCPROS) in the context
of automation environments [7], where a client machine is connected via a switch to a
server machine. Their purpose is to evaluate RTT simulating automation environment
conditions, e.g., idle CPU, overloaded CPU. They measured RTT under these conditions
and conclude that for this specific environment DDS and OPC UA attain better results
than MQTT or the UNIX/ROS socket approach, in particular, if the message size is small.
More recently, Proos et al. compared Protofub and Flatbuffers approach against CoAP,
AMQP, and MQTT [8]. The work has been evaluated in the context of vehicle-to-Cloud
communication having as application digital twins.

Summarising, there is several related literature focusing on the performance of one or
several approaches. The experiments are usually focused on specific, relevant scenarios
and even domains. Still, the performance evaluation of the different protocols needs to be
further pursued, given that there is not a clear direction on a set of protocols that performs
(overall) better.

In comparison to related literature, our work follows the line focused on the per-
formance evaluation of IoT communication protocols, contributing first with an analysis
on the different architectural features, and then providing a performance evaluation of
two of the most relevant performance indicators for IoT environments, namely latency
(time-to-completion) and packet loss, varying several conditions, such as message size and
message frequency.

3. An Overview on IoT Communication Protocols and Frameworks

This section describes in a concise way several available IoT solutions that are today
applied both to Industrial IoT and Consumer IoT, namely AMQP, MQTT, CoAP, OPC
UA, QUIC, DDS. The section provides also information on ICN paradigms for IoT. It
then provides a comparison of protocol features in Section 3.8, debating differences in
Section 3.9.

3.1. AMQP

The Advanced Message Queueing Protocol (AMQP) [9–11] (ISO 19464) is an open stan-
dard, message-based protocol that assists cross-platform application communication to
be easily built via mediator entities, brokers, and queues. This protocol is considered to be
the “Internet Protocol for Business Messaging” (https://www.amqp.org/ (accessed on
15 May 2021)) and is widely used by entities such as JP Morgan, which relies on AMQP to
process over 1 billion messages a day, or the Deutsche Börse. Moreover, NASA used it for
the Nebula Cloud Computing Platform [12].

AMQP provides a good basis for the integration of software derived from multiple
vendors given that it supports common interaction patterns: one way, request/response,
publish/subscribe, transactions, and store-and-forward. It does this with flow-control,
multiplexing, security, recovery and a portable data representation that enables message
filtering. Its messaging strategy supports both point-to-point and hub-and-spoke (broker-
based) communications, and it is based on binary messaging. With AMQP, containers
communicate via multiplexed sessions that depend on a reliable byte stream with in-order
delivery, e.g., TCP.

It is, therefore, a unidirectional binary IP-based messaging protocol, which allows
asynchronous communication between publishers and subscribers to occur with some
reliability. To do that, AMQP defines the following elements:

• Exchange, entity which receives messages and applies message-based routing.
• Binding, entity in charge of defining rules to bind exchange to queues.

https://www.amqp.org/

Appl. Sci. 2021, 11, 4879 4 of 30

• Queue, which supports the asynchronous communication between publishers and
subscribers, by storing messages sent by Exchanges, and routed via the binding rules
to subscribers.

An AMQP network consists of a broker and applications connected in a star. Brokers
can be added for redundancy, and sometimes connected in federations. AMQP adopts the
HTTP view of the Internet as a set of large hubs serving many users. In an AMQP network,
applications address the broker, which is the only “stable” piece of the network. This means
the only IP addresses or domain name known to all involved applications concerns the
brokers. This implies that all publishers and consumers need to know beforehand the URL
of brokers. A first advantage of AQMP is the support of assynchronous communication.
A second concerns the integrated QoS features, which provide guaranteed message deliv-
ery. interoperability and the capability to provide secure connections. However, AMQP
transmissions require more bandwidth than its counterpart MQTT, and it does not support
resource discovery.

3.2. MQTT

The Message Queuing Telemetry Transport (MQTT) protocol [13], developed by IBM
and currently an OASIS standard is, in comparison to AMQP [9,10] (ISO 19464), a lighter
message-oriented protocol. It has been designed to support remote monitoring and as such
it provides low latency, assured messaging over fragile networks, and efficient distribution
of data to one or many receivers. Due to this, it became popular in Machine-to-Machine
(M2M) scenarios. It is TCP-based and asynchronous, and can integrate a publish-subscribe
communication model.

As with AMQP, MQTT relies on the notion of a broker which receives subscription
requests from clients on specific topics and which receives messages from publishers and
forwards them, based on the client’s subscribe/publish policies on topics. MQTT brings in
the advantage of having the possibility to consider multiple Quality of Service (QoS) levels.

Specifically focusing on Industrial IoT scenarios, there is a specific specification of
MQTT, MQTT Sparkplug (https://github.com/eclipse/tahu (accessed on 15 May 2021)),
that defines a standardad MQTT namespace optimized for industrial applications. The spec-
ification considers an MQTT payload definition that is extensible, but that has been opti-
mized for SCADA implementations. The specification also provides specific architectural
design to address redundancy and scale. It is important also to highlight that MQTT can
also in a “request/response” pattern, supporting one-to-one messaging that provides spe-
cific information based on parameters provided. The MQTT request-response pattern is not
similar to a synchronous client/server approach request/response (such as the pattern of
HTTP). With MQTT, a request, or a response, can have more than one (or none) subscriber.
Moreover, correlation data assists in keeping the relation between request and response
stable. The request-response pattern of MQTT is relevant in use-cases where there is the
need for acknowledgement functionality.

A first drawback of MQTT in the context of IoT is that it requires TCP support.
TCP introduces more reliability but brings in issues in regards to mobility as well as to
security. Therefore, MQTT considers SSL/TLS to provide secure communication and
data encryption.

A second drawback in comparison to AMQP is that it offers few control options,
and real-time communication is considered to be in the order of seconds MQTT has been
designed for reliability, and not for speed.

On the other hand, a strong advantage of the MQTT design is scalability. It supports a
large number of small, constrained devices, providing a simple way to ensure asynchronous
communication of devices.

MQTT has another strong advantage, which is the support of three classes of QoS to
messaging: (1) fire-and-forget/unreliable; (2) “at least once” to ensure it is sent a minimum
of one time (but might be sent more than one time), and (3) “exactly once”.

https://github.com/eclipse/tahu

Appl. Sci. 2021, 11, 4879 5 of 30

Finally, its lightweight design and compact binary packet payload are advantages in
terms of IoT environments, as shall be further discussed in Section 3.8.

3.3. CoAP

The Constrained Application Protocol (CoAP), defined in the Internet Engineering Task
Force (IETF) RFC 7252 [14], is a service layer protocol used by resource constrained, low-
power sensors and devices connected via lossy networks, especially when there is a high
number of sensors and devices within the network. CoAP is one of the most popular IoT
communication protocols, in particular in the context of advanced metering and distributed
intelligence applications, given that it extends the reach of HTTP to constrained devices.
CoAP is being used, for instance, with IEEE802.15.4 low-power radios.

Based on a client/server model, CoAP relies on REST thus increasing its interoper-
ability. Its design has been carefully worked to fit constrained devices in terms of battery,
memory, storage. Running over UDP, CoAP clients communicate to servers via 4 messages,
GET, PUT, POST and DELETE. Its lightweight design makes it a promising protocol for
embedded devices.

In addition to its wide availability, and due to running over UDP, CoAP integrates
DTLS (and not SSL/TLS), usually supporting RSA and AES, or ECC and AES. As a service
layer protocol, CoAP can also support other application layer protection solutions, such
as the Object Security for Constrained RESTful Environments (OSCORE) [15]. Another
advantageous design feature of CoAP is resource discovery. CoAP servers provide a list
of current resources, with metadata, via a specific file (/.well-known/core, defined in
application/link-format media type). Clients can discover which resources are provided
and the respective media types. While widely available and highly interoperable, also
providing inbuilt support for content negotiation and discovery, CoAP remains a one-to-
one protocol based on a client/server model (while in contrast, counterparts such as MQTT
provide support to many-to-many communication).

3.4. OPC UA: Open Platform Communications—Unified Architecture

The Open Platform Communications Unified Architecture (OPC UA) [16–18] started in
1996 as a concept for automation industry, where the purpose was to have a standard for
interacting with control hardware and field-level devices. OPC would shield client appli-
cations from the details of the automation equipment, and would provide standardised
interfaces to interact with control hardware and field-devices.

The original OPC specification derives from OLE, COM and DCOM technologies,
tying it exclusively to the Microsoft platform.

With the extinction of DCOM in 2002 by Microsoft, the OPC community started the
definition of a new OPC Data Access standard over SOAP/XML. While these new standard
addressed portability, the overhead introduced by SOAP/XML was not compatible with
several industrial use cases. This led to the beignning of the OPC UA initiative, which
delivered the 1.0 version of the standard in 2009. As part of this process, the acronym OPC
was changed to be “Open Platform Communication” and the new standard was called
OPC UA (OPC Unified Architecture).

Today, OPC UA is a platform-independent standard via which various systems and
devices can communicate, by sending messages between clients and servers over various
networks. It supports robust, secure communication that assures the identity of clients and
servers, and is claimed to resist several types of attacks.

These qualities make OPC UA one of the most promising candidates for unified com-
munication in the context of Industrial IoT, in particular for critical and close environments,
such as industrial plants, as it provides in-plant resilient and robust communication.

However, there are a few drawbacks. A major drawback of OPC UA is that it cannot
ensure the complete isolation of the plant network when connecting IIoT infrastructures.
To access data from a UA server, an OPC client outside the plant network needs an open
firewall port. The answer currently provided to this issue is to keep OPC UA for the

Appl. Sci. 2021, 11, 4879 6 of 30

in-plant communication, and to provide interoperability with other IP-based messaging
approaches, for instance OPC UA to MQTT, to support the articulation of communication
to the network (Edge-Cloud).

One possible way to increase the relevancy of OPC UA as a possible candidate to unify
the communications in IoT, is to consider a push communication model thus allowing the
server to make an outbound connection to a client. These are aspects being worked upon
by the OPC UA working group which are currently extending the OPC UA client/server
model into a publisher/subscriber model, thus allowing the server to take the role of
Publisher and to publish data towards an arbitrary number of clients (Subscribers). Two
methods are under discussion:

• Publisher/subscriber over fast, local communication media. With this method data
are sent once (long-lived) and sent to any number of clients over UDP (secure multicast
UDP). This model supports 1 to N communication and is relying on UDP directives
for Time Sensitive Networks (TSNs).

• Publisher/subscriber for message exchange in global networks (e.g., Cloud). With
this method data are sent between OPC UA applications residing in different networks
or where data shall be published to clients that reside in the cloud, as well as to relays;
brokers; hubs. This model supports N to M communication based on AMQP.

3.5. DDS

The Object Management Group (OMG) Data Distribution Service (DDS) [19] is a middle-
ware connectivity framework and API standard for data-centric connectivity, that targets
direct communication between devices. Its purpose is to distribute data to other devices
while interfacing with an IT infrastructure.

DDS provides low-latency data connectivity, extreme reliability, and a scalable archi-
tecture, that fits well business and mission-critical IoT require. DDS was first introduced
to overcome limitations of client/server architectures such as CORBA, COM+/DCOM. A
main difference of DDS in comparison to AMQP and to MQTT is decentralization. DDS
supports 1 to N communication. A second relevant difference is that DDS provides direct
communication support, without a broker. A third difference is the support for automatic
discovery of devices.

With DDS, “real-time” is in the order of milliseconds. DDS offers powerful ways
to filter and select exactly which data goes where, and “where” can be thousands of
simultaneous destinations. Some devices are small, so there are lightweight versions of
DDS that run in constrained environments.

To allow such control, instead of relying on a hub-and-spoke broker model such as
AMQP and MQTT, or on a client/server model such as CoAP and OPC UA, DDS imple-
ments direct device-to-device “bus” communication with a relational data model, coined
DataBus. This data-centric messaging bus model connects publishers and subscribers
directly. Detailed QoS policies controls the information flow, and the application matches
publishers and subscribers based on topics and on QoS.

3.6. QUIC

The Quick UDP Internet Connections (QUIC) protocol [20] is a flexible multiplexed
and secure general-purpose transport protocol that supports multiplexed streams. Based
on UDP, it has been developed to provide security protection equivalent to TLS/SSL
along with reduced connection and transport latency, and bandwidth estimation in each
direction to avoid congestion. Hence, QUIC relies on UDP, and integrates encryption. As
with STCP, QUIC developed support for multiple sub-streams instead of using multiple
transport connections.

Originally developed by Google, today QUIC corresponds to the IETF changed version
of the Google QUIC (gQUIC) [21]. It is a relevant protocol in the context of the Internet’s
evolution and in particular of the Web evolution from TCP to UDP.

Appl. Sci. 2021, 11, 4879 7 of 30

In the context of IoT, as it is kernel independent and can run across NATs, it is a
relevant protocol in comparison to HTTP (request-response) approaches.

3.7. Information-Centric Networking Approaches in IoT

Information-centric Networking (ICN) is emerging as a new stack which is being explored
in multiple areas. However, it is in the field of IoT that ICN is gaining ground. There
are several architectures being explored from an end-to-end perspective, being the most
popular today the Content centric Networking (CCN) architecture (2010, PARC and Partners),
the Named Data Networking (NDN) architecture (2014, coordinated by UCLA), and Hybrid
ICN (hICN) (2014), by Cisco. In what concerns relevancy for IoT, the most popular approach
today is NDN as it supports all IoT basic requirements [22].

CCN has been adopted by the Internet Research Task Force (IRTF) working group
Information-centric Networking Research Group (ICNRG) [23] and gave rise to both NDN and
hICN. Both software architectures are therefore quite similar, being the main difference the
fact that hICN is focused on IP interoperability, while NDN is focused on the development
of clearer networking semantics, that support better the aspects that IP cannot cope by
design, such as security, mobility.

3.7.1. Named Data Networking for IoT

NDN brings in several advantages in the context of IoT scenarios, such as its expressive
naming space, support for data fragmentation, intrinsic consumer mobility support, name-
based routing [22]. In NDN, consumers express interest on data via sending Interest
packets, whose status is kept in routers along the paths traversed, and producers reply
with Data packets that match received Interest packets. Data packets traverse the path of
Interest packets, following a breadcrumb approach.

Figure 1 provides a simple illustration for the NDN IoT operation, where C is a device
with an application wanting to obtain the temperature from A and B. C first sends an
Interest packet with the name prefix /ndn/temperature. A and B reply with Data packets
with the requested information.

Figure 1. One hop NDN IoT Example, where 2 sensors (A), (B) publish temperature values, and gateway (C) subscribes
that information.

NDN follows the ICN store-and-forward principle and hence, any node in the network
is an NDN router, and holds three different data structures: the Forwarding Information
Base (FIB); Pending Interests Table (PIT); Content Store (CS). The FIB holds aggregated name
prefixes for data objects matching outgoing Faces (interface abstraction). To fetch content,

Appl. Sci. 2021, 11, 4879 8 of 30

a consumer sends an Interest packet to the network containing the name of the required
content. When an NDN node receives an Interest message, it first queries matching data
in its local CS. If the data are locally available, a matching Data packet is sent back to
the consumer through the same Face. Otherwise, the node updates its PIT table with the
Interest packet’s name prefix, associated to the incoming Face.

If there is no match in the PIT, then the node forwards the Interest packet further over
the recorded outgoing interface(s) in the FIB. When the Interest packet reaches a potential
data provider or a node with a matching Data packet in its CS, a Data packet is generated
and sent back via the path bread-crumbed by the respective Interest packet(s). During the
forwarding process, each node replicates the Data packet to all recorded incoming interfaces
in the matching PIT entry and keep a copy in the local CS, and then deletes the related PIT
record. Thus, NDN traffic is self-regulated, and in each link, for the same object, there is at
most one Data and one Interest packet.

The operation of NDN is therefore based on a pull-model, where consumers first
express interest about a specific object. Nevertheless, NDN supports a second model, push-
based model, derived from applications where data can be directly pushed to multiple
consumers, without having these specifically expressing an interest before. As NDN is
a network layer solution, push-based models can be implemented by applications in a
variety of ways [24].

Furthermore, in large-scale scenarios NDN supports Interest packet aggregation
within the PIT structure (aggregation of multiple Interest requests onto a single aggregate
request). In-network caching allows consumers to retrieve cached content from interme-
diate routers, and not necessarily from producers. The different forwarding strategies
(e.g., anycast) allow NDN to take into consideration availability and restrictions of devices.

3.7.2. Hybrid ICN

Regular IP devices become hICN-enabled via the installation of hICN middleware.
In hICN, the forwarding follows ICN strategies, while the data transmission follows
regular IP traffic. Consumers generate the usual ICN Interest packets, which are named
in accordance to IP addresses, and are then regularly forwarded. Therefore, in regular IP
routers the packet is treated as usual. When it reaches an hICN router the Interest packet
is processed accordingly with ICN policies. The PIT entry holds the respective source IP
address and the respective interface from which the respective interest packet has been
received (Face). hICN supports request aggregation following the ICN model. In the case
that the content is not found in the router’s CS, the Interest packet is then forwarded until
it reaches a producer. The producer then sends back a packet that has the same name in the
IP source address field and the previous hICN router name (encoded as IP address) in IP
destination address field. Requests for the same data initiated by the second consumer will
terminate at the first hICN junction point where they are answered either from the local
cache (asynchronous multicast) or from the connected data source.

3.8. Comparison of IoT Communication Approaches

Table 1 provides a comparison of the previously debated IoT communication solutions,
for the most relevant protocol design aspects. Transport (row 1) refers to the supported
transport protocols. Messaging strategy (row 2) concerns the following messaging patterns:
RR; Broker (Publish-subscriber broker model); PS. Communication model (row 3) corresponds
to either client/server CS or decentralized Dec. Security (row 4) describes the method or
protocol that provisions security for each approach, while binary payload support (row 5)
concerns the transmission of data based on a binary format. QoS (row 6) is dedicated to
QoS aspects. data persistence (row 7) concerns the support of the different approaches for a
relevant aspect in IoT (transitive data), while Data Discovery (row 8) concerns the methods
to discover data sources. Applicability (row 9) intends to explain onto which areas of an
end-to-end IoT environment the protocols are being applied to, considering the following
areas: Device-to-Edge (D2E); Device-to-device (D2D); Edge to Cloud (E2C). Complexity (row

Appl. Sci. 2021, 11, 4879 9 of 30

10) provides a glimpse at the potential implementation complexity, based upon aspects
such as: message header size; implementation size. The next sections go over the different
features in detail.

Table 1. Comparison of IoT communication protocols and architectures.

Aspects HTTP CoAP QUIC AMQP MQTT DDS OPC UA NDN

Messaging pattern RR RR RR Broker RR 1, Broker RR RR, PS 2 PS

Communication

Model
CS CS CS CS CS Dec CS Dec

Security
DTLS,

OSCORE, etc.

DTLS,

OSCORE, etc.
own encryption TLS/SSL TLS/SSL Specific Specific By design

Binary Payload

Support
No Yes Yes Yes Yes Yes Yes Yes

QoS Best Effort
Confirmable,

non-confirmable

Congestion

control

High availability,

broker redundancy

Best Effort,

Guaranteed

Message Arrival

Parameters on

durability, lifespan,

destination order, etc.

Best Effort
Forwarding

strategy

Data persistence No No Yes Yes No Yes No Yes

Data discovery Manual
Manual and

registration
Manual Manual Manual Automatic No Automatic

Applicability D2E, E2E, E2C D2E D2E, E2C D2E D2E D2D, D2E, E2E D2E D2E, D2C, D2D

Complexity High Low Medium Low Low Low Low Low

1 As described in Section 3.2, MQTT can support a RR pattern supporting one-to-one messaging, for instance, for specific critical scenarios
where an acknowledgement is required. 2 under development.

3.8.1. Transport

UDP traffic is supported by all of the approaches, the exception being MQTT, as this
protocol needs to have an active connection to allow consumers to be notified of changes.
There is, however, an extension of MQTT for sensor networks (MQTT-SN) [25] which can
support UDP. The trade-off of relying on this extension is a lower control in terms of
QoS support.

3.8.2. Messaging Pattern

In terms of the messaging pattern, in the request/response (RR) approach followed by
HTTP and CoAP, publishers send data to a server, while consumers request that data from
the server. While in the publish/subscribe approach relied upon by, for instance, AMQP or
MQTT, publishers send their data to a mediating entity, the broker. The broker distributes
that data to consumers that have subscribed a priori the data, via the notion of “topic”.

The publish/subscribe strategy is highly relevant from an IoT perspective, given that
it provides a way to support asynchronous data exchange and also given that it abstracts,
up to some point, the need to handle identifiers of devices.

Publish/subscribe is being adopted by the most relevant protocols, such as OPC UA.
DDS mimics a publish/subscribe approach by relying on IP multicast. As for NDN, it
integrates a publish/subscriber receiver-driven and pull-based approach (per packet): con-
sumers first express interest, and then the data are sent by producers, based on the expres-
sions of interest. Therefore, NDN is the only approach that integrates a Publish/subscribe
approach truly focused on content and not on the entity (host) that generates such content.

3.8.3. Communication Model

The different messaging strategies followed by the approaches require the support of
a centralized, client-server model.

Appl. Sci. 2021, 11, 4879 10 of 30

From a communication model perspective, the broker-based publish/subscribe is also
based on a client/server communication approach.

Therefore, from the analysed protocols, there are only two that integrate a notion of
decentralised data exchange, which is a relevant architectural aspect for heterogeneous
and dynamic IoT environments: DDS, and NDN. DDS implements a Bus model and
requires registration of entities before communication can be held. While NDN relies
on the publish/subscribe receiver-driven model, and hence, achieves a higher degree of
decentralisation. A main advantage of the NDN publish/subscribe approach is that it can
support more control: a broker cannot control aspects such as packet loss or polling, while
with NDN forwarding strategies it is possible to adapt the rate of Interest packets sent and
as a consequence, improve Quality of Experience (QoE).

3.8.4. Security

Given the urgent requirement for security in IoT environments, the most recent
approaches already consider specific security mechanisms. QUIC, for instance, integrates
its own encryption mechanism. DDS provides a specification for data security. The most
complete approaches in regards to security are OPC UA and NDN. OPC UA integrates a
specific security framework covering user security based on X.509; session security based
on AAA; transport security, based on the encryption of messages. NDN integrates security
by design. Not only does this architecture support user, data and channel security; it also
secures the binding from name to content, which is relevant, for instance, in situations such
as playback attacks.

3.8.5. Binary Payload Support

The support for data transmission of binary payloads is particularly relevant for
Industrial IoT scenarios, given the distances to be covered in remote regions, or when
addressing large-scale grids (e.g., water pipes). Payloads need to be as compact as possible
to minimise battery consumption, and most available protocols support a binary format.
All approaches (with the exception of HTTP) already support binary payloads.

3.8.6. QoS

As with security, QoS is a major issue in IoT environments. Most solutions available
contemplate a set of classes for guarantees, e.g., guaranteed message delivery. CoAP pro-
vides support for confirmable/non-confirmable QoS. AMQP can support high availability
based on queueing, and broker redundancy. MQTT integrates 3 levels of QoS: Best Effort,
guaranteed message arrival (once), and guaranteed message arrival (more than once). DDS
has a finer-granularity QoS, being able to provide parameters on data, even at the granu-
larity of one topic. Examples of QoS parameters supported are: durability; presentation;
lifespan, destination order, among others. OPC UA supports Best Effort only as it was
designed, having in mind a specific use-case (in-plant communication). NDN has specific
forwarding strategies, such as the QoS-Forwarding Strategy (QoS-FS) [26]. Furthermore,
each NDN node can adjust data transmission based on required QoS and hence, rely on
different forwarding strategies over a path between producer and consumer.

3.8.7. Data Persistence

Data persistence is essential to support infrastructure resilience. Message queuing
results in lower power usage, and allows for the possibility to send minimized data packets,
and efficiently distribute information to one or many subscriber. Still, most protocols
analysed lack support for data persistence.

AMQP relies on queuing, while NDN integrates into its design in-networking caching,
aspect which becomes relevant in the context of guaranteeing low latency interactions in
comparison to cloud computing [27].

Appl. Sci. 2021, 11, 4879 11 of 30

3.8.8. Data Discovery

IoT infrastructures are large distributed systems, where each application needs to have
a way to find the information it needs; ensuring adequate communication; connect sources
and destinations. For broker-based approaches such as AMQP and MQTT, the broker
provides an abstraction layer and therefore, applications just need to know the identifier
of brokers to rely upon. This reduces the need to register every node. Still, nodes need
to know broker identifiers. OPC UA supports discovery of servers (via multicast DNS),
which assists in reducing costs associated with configuration. While NDN supports direct
data searches, via named-based routing.

3.8.9. Applicability Area

The different approaches have been developed considering different areas of applica-
tion, from an end-to-end communication perspective. For instance, CoAP has been devised
to support HTTP in communicating to resource constrained nodes and hence, it is usually
applied in device to edge communication. From the studied approaches, DDS and NDN
are the single proposals that contemplate also D2D communication support. Then, from a
perspective of edge to edge communication, HTTP, DDS, NDN are the approaches that can,
by design, easily be used to support edge to edge communication. Approaches such as
MQTT, CoAP or even OPC UA can also be used to support edge to edge communication.
However, this would imply integrating both a client and server (or broker) entity in each
Edge node.

3.8.10. Complexity

Today the available approaches take into consideration aspects such as small header
size, lightweight implementation, and the possibility to run in embedded devices. CoAP,
for instance, has an average header size of 4 bytes; requires 10 KiB of RAM, and 100 KiB of
code space [14]. AMQP has a very short header size (2 bytes) and, similarly to MQTT, it
holds a lightweight implementation that can run in devices with less than 64 Kb of RAM.
DDS holds a lightweight implementation (CoreDX DSS [28]) which can run in Android
devices. The MicroDDS implementation of DDS, which provides publishing support only,
runs on 8-bit microcontrollers with 2 KB of SRAM, and 32 KB of ROM. DDS RTI Connext
Micro implementation runs on 16-bit ARM. OPC UA servers can run in devices with just
15 KB of RAM and 10 KB of ROM. NDN for RIoT has been implemented in a very light
way when compared to 6LowPAN [29].

3.9. Performance Aspects

Recent studies addressed different performance aspects of NDN against IP-based
approaches, to understand up to which point can NDN sustain large-scale IoT infrastruc-
tures. Gündoğan et al. have analyzed the performance of NDN between sensors and
gateway/broker against CoAP and MQTT, evaluating different scenarios in the context of
the FIT-IoT testbed [4]. For NDN, the code of CCN-lite has been considered. Experiments
run considered 1-hop as well as multi-hop topologies, involving 70 and 50 nodes, respec-
tively. Albeit this is an initial study, it shows that the NDN publish/subscribe model attains
a better performance in the verge of topological variability lower packet loss. The results
also show that the rate of Interest packets is an issue which delays content delivery larger
time-to-completion occurs, as devices are constrained and PITs have limited sizes. This is
an issue for unscheduled publishing scenarios. Nevertheless, packet loss is still reduced in
comparison to the IP-based approaches evaluated MQTT and CoAP.

The performance of the available protocols is an aspect that requires further investment
of research. There are no clear Key Performance Indicators for the protocols analysed.

Therefore, in addition to an overall analysis on protocol features for available IoT
communication protocols, this works proceeds with a performance evaluation for 3 of
the most relevant and flexible protocols available for both consumer and industrial IoT
scenarios: MQTT, CoAP, OPC UA.

Appl. Sci. 2021, 11, 4879 12 of 30

4. Experimental Environment

This section describes the experimental environments that have been set to evaluate
the performance of MQTT, CoAP, OPC UA.

A first experimental environment used is a local, constrained environment illustrated
in Figure 2 (http://copelabs.ulusofona.pt/index.php/research/projects/324-iotlab (ac-
cessed on 15 May 2021)). The experiments run in this testbed have as aim to evaluate
the performance of the different protocols in terms of packet loss and time-to-completion
of requests.

Figure 2. The IoT Testbed at COPELABS.

A second experimental environment used has been the large-scale FIT-IoT testbed [30]
(https://www.iot-lab.info/ (accessed on 15 May 2021)).

The protocols evaluated on FIT-IoT were MQTT and CoAP, as the support for OPC
UA in FIT-IoT was not, at the time when we have run the experiments, out-of-the-box. We
have tried to install the required libraries to run OPC UA. However, the quota provided to
users was not sufficient to enable the installation of an open version of OPC UA.

For both experiments and regardless of the protocol time-to-completion means the time
spent sending the message through the sender and receiving the message by the receiver,
considering the time spent by the broker/server. However, the definition of packet loss has
differences due to the different characteristics of the protocols. For MQTT, which has the
characteristic of forming queues for the delivery of messages at the Broker, the packet loss
occurs when a message packet sent is no longer received. For CoAP and OPC UA that
relies on REST to increasing its interoperability, the packet loss is the failure of a GET or PUT
command sent to the server.

http://copelabs.ulusofona.pt/index.php/research/projects/324-iotlab
https://www.iot-lab.info/

Appl. Sci. 2021, 11, 4879 13 of 30

4.1. IoT Testbed

The COPELABS IoT Testbed [31] comprises, among others, 20 Android smartphones;
2 dedicated machines to support IoT gateways and brokers; 6 Raspberry Pi devices, some
of which are attached to temperature/luminosity sensors.

Figure 2 provides a simplified illustration of the testbed, where field devices are
connected via wireless to an IoT gateway device. The local testbed is connected both to the
Internet and to the experimental NDN worldwide testbed, thus facilitating experimentation
of IP-based approaches and of NDN solutions. Further information on the testbed can be
found in [31].

The equipment available in the testbed and which has been used in the experiments is
summarized in Table 2, which describes aspects such as equipment type and model; CPU,
RAM, storage and NIC details.

Table 2. The IoT COPELABS testbed equipment.

Type Model CPU RAM Storage Network

IoTclient1
Laptop Toshiba
Satellite Pro
T130-15C

Genuine Intel®

U7300 1.30 GHz
Dual Core

3.7 GB
TOSHIBA
MK3263GSX
320 GB

Realtek Semiconductor
Co., Ltd.
RTL8191SEvB
Wireless LAN
Controller

IoTclient2 Samsung S5 neo
Octa-core
1.6 GHz
Cortex-A53

2 GB
16 GB and SD
card slot up
to 256 GB

GSM/HSPA/LTE

IoTclient3
Raspberry Pi 3
B+ Board

ARMv8 CPU
64-bit
Quad Core

1 GB
LPDDR2
SDRAM

16 GB Micro
SD NOOBS(OS)

2.4 & 5 GHz
802.11b/g/n/ac
Wireless LAN

IoTgw1
Laptop Toshiba
Satellite Pro
T130-15C

Genuine Intel®

U7300 1.30 GHz
Dual Core

3.7 GB
TOSHIBA
MK3263GSX
320 GB

Realtek Semiconductor
Co., Ltd.
RTL8191SEvB
Wireless LAN
Controller

IoTgw2
Raspberry Pi 3
B+ Board

ARMv8 CPU
64-bit
Quad Core

1 GB
LPDDR2
SDRAM

16 GB Micro
SD NOOBS(OS)

2.4 & 5 GHz
802.11b/g/n/ac
Wireless LAN

Server1
Laptop Toshiba
Satellite Pro
T130-15C

Genuine Intel®

U7300 1.30 GHz
Dual Core

3.7 GB
TOSHIBA
MK3263GSX
320 GB

Realtek Semiconductor
Co., Ltd.
RTL8191SEvB
Wireless LAN
Controller

Server2
Raspberry Pi 3
B+ Board

ARMv8 CPU
64-bit
Quad Core

1 GB
LPDDR2
SDRAM

16 GB Micro SD
NOOBS(OS)

2.4 & 5 GHz
802.11b/g/n/ac
Wireless LAN

Moreover, the OS considered in the testbed have been derived from an analysis
on available OSs for IoT which is condensed in Table 3. The table shows aspects such
as differences in memory usage (RAM and ROM); CPU processing; supported network
stack; energy saving options; whether or not multi-threading is supported, and year
of development.

Appl. Sci. 2021, 11, 4879 14 of 30

Table 3. Operating Systems Comparison.

Features Contiki RIoT FreeRTOS TinyOS Raspbian

MCU (bits) 8/16/32 8/16/32 16/32/64 8/16 32/64

RAM(KB) 2 1.5 1 10–40 256

ROM(KB) 60 5 4 15–40 16

Network
Stack

ulP (IPv4 and IPv6) and
RIME

6LowPAN,
GNRC stack,

CCN-lite
FreeRTOS + TCP 6LowPAN

6LowPAN,
IPv4/v6
CCN-lite

Energy
Saving

Options

No integration,
allows

implementation,
Scheduler

High
energy-

efficiency,
Scheduler

and
sleep nodes

Tick-less
option

CPU power
management,

Power
management

interfaces,
HW/SW

transparency

Scheduler,
Energy

optimization

Real-time OS No Yes Yes No No

Multi-
threading

Yes Yes Yes Yes Yes

Year 2002 2012 2003 2000 2012

The different operating systems are being adapted to support resource-constrained
devices. For this case, Contiki, RIoT and TinyOS provide the best support, based on differ-
ent ports. In terms of memory consumption (RAM and ROM), Contiki, RIoT, FreeRTOS,
and OpenWSN can work in extremely limited devices.

In regards to the supported network stacks, Contiki comes with the uIP TCP/IP stack,
as well as with Rime, a set of lightweight networking protocols designed for low-power
wireless networks (http://contiki.sourceforge.net/docs/2.6/a01793.html (accessed on 15
May 2021)).

RIoT supports different network stacks, such as 6LowPAN and the Generic Network
Stack (GNRC). More importantly, RIoT supports an ICN stack, CCN-lite thus providing
good support to explore new networking paradigms. FreeRTOS integrates a specific
network stack, FreeRTOS+TCP which is scalable, open source and thread-safe. TinyOS
provides support for 6LowPAN/RPL IPv6, while Raspbian provides support for 6LowPAN,
IPv4/v6, and CCN-lite. In terms of energy saving options, RIoT and Raspbian already
integrate options to support better energetic efficiency. As also shown, only RIoT provides
support for real-time applications. Multi-threading is supported in all OSs. Out of the
several OSes, based on established requirements and also on the features of each OS,
the choice of OS went for Raspbian, and RIoT.

4.2. Gateway Software

The installed gateway software considers the following requirements:

• To be open-source.
• To support the most popular protocols, and at least MQTT/AMQP, CoAP, OPC UA.
• To be modular and allow for the development of extensions.
• To be runnable in constrained devices.

Based on these requirements, two different open-source solutions have been analyzed,
Open IoT (http://www.openiot.eu/ (accessed on 15 May 2021)), and ThingsBoard (https:
//thingsboard.io/ (accessed on 15 May 2021)), as described next.

OpenIoT [32] is an open-source Service-as-a-Platform middleware, which supports the
communication between heterogeneous sensors and applications via the cloud. Released
in 2012 (ICT-2011.1.3, Internet of Connected Objects https://github.com/OpenIotOrg/

http://contiki.sourceforge.net/docs/2.6/a01793.html
http://www.openiot.eu/
https://thingsboard.io/
https://thingsboard.io/
https://github.com/OpenIotOrg/openiot
https://github.com/OpenIotOrg/openiot
https://github.com/OpenIotOrg/openiot

Appl. Sci. 2021, 11, 4879 15 of 30

openiot (accessed on 15 May 2021)), OpenIoT stems from an industry-academia effort
aiming at developing a platform for connecting physical and virtual sensors to the Cloud.
OpenIoT interoperability is derived from semantic sensor integration.

OpenIoT provides two packages: OpenIoT and the OpenIoT-VDK that is a ready-to-
use version for academic and training purposes. Its feature integrate:

• Middleware for sensors and sensor networks,
• Ontologies, semantic models and annotations for representing internet-connected

objects, along with semantic open-linked data techniques
• Cloud/Utility computing, including utility-based security and privacy schemes.

ThingsBoard is an on-premise and/or cloud platform that helps developers and
researchers to test, manage, or interact in IoT environments. It provides a Community
edition as well as a Professional edition.

Among other aspects, ThingsBoard provides the following functionality:

• Entities and Relations ability to model world objects (devices and assets) and their relations.
• Telemetry API for collection of time-series data.
• Creation/Management of custom key-value attributes.
• Rule Engine, to do data processing and actions on incoming telemetry and events.
• RPC API and widgets to push commands from apps and dashboards to devices and

vice versa.
• Data visualisation DashBoards.
• API limits example: limiting number of requests from a host.
• Audit log track of user activity and API calls usage.

ThingsBoard (TB) operates in Standalone or in Cluster mode. In Cluster mode, TB
nodes can perform automatic discovery of new TB servers (nodes). All TB nodes form
a cluster, and all of those TB nodes are identical. On this operation mode there is not a
coordinator node, which prevents single points of failure.

Based on the different features and requirements, the experiments described in this
paper consider the IoT gateway ThingsBoard.

4.3. Broker Software

For the brokers, both RabbitMQ and Mosquitto have been analysed. The requirements
for the selection of the broker software were:

• To run in embedded devices.
• To have a user-friendly configuration.
• If possible, to provide support for several protocols.

RabbitMQ [33] is an open-source message broker that supports many communication
protocols such as AMQP, STOMP, MQTT, HTTP, WebSockets. It provides good interoper-
ability, being easily extensible, and a simple user interface.

Mosquitto [34] is an MQTT lightweight broker. It is also quite easy to install and use.
In contrast to RabbitMQ, MQTT is a broker for MQTT only.

Although RabbitMQ provides support for MQTT, on our tests the experiments suf-
fered issues when running MQTT with QoS level 2, which leads us to believe that Rab-
bitMQ may have some open issues in the MQTT implementation. Therefore, for MQTT
experimentation, we have considered also Mosquitto.

4.4. FIT-IoT Environment

The FIT-IoT testbed is an outcome of the IoT-LAB project (https://www.iot-lab.info/
(accessed on 15 May 2021)), and provides support for large-scale remote testing [30].
FIT-IoT is used worldwide for IoT experimentation in different research areas (https:
//www.iot-lab.info/publications/ (accessed on 15 May 2021)).

The FIT-IoT testbed comprises six physical sites across France and access to 1786
wireless sensors nodes. For the experimental implementation and evaluation, this paper
relies on the Saclay Île-de-France FIT-IoT site, which had 264 nodes available in 2019.

https://github.com/OpenIotOrg/openiot
https://github.com/OpenIotOrg/openiot
https://www.iot-lab.info/
https://www.iot-lab.info/publications/
https://www.iot-lab.info/publications/

Appl. Sci. 2021, 11, 4879 16 of 30

A global networking backbone provides power and connectivity to all FIT-IoT nodes and
guarantees the out of band signalling network needed for power and command purposes
and monitoring feedback. A FIT-IoT representation to a client site is illustrated in Figure 3.

Figure 3. FIT-IoT Infrastructure [30].

As illustrated, the FIT-IoT infrastructure consists of a set of testbed nodes, tied within
a global networking backbone that provides power, connectivity, inband and out-of-band
signal network capacity for command and monitoring, various servers, and disk space.
Each FIT-IoT node consists of three main components: Open Node, Gateway, and Control
Node [35].

FIT-IoT supports also the integration of embedded software, ranging from direct
access to node hardware, to operating system (OS). Some operating systems such as
FreeRTOS, Contiki, TinyOS, OpenWSN and RIoT, may be run on open nodes, depending
on software maturity and node capacity. Figure 4 illustrates the software components of a
node architecture in Fit-IoT.

Figure 4. FIT-IoT node architecture.

Appl. Sci. 2021, 11, 4879 17 of 30

4.5. Implementation Aspects

This section covers implementation aspects, namely scripts and programs developed
to support the implementation of publishers and subscribers, integrating the different
entities and protocols described in Section 2. All of the developed scripts and programs are
available via GitLab (https://gitlab.com/iotlab_copelabs/ (accessed on 15 May 2021)).

4.5.1. MQTT

The MQTT experimentation environment has been developed in Python with the
paho library, and the Mosquitto broker. The scripts created for MQTT (https://gitlab.com/
iotlab_copelabs/mqtt (accessed on 15 May 2021)) are:

• Subscriber: mqttsubs.py
• Publisher: mqttgen.py
• Report Generator: monitor.py

The Subscriber script (mqttsubs.py) emulates a subscribre application which applies,
in Mosquitto, to a topic “sensors”.

The script assumes a timeout of 5 seconds for message reception. If the timeout occurs,
the script stops and generates a log file named “receiver.txt” and another file named by
default “ttc_file.txt”, containing the timestamps of each message in the format: “t1-t2”,
where t1 corresponds to the timestamp registered by the publisher at the instant when the
message is sent, and t2 corresponds to the timestamp registered by a subscriber, once a
message is received. These timestamps are then used in the experiments to compute time-
to-completion.

The Publisher script (mqttgen.py) generates and sends a specific number of messages
to the broker to the topic “sensors”, each separated by a specific interarrival time interval.
These attributes are specified in the code. By default, the message size has been set to 7 KB.
Any other number can be provided as argument to the script. The payload of each of these
messages contains the timestamp taken at the instant the messages have been sent, so that
once messages are received, the subscribers can rely on such timestamp to locally compute
the time it took for completion. Once all messages are sent, the publisher script generates a
log file named “sender.txt”, containing only the number of messages sent.

Both publisher and subscriber scripts have been configured to connect to the same
broker identified in our testbed by a private IP: “12.0.0.170”.

A third script has been created, to provide a report based on the publisher and
subscriber logs. This report consists of, per presented order: number of messages sent by
the publisher; number of messages received by the subscriber; time to completion (TTC);
packet loss.

4.5.2. CoAP

For the CoAP testing we have opted to consider the Eclipse Californium library
(https://www.eclipse.org/californium/ (accessed on 15 May 2021)), where we have devel-
oped a Java program to push and obtain requests.

Moreover, the computation of packet loss took into consideration CoAP ACKs and not
data packets. Assuming, for instance, that a client sends five messages to a CoAP server,
and then the respective receiver node receives only 3 in CoAP this does not necessarily
imply packet loss. It may simply mean that the sending node updated results faster to the
server, than the receiver could obtain on the receiver’s point of view it sent a get request
and obtained an answer (no packets lost) even though the sender already changed the
previous value that the receiver did not have. Therefore, for packet loss, we considered the
number of acknowledgements both the sender and received nodes.

The scripts generated for the testing of CoAP (https://gitlab.com/iotlab_copelabs/
coap (accessed on 15 May 2021)) are:

• Subscriber: mqttsubs.java
• Publisher: mqttgen.java

https://gitlab.com/iotlab_copelabs/
https://gitlab.com/iotlab_copelabs/mqtt
https://gitlab.com/iotlab_copelabs/mqtt
https://www.eclipse.org/californium/
https://gitlab.com/iotlab_copelabs/coap
https://gitlab.com/iotlab_copelabs/coap

Appl. Sci. 2021, 11, 4879 18 of 30

• Server: Server.java
• Report Generator: Monitor.java

4.5.3. OPC UA

For the OPC UA experimentation, our choice went to Python with the opcua library.
The methodology applied is similar to the one already described for MQTT and CoAP.
The scripts developed for OPC UA (https://gitlab.com/iotlab_copelabs/opc-ua (accessed
on 15 May 2021)) are:

• Subscriber: receiver.py
• Publisher: sender.py
• Server: server.py
• Report Generator: monitor.py

5. Experimental Settings

To define different, heterogeneous scenarios, we have considered four different aspects:

• Topology. The execution of the experiments consider 2 different network topolo-
gies, where the main change was to have the gateway/broker either installed on an
embedded device, or on a laptop.

- Topology 1 consists of using a laptop, iotgw1 in Figure 1, as a server/broker to
control communication between clients IoTclient1 (a laptop) and Iotclient3 (a
Raspberry Pi) on a Wi-Fi network (rf. to Figure 1).

- Topology 2 consists of using the device iotgw2 (a Raspberry Pi) as server/broker
to control the communication between two clients.

• Packet size. The experiments have considered both fixed and variable size data
packets (scenarios A or B, respectively):

- a fixed-size data packet of 7 KB, standing for an example of a small packet.
- a variable-size data packet randomly selected from an interval between 7 KB and

1000 KB (standing for an example of a large message).

• Number of messages. Three specific scenarios have been considered in terms of
messages to be sent: 5, 500, and 5000 messages per unit of time (second).

• Interarrival time (IAT). Three specific situations have been considered in terms of IAT,
to respectively emulate examples of frequent, average, and not so frequent message
exchange: 1 ms, 10 ms and 1000 ms.

For all local experiments, each scenario has been run for the different evaluated
protocols, namely CoAP, MQTT, and OPC UA. Each experiment has been repeated 10 times.

Table 4 provides the different scenarios set for local experiments, derived from the
combination of the three mentioned components.

The scripts and raw results extracted for each protocol are available via GitLab
(https://gitlab.com/iotlab_copelabs (accessed on 15 May 2021)).

Later, and in order to compare the behaviour of the selected protocols on a larger
scale, the FIT-IoT platform has been used.The protocols evaluated on FIT-IoT were MQTT
and CoAP, as the support for OPC UA in FIT-IoT is not out-of-the-box. We have tried to
install the required libraries to run OPC UA. However, the quota provided to users was
not sufficient to enable the installation of this communication protocol.

The FIT-IoT scenarios are provided in Table 5, where IAT corresponds to Interarrival
Time in milliseconds; messages sent correspond to the number of messages sent per unit
of time (seconds); number of senders and receivers cover examples of a small number of
senders, medium (50), or large (94). For all of the experiments run in FIT-IoT, we considered
a message size randomly selected from a uniform interval between 7 KB and 1000 KB.

https://gitlab.com/iotlab_copelabs/opc-ua
https://gitlab.com/iotlab_copelabs

Appl. Sci. 2021, 11, 4879 19 of 30

Table 4. Local experimental scenarios with combination of the different parameters.

Experiments Message Size Number of Messages Topology

EX1 Fixed 5000 1

EX2 Fixed 500 1

EX3 Fixed 5 1

EX4 Fixed 5000 2

EX5 Fixed 500 2

EX6 Fixed 5 2

EX7 Variable 5000 1

EX8 Variable 500 1

EX9 Variable 5 1

EX10 Variable 5000 2

EX11 Variable 500 2

EX12 Variable 5 2

Table 5. FIT-IoT experimental scenarios.

Experiment IAT (ms) Message Sent Number of Senders Number of Receivers

MQTT 1 1000 5 1 1

MQTT 2 1 5000 1 1

MQTT 3 1000 5 1 94

MQTT 4 1 5000 1 94

MQTT 5 1000 470 (5 each) 94 1

MQTT 6 1 4700 (50 each) 94 1

MQTT 7 1 5000 (100 each) 50 47

CoAP 1 1000 5 1 1

CoAP 2 1 5000 1 1

CoAP 3 1000 5 1 94

CoAP 4 1 5000 1 94

CoAP 5 1 470 (5 each) 94 1

CoAP 6 1 4700 (50 each) 94 1

CoAP 7 1 5000 (100 each) 50 47

Therefore, for the experiments with the CoAP and MQTT protocols different network
scenarios have been devised. Varying the number of nodes (senders and receivers), message
sizes, number of messages sent, and the inter-arrival time. For all scenarios, one single
broker for MQTT and one server for CoAP have been considered.

Moreover, all of the experiments have been repeated 10 times, and the values provided
in this report correspond to the Average (AVG), Standard Deviation (STDEV), Maximum
(MAX), Minimum (MIN), Median (MED), and Confidence Interval (IC).

6. Local Experiments Performance Evaluation
6.1. Topology 1 and Fixed Message Size

A first set of experiments has been run by combining Topology 1 and fixed message
size, being the results for MQTT, CoAP, and OPC UA respectively presented in Tables 6–8.

Appl. Sci. 2021, 11, 4879 20 of 30

Looking into the results obtained for the time-to-completion (TTC, in milliseconds),
CoAP provides the lowest values for frequent messages (short and average IAT). However,
for larger IAT, CoAP is the protocol that provides the largest TTC (1051 ms). An explanation
for this pattern concerns the acknowledgement behaviour of CoAP. For messages that
have a large interarrival time (IAT), lack of synchronization may occur. However, we have
also observed some peaks in TTC derived from the shared usage of the Internet access
connection between the local testbed, and the Internet campus access.

A similar behavior, showing more variability, is also observed in MQTT.
OPC UA is the protocol that provides the most stable results for TTC, when the IAT

is varied, even though the resulting TTC is slightly, but not significantly, higher. In the
experiments carried out at the local testbed, the experiments incurred zero packet loss,
for all rounds of execution in the three protocols tested.

Table 6. MQTT results for topology 1 and fixed message size.

Test AVG STDEV MAX MIN MED IC

1 ms TTC 20.86 6.34 27.61 9.31 22.30 3.93

10 ms TTC 18.81 13.00 38.20 6.75 11.85 8.06

1000 ms TTC 84.62 17.48 110.81 57.40 89.25 10.83

Table 7. CoAP results for topology 1 and fixed message size.

Test AVG STDEV MAX MIN MED IC

1 ms TTC 11.99 0.92 13.37 10.68 12.02 0.57

10 ms TTC 14.88 1.23 16.76 13.06 14.92 0.76

1000 ms TTC 1015.28 119.60 1349.20 950.60 977.30 74.13

Table 8. OPC UA results for topology 1 and fixed message size.

Test AVG STDEV MAX MIN MED IC

1 ms TTC 22.02 1.34 24.82 20.31 22.02 0.83

10 ms TTC 30.92 3.76 39.90 27.05 29.54 2.33

1000 ms TTC 47.42 34.54 125.23 26.56 32.43 21.41

As for packet loss, none of the protocols showed any packet loss for the scenarios run,
as expected, given that the generated message rate does not fill the available link capacity.

6.2. Topology 1, Variable Message Size

The second set of experiments considers topology 1 and messages of variable size.
The message size has been randomly selected from an interval between 7 KB and 1000 KB,
as explained before. Results for the 3 protocols are respectively provided in Tables 9–11.

Table 9. MQTT results for topology 1 and variable message size.

Test AVG STDEV MAX MIN MED IC

1 ms TTC 138.62 171.90 485.18 22.55 47.37 106.54

10 ms TTC 10.67 6.92 29.46 6.79 8.06 4.29

1000 ms TTC 80.32 9.55 94.27 68.01 79.87 5.92

Appl. Sci. 2021, 11, 4879 21 of 30

Table 10. CoAP results for topology 1 and variable message size.

Test AVG STDEV MAX MIN MED IC

1 ms TTC 16.81 2.84 22.22 14.54 15.61 1.76

10 ms TTC 12.52 2.01 16.11 9.70 12.21 1.24

1000 ms TTC 74.09 9.09 92.50 59.20 74.10 5.64

Table 11. OPC UA results for topology 1 and variable message size.

Test AVG STDEV MAX MIN MED IC

1 ms TTC 59.41 0.76 67.10 59.41 65.61 0.47

10 ms TTC 42.13 32.31 67.10 43.13 59.41 20.02

1000 ms TTC 437.07 1279.65 4079.00 26.76 32.79 793.12

To better compare the results, Figure 5 provides all of the results obtained with the
experiments based on topology 1.

Figure 5. Topology 1 results.

In terms of performance when considering fixed message sizes vs. variable mes-
sage sizes, all protocols exhibit a similar performance, even though CoAP shows a spike
when messages are less frequent (IAT of 1000 ms). This behavior was observed in all
of the repeated experiments, thus implying that the setup mechanism of CoAP impacts
significantly TTC.

If we consider now the performance due to changes in the frequency of messages
(IAT), then OPC-UA is the protocol that provides closer TTC results across all experiments,
and CoAP the protocol that is more sensitive to the frequency of messages less frequent
messages have more impact in the TTC.

Overall, all protocols show good performance for this set of experiments (minimum
TTC value: 10.67 ms, MQTT; maximum TTC value: 1051 ms, CoAP).

Appl. Sci. 2021, 11, 4879 22 of 30

6.3. Topology 2, Fixed Message Size

The next set of experiments considers Topology 2, where gateways and brokers have
been installed in embedded devices, and where the message size is fixed. Results for MQTT,
CoAP and OPC UA are respectively provided in Tables 12–14.

Globally, CoAP is again the protocol that provides the lowest TTC values for frequent
messages (short and average IAT). MQTT also attains low TTCs, but shows more variability,
as occurred with the experiments run on topology 1.

OPC UA is again the protocol that shows less sensitivity to the changes in IAT,
with TTC values between 56 ms and 65 ms.

Table 12. MQTT results for topology 2 and fixed message size.

Test AVG STDEV MAX MIN MED IC

1 ms TTC 44.15 24.44 80.35 16.14 45.33 45.33

10 ms TTC 34.32 40.22 107.43 8.69 9.22 24.93

1000 ms TTC 76.91 10.28 88.41 58.31 75.80 6.37

Table 13. COAP results for topology 2 and fixed message size.

Test AVG STDEV MAX MIN MED IC

1 ms TTC 7.28 1.34 9.66 5.36 7.06 0.83

10 ms TTC 16.20 7.73 28.72 7.15 14.68 4.79

1000 ms TTC 70.22 9.82 89.60 55.60 71.50 6.08

Table 14. OPC UA results for topology 2 and fixed message size.

Test AVG STDEV MAX MIN MED IC

1 ms TTC 74.23 13.06 97.30 62.78 68.72 8.09

10 ms TTC 62.34 6.00 73.02 55.51 61.23 3.72

1000 ms TTC 69.48 29.66 152.81 51.21 61.83 18.38

6.4. Topology 2, Variable Message Size

The experiments have been run again now with variable message size. Results are
provided in Tables 15–17.

Table 15. MQTT results for topology 2 and variable message size.

Test AVG STDEV MAX MIN MED IC

1 ms TTC 105.26 209.97 702.01 20.30 39.41 130.14

10 ms TTC 15.76 4.76 26.16 11.95 13.53 2.95

1000 ms TTC 90.99 11.96 106.36 67.60 92.02 7.41

Table 16. CoAP results for topology 2 and variable message size.

Test AVG STDEV MAX MIN MED IC

1 ms TTC 10.47 4.05 18.89 7.55 8.73 2.51

10 ms TTC 20.25 14.51 50.72 9.67 13.50 8.99

1000 ms TTC 118.33 144.31 517.00 22.67 79.70 89.44

Appl. Sci. 2021, 11, 4879 23 of 30

Table 17. OPC UA results for topology 2 and variable message size.

Test AVG STDEV MAX MIN MED IC

1 ms TTC 65.62 0.76 67.10 64.67 65.61 0.47

10 ms TTC 60.50 3.61 66.78 56.71 59.79 2.24

1000 ms TTC 56.30 7.22 72.09 47.42 55.60 4.48

To better provide a comparison of results obtained with the experiments, Figure 6
provides results obtained for all of the experiments run with topology 2.

Figure 6. Full set of topology 2 results.

In terms of performance when considering fixed message sizes vs. variable message
sizes, all protocols exhibit a similar performance, even though MQTT shows slightly
more variability when the message size is varied. In contrast to the results obtained with
topology1, CoAP shows stable results.

If we consider now the performance due to changes in the frequency of messages
(IAT), OPC UA is again the protocol that provides closer TTC results across all experiments,
and CoAP the protocol that is more sensitive to the frequency of messages less frequent
messages have more impact in the TTC. MQTT has values similar to CoAP.

Overall, all protocols again show good performance for this set of experiments.
The minimum TTC value is 7.27 ms, MQTT (in topology 1:10.67 ms, MQTT); the maximum
TTC value is 118.33 ms, CoAP (in topology 1:1051 s, CoAP). Therefore, the fact that the
broker and/or server was installed on an embedded device did not have much impact on
the performance of the protocols, for the experiments run.

6.5. Summary of Results

This section summarizes the results obtained across all experiments and which are
represented in Figure 7.

Appl. Sci. 2021, 11, 4879 24 of 30

Figure 7. TTC achieved by MQTT, CoAP and OPC UA across all experiments, for an IAT of 1,10 and 1000 milliseconds.

The main aspects to highlight are:

• MQTT behavior is highly variable for different IAT and for different message sizes.
In some experiments, the resulting TTC is high for smaller IATs, and on other ex-
periments, becomes larger for higher IATs. What would be expected would be to
see an increase of TTC with an increase in IAT. This situation was observed several
times, and we believe it is due to the fact that there is no queuing support in MQTT.
The broker has to handle very different message sizes.

• CoAP presents more stability for the variation of low/medium IATs and message
size. However, for the case of large IAT, the resulting TTC is significantly higher in
comparison to other CoAP TTCs, as well as to the overall results obtained for the
other 2 protocols.

• OPC UA is less sensitive to variations of the IAT. The fundamental reason for the
operation of OPC UA is, however, not clear to us, and requires further investigation
to understand this stability whether it is derived from the selection of scenario param-
eters, or really derived from the communication semantics of OPC UA. In regards to
the impact of the message size, OPC UA shows more sensitivity to variable message
sizes. Moreover, when compared to MQTT and to CoAP, the resulting TTC is overall
higher, even though the difference is in milliseconds.

• The lowest TTC is achieved by CoAP, for the case of an IAT of 1ms (topology 2, fixed
message size). We believe this happens due to the reliability exponential backoff
mechanism of CoAP, which is beneficial for frequent messages.

• When the IAT is 1000 ms, MQTT and OPC UA result in similar TTCs, while CoAP
shows significantly higher TTCs. Although the IAT impacts the TTC computation,
the CoAP behavior seems to be derived from the fact that with larger intervals between
messages, the CoAP establishment process has implications on the TTC. In other
words, CoAP seems to suit best scenarios where messages are more frequent.

• In regards to the change of topology, all protocols experience some impact, as expected.
However, the impact is not significant. The difference observed for all protocols in
terms of differences of TTC is in the order of milliseconds.

• Across the different experiments, the overall TTC is low and suitable for critical IoT
environments.

Appl. Sci. 2021, 11, 4879 25 of 30

7. FIT-IoT Performance Evaluation

Several experiments have been carried out in FIT-IoT, being the parameters of each
scenario, as well as the results obtained for the TTC and packet loss summarised in Table 18.
The different experiments are debated next.

Table 18. FIT-IoT scenarios with parameters and results obtained.

Experiment Senders Receivers Messages IAT (ms)
TTC
(ms)

Packet Loss
(Percentage)

Controlled Experiments

MQTT 1 1 1 5 1000 35.17 0

CoAP 1 1 1 5 1000 185.17 0

MQTT 2 1 1 5000 1 19.61 0

CoAP 2 1 1 5000 1 246.33 0

1 to Many Experiments

MQTT 3 1 94 5 1000 136.97 0

CoAP 3 1 94 5 1000 4220.02 0

MQTT 4 1 94 5000 1 78,897.46 65.16

CoAP 4 1 94 5000 1 4526.39 0.04

Many to 1 Experiments

MQTT 5 94 1 5/sender 1000 102.232 0

CoAP 5 94 1 5/sender 1000 2631.62 0

MQTT 6 94 1 50/sender 1000 5419.86 0

CoAP 6 94 1 50/sender 1000 4351.83 0.003

Many to Many Experiments

MQTT 7 50 47 100/sender 1000 117,814.03 0.01

CoAP 7 50 47 100/sender 1 3611.39 0.131

7.1. Controlled Experiments

The first controlled experiments, MQTT-1 and CoAP-1, involve 1 sender, 1 receiver,
and a small number of messages (5) with a large IAT. Experiments MQTT-2 and CoAP-2
experiments involve also just 1 sender and 1 receiver, but a higher number (5000) of very
frequent messages (1 ms IAT). Results obtained for the initial set of experiments (control
experiments) are illustrated in Figure 8.

Figure 8. Controlled Experiments.

Appl. Sci. 2021, 11, 4879 26 of 30

For both sets of experiments, MQTT attains a lower TTC on average, compared to the
one of CoAP. This difference is possibly due to the stop-and-wait retransmission reliability
with exponential back-off process of CoAP.

7.2. 1 to Many Experiments

The first set of 1-to-many experiments, MQTT-3 and CoAP-3, involve 1 sender and
94 receivers, where the sender sends 5 messages (subscribed by each receiver/client),
separated by an IAT of 1000 ms. Then, MQTT-4 and CoAP-4 involve a higher number
(5000) of very frequent messages (1 ms IAT). Results are summarised in Figure 9.

Figure 9. 1 to Many Experiments.

In comparison to the prior experiment with 1 sender and 1 receiver (rf. to Figure 8),
MQTT slightly increases the average TTC from 35 ms to 136.97 ms, while CoAP shows a
significant difference, from 185.17 ms to 4220 ms.

Increasing the frequency of messages has more impact in MQTT than in CoAP. In fact,
for the MQTT case there is a packet loss of 65%. While CoAP incurred a packet loss of
0.04%. This seems to imply that MQTT brokers cannot cope well with a lot of information
being requested in parallel by different subscribers. We believe that this is due to the lack
of queueing in MQTT, and also to the way that the messages are served.

CoAP, on the other hand, attained a slightly higher average TTC (approximately
300 ms) when compared to the experiment run with not so frequent messages. We believe
this occurs due to the way the CoAP server stores the content by senders: the initial setup
process of communication between the sender and CoAP is possibly only set once; the
reliability process with exponential backoff adjusts to the frequency of messages, thus
resulting in a more stable TTC across all experiments.

7.3. Many to 1 Experiments

In this set of experiments we have first run MQTT-5 and CoAP-5, which are based on
94 senders, each of which sends 5 messages with an IAT of 1000 ms.

Then, in order to understand the impact of the frequency of messages, we have run
experiments MQTT-6 and CoAP-6, where each of the 94 senders now send 50 messages
separated by an IAT of 1000 ms. Results for this set are provided in Figure 10.

Figure 10. Many to 1 Experiments.

Appl. Sci. 2021, 11, 4879 27 of 30

If we compare this experiment with the results obtained in the prior set (1 to many, rf.
to Figure 9, MQTT shows a similar TTC, while CoAP shows a reduced value in comparison
to the TTC it attained for the many to 1 experiments. The values obtained for MQTT can
be explained by the fact that the frequency of messages is low. Even though there are
several senders in parallel, MQTT can handle the service well without queueing. As for
the resulting average TTC for CoAP, the lower value is, in our opinion, simply due to the
queuing process of CoAP, which stores data for each sender, thus allowing a better queuing
service from the client perspective: in the prior case, the clients obtain the information from
the same memory space (1 sender, many receivers).

In comparison to the 1-to-many set of experiments (rf. to Figure 9, MQTT seems to
be able to handle better a large number of senders, even if the frequency of messages
increases. CoAP, on the other hand, keeps its stability, achieving a similar TTC to most
cases. However, we should highlight that for experiment 6 (CoAP-6) there is also a slight
packet loss (0.3%).

7.4. Many to Many Experiment

A final set of experiments involving a larger number of senders and receivers, com-
prising MQTT-7 and CoAP-7, has been carried out. The frequency of messages has also
been increased.

For this set of experiments (rf. to Table 7), the TTC obtained for MQTT is the highest (of
all cases), while CoAP keeps an average of 3611 ms, quite similar to the other experiments
involving high intensity of messages. Both protocols experienced a small level of packet loss
(0.01% for MQTT; 0.13% for CoAP). This again seems to imply that MQTT experiences more
problems with an increase in the number of receivers than CoAP, in particular assuming a
higher frequency of sent messages.

7.5. Discussion

Figure 11 illustrates the full set of results for MQTT and CoAP. Even though MQTT
attains in 4 out of 7 experiments a lower TTC, on the other 3 experiments MQTT shows a
greater variability in results associated with both a higher frequency of messages and a
higher number of receivers (MQTT-4, MQTT-6, MQTT-7).

Figure 11. FIT-IoT results obtained for MQTT and CoAP.

CoAP attains a higher TTC for scenarios when the frequency of messages is low
(CoAP-1 and CoAP-2), but overall it shows a similar TTC across all scenarios. This seems
to imply that CoAP is therefore more stable than MQTT to an increase in the number of
senders/receivers, as well as to an increase in the frequency of messages to be exchanged.

In both protocols messages are exchanged asynchronously. In CoAP, messages are
stored per sender/server connection, while in MQTT they are only stored if receivers

Appl. Sci. 2021, 11, 4879 28 of 30

(client) subscribed them first. For a large number of receivers, there is the need to complete
first subscription. MQTT therefore results in higher TTCs and packet loss for scenarios
with a larger number of receivers (MQTT-4 and MQTT-7). While for the case where there
is a large number of senders involved, but a low number of receivers (rf. to MQTT-5 or
MQTT-6), there is an increase of TTC as expected, but no packet loss.

The CoAP reliability mechanism provides more stability to an increase in the number
of both senders and receivers, thus making this protocol more suitable for large-scale
heterogeneous IoT environments.

8. Conclusions and Future Work

This paper contributes to the performance analysis and evaluation of different IoT
communication solutions, by first providing a comparison of different protocolar features,
to then perform experiments with MQTT, CoAP, and OPC UA in both local experimentation
environment and in the large-scale experimental facility FIT-IoT.

In terms of protocolar features most protocols already support both TCP and UDP
traffic, being the exception MQTT. UDP support is highly relevant in future IoT environ-
ments, as the devices present will become more mobile. Another aspect which requires
further future work is service decentralisation, and for that, communication protocols need
to be designed in a way that address variable topologies. Today, only DDS and NDN
truly support decentralised communication. In regards to security, some solutions, such as
QUIC, OPC UA and DDS, provide a specific security framework, which brings in more
flexibility and better security in terms of specific domains. Only NDN provides security
by design, while the remainder solutions recur to existing solutions, such as DTLS. Other
relevant aspects in IoT, such as data/device discovery, are still articulated in a manual
way, being the exception DDS and NDN. In terms of end-to-end coverage, the different
solutions have mostly been developed to provide support between devices and the edge.
They can be applied to cover other regions, e.g., edge to cloud. D2D support is only directly
supported by DDS and NDN.

Summarising, from a design perspective, DDS and NDN are the solutions that seem
to provide the most flexible design, integrated by design a set of features that are relevant
when thinking about the potential evolution of IoT environments. DDS is, however, domain
specific (manufacturing), and NDN is still not being developed at a commercial IoT level.

In regards to the other solutions, OPC UA provides good support in terms of in-plant
communication, thus being the de facto communication standard in industrial automation
environments. CoAP provides a high level of flexibility and is today one of the most popular
solutions for IoT communication. Its main advantage is its flexibility and interoperability
towards HTTP.

From a performance evaluation, this work has focused on comparing MQTT, CoAP,
and OPC UA in regards to time-to-completion and packet loss, under different conditions.
The experiments run on local testbed showed that any of these protocols can be run in
an embedded environment without significant impact in the selected KPIs. Moreover, all
protocols achieved low time-to-completion times across all of the tested scenarios, aspect
which is relevant for their application in critical environments.

CoAP is the protocol that achieved the lowest time-to-completion, which we believe
is due to the reliability exponential backoff mechanism, beneficial for environments with
frequent messaging.

MQTT results in lower TTCs, but exhibited a larger variability for the different scenar-
ios, being highly dependent on the frequency of messages and on message size.

OPC UA shows less sensitivity to variations on the frequency of messages. The fun-
damental reason for this requires further analysis and is an aspect to pursue as future
work whether or not this stability is derived from the communication semantics of OPC
UA. However, OPC UA resulted overall in higher TTCs, when compared to CoAP and
to MQTT.

Appl. Sci. 2021, 11, 4879 29 of 30

The experiments that have been repeated in large-scale environments (FIT-IoT) for
CoAP and MQTT show that these protocols have a similar behavior to the one observed in
the testbed. A detected limitation of the experimentation carried out concerns the lack of
experimental, large-scale platforms, easy to use, to carry out experiments in scenarios with
more variability. A second detected limitation concerned the impossibility, at the time of
the experiments, to have OPC UA running in FIT-IoT.

As future work, we shall continue with performance evaluation of the different
protocols. Specifically, OPC UA will be tested for large-scale scenarios, and we intend to
also experiment with DDS and MQTT Sparkplug for the specific case of Industrial IoT
environments. In our opinion, the comparison should be done to CoAP at least, given
that this protocol provides better results than MQTT. Moreover, further experimentation
comparing OPC UA with DDS and with NDN is being pursued.

Author Contributions: Conceptualization, D.S., L.I.C. and R.C.S.; methodology, D.S. and R.C.S.;
software, D.S. and J.S.; validation, R.C.S.; formal analysis, D.S. and R.C.S.; investigation, L.I.C.; data
curation, D.S., J.S. and R.C.S.; writing original draft preparation, D.S. and R.C.S.; writing review and
editing, R.C.S.; All authors have read and agreed to the published version of the manuscript.

Funding: This paper has been funded by the strategic FCT research project project UIDB/04111/2020,
associated with the research unit COPELABS, University Lusofona.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. De Caro, N.; Colitti, W.; Steenhaut, K.; Mangino, G.; Reali, G. Comparison of two lightweight protocols for smartphone-based

sensing. In Proceedings of the 2013 IEEE 20th Symposium on Communications and Vehicular Technology in the Benelux (SCVT),
Namur, Belgium, 21 November 2013; pp. 1–6.

2. Amaran, M.H.; Noh, N.A.M.; Rohmad, M.S.; Hashim, H. A comparison of lightweight communication protocols in robotic
applications. Procedia Comput. Sci. 2015, 76, 400–405. [CrossRef]

3. Liri, E.; Singh, P.K.; Rabiah, A.B.; Kar, K.; Makhijani, K.; Ramakrishnan, K. Robustness of IoT Application Protocols to Network
Impairments. In Proceedings of the 2018 IEEE International Symposium on Local and Metropolitan Area Networks (LANMAN),
Washington, DC, USA, 25–27 June 2018; pp. 97–103.

4. Gündoğan, C.; Kietzmann, P.; Lenders, M.; Petersen, H.; Schmidt, T.C.; Wählisch, M. NDN, CoAP, and MQTT: A Comparative
Measurement Study in the IoT. arXiv 2018, arXiv:1806.01444.

5. Durkop, L.; Czybik, B.; Jasperneite, J. Performance evaluation of M2M protocols over cellular networks in a lab environment. In
Proceedings of the 2015 18th international conference on Intelligence in Next Generation Networks, Paris, France, 17–19 February
2015; pp. 70–75.

6. Bacco, M.; Colucci, M.; Gotta, A. Application protocols enabling internet of remote things via random access satellite channels.
In Proceedings of the 2017 IEEE International Conference on Communications (ICC), Paris, France, 21–25 May 2017; pp. 1–6.

7. Profanter, S.; Tekat, A.; Dorofeev, K.; Rickert, M.; Knoll, A. OPC UA versus ROS, DDS, and MQTT: Performance Evaluation of
Industry 4.0 Protocols. In Proceedings of the IEEE International Conference on Industrial Technology (ICIT), Melbourne, VIC,
Australia, 13–15 February 2019.

8. Proos, D.P.; Carlsson, N. Performance Comparison of Messaging Protocols and Serialization Formats for Digital Twins in IoV. In
Proceedings of the 2020 IFIP Networking Conference (Networking), Paris, France, 22–26 June 2020; pp. 10–18.

9. Adlink Tech. Messaging Technologies for the Industrial Internet and the Internet of Things Whitepaper. Technical Report, Adlink
Tech. 2017. Available online: https://iotbusinessnews.com/download/white-papers/PRISMTECH-messaging-technologies-for-
Industrial-Internet-and-IoT.pdf (accessed on 22 June 2019).

10. OASIS. AMQP Advanced Message Queuing Protocol. 2018. Available online: http://www.amqp.org/ (accessed on 10
June 2019).

11. Vinoski, S. Advanced message queuing protocol. IEEE Internet Comput. 2006, 10, 87–89. [CrossRef]
12. Garcia, C.G.; Garcia-Diaz, V.; Garcia-Bustelo, B.; Lovelle, J.M.C. Protocols and Applications for the Industrial Internet of Things; IGI

Global: Hershey, PA, USA, 2018.
13. Sebastian Raff. The MQTT Community. Available online: https://github.com/mqtt/mqtt.github.io/wiki (accessed on 10

June 2019).

http://doi.org/10.1016/j.procs.2015.12.318
https://iotbusinessnews.com/download/white-papers/PRISMTECH-messaging-technologies-for-Industrial-Internet-and-IoT.pdf
https://iotbusinessnews.com/download/white-papers/PRISMTECH-messaging-technologies-for-Industrial-Internet-and-IoT.pdf
http://www.amqp.org/
http://dx.doi.org/10.1109/MIC.2006.116
https://github.com/mqtt/mqtt.github.io/wiki

Appl. Sci. 2021, 11, 4879 30 of 30

14. Shelby, Z.; Hartke, K.; Bormann, C. The Constrained Application Protocol (CoAP). Technical Report. 2014. Available online:
https://www.rfc-editor.org/info/rfc7252 (accessed on 11 May 2021).

15. Selander, G.; Mattsson, J.; Palombini, F.; Seitz, L. IETF RFC8313 Object Security for Constrained RESTful Environments (OSCORE).
Technical Report. 2019. Available online: https://www.hjp.at/doc/rfc/rfc8613.html (accessed on 11 May 2021).

16. Cavalieri, S.; Chiacchio, F. Analysis of OPC UA performances. Comput. Stand. Interfaces 2013, 36, 165–177. [CrossRef]
17. OPC Foundation. OPC Unified Architecture Interoperability for Industrie 4.0 and the Internet of Things. pp. 1–44. Available

online: https://opcfoundation.org/wp-content/uploads/2017/11/OPC-UA-Interoperability-For-Industrie4-and-IoT-EN.pdf
(accessed on 22 June 2019).

18. Leitner, S.-H.; Mahnke, W. OPC-UA/Service-Oriented Architecture for Industrial Applications; Technical Report; ABB Corporate
Research Center: Västerås, Sweden, 2006.

19. OMG. DDS Data Distribution Service. Available online: http://portals.omg.org/dds/what-is-dds-3/ (accessed on 10 June 2019).
20. Langley, A.; Iyengar, J.; Bailey, J.; Dorfman, J.; Roskind, J.; Kulik, J.; Westin, P.; Tenneti, R.; Shade, R.; Hamilton, R.; et al. The QUIC

Transport Protocol. In Proceedings of the Conference of the ACM Special Interest Group on Data Communication SIGCOMM ’17,
Los Angeles, CA, USA, 21–25 August 2017; pp. 183–196. [CrossRef]

21. Eggert, L.; Nottigham, M.; Dawkins, S. QUIC Working Group. Available online: https://datatracker.ietf.org/wg/quic/about/
(accessed on 27 August 2019).

22. Meddeb, M. Information-Centric Networking, A Natural Design for IoT Applications? Ph.D. Thesis, INSA Toulose, Toulouse,
France, 2017.

23. Kutscher, D. IRTF Information-Centric Networking Research Group (ICNRG). Available online: https://datatracker.ietf.org/rg/
icnrg/about/ (accessed on 11 May 2021).

24. C Sofia, R.; M Mendes, P. An Overview on Push-Based Communication Models for Information-Centric Networking. Future
Internet 2019, 11, 74. [CrossRef]

25. Stanford-Clark, A.; Truong, H.L. MQTT For Sensor Networks (MQTT-SN) Protocol Specification. IBM Protoc. Specif. 2013, 28.
26. Kerrouche, A.; Senouci, M.R.; Mellouk, A. QoS-FS: A new forwarding strategy with QoS for routing in Named Data Networking.

In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016;
pp. 1–7. [CrossRef]

27. Amadeo, M.; Campolo, C.; Molinaro, A.; Ruggeri, G. IoT Data processing at the Edge with Named Data Networking. In
Proceedings of the European Wireless 2018, 24th European Wireless Conference, Catania, Italy, 2–4 May 2018.

28. Yang, J. Data Distribution Service for Industrial Automation. In Proceedings of the IEEE 17th Conference in Emerging
Technologies and Factory Automation (ETFA), Krakow, Poland, 17–21 September 2012; pp. 1–8.

29. Baccelli, E.; Mehlis, C.; Hahm, O.; Schmidt, T.; Wählisch, M. Information Centric Networking in the IoT: Experiments with NDN
in the Wild. In Proceedings of the 1st ACM Conference on Information-Centric Networking, Paris, France, 24 September 2014;
pp. 77–86.

30. Adjih, C.; Baccelli, E.; Fleury, E.; Harter, G.; Mitton, N.; Noel, T.; Pissard-Gibollet, R.; Saint-Marcel, F.; Schreiner, G.; Vandaele, J.;
et al. FIT-IoT Lab: A large scale open experimental IoT testbed. In Proceedings of the Internet of Things (WF-IoT), 2015 IEEE 2nd
World Forum, Milan, Italy, 14–16 December 2015; pp. 459–464.

31. Soares, J.; Silva, D.; Sofia, R.C. The IoT Testbed at Copelabs Descripion and Experiments; Technical Report; COPELABS, University
Lusofona: Lisboa, Portugal, 2019; [CrossRef]

32. Kim, J.; Lee, J.W. OpenIoT: An open service framework for the Internet of Things. In Proceedings of the 2014 IEEE World Forum
on Internet of Things (WF-IoT), Seoul, Korea, 6–8 March 2014; pp. 89–93.

33. RabbitMQ. Available online: https://www.rabbitmq.com (accessed on 8 July 2019).
34. Mosquitto. Available online: https://mosquitto.org (accessed on 8 July 2019).
35. Fambon, O.; Fleury, E.; Harter, G.; Pissard-Gibollet, R.; Saint-Marcel, F. FIT-IoT Lab tutorial: Hands-on practice with a very large

scale testbed tool for the Internet of Things. 10èmes J. Francoph. Mobilité Ubiquité UbiMob2014 2014.

https://www.rfc-editor.org/info/rfc7252
https://www.hjp.at/doc/rfc/rfc8613.html
http://dx.doi.org/10.1016/j.csi.2013.06.004
https://opcfoundation.org/wp-content/uploads/2017/11/OPC-UA-Interoperability-For-Industrie4-and-IoT-EN.pdf
http://portals.omg.org/dds/what-is-dds-3/
http://dx.doi.org/10.1145/3098822.3098842
https://datatracker.ietf.org/wg/quic/about/
https://datatracker.ietf.org/rg/icnrg/about/
https://datatracker.ietf.org/rg/icnrg/about/
http://dx.doi.org/10.3390/fi11030074
http://dx.doi.org/10.1109/ICC.2016.7511378
http://dx.doi.org/10.13140/RG.2.2.24979.63529
https://www.rabbitmq.com
https://mosquitto.org

	Introduction
	Related Work
	An Overview on IoT Communication Protocols and Frameworks
	AMQP
	MQTT
	CoAP
	OPC UA: Open Platform Communications—Unified Architecture
	DDS
	QUIC
	Information-Centric Networking Approaches in IoT
	Named Data Networking for IoT
	Hybrid ICN

	Comparison of IoT Communication Approaches
	Transport
	Messaging Pattern
	Communication Model
	Security
	Binary Payload Support
	QoS
	Data Persistence
	Data Discovery
	Applicability Area
	Complexity

	Performance Aspects

	Experimental Environment
	IoT Testbed
	Gateway Software
	Broker Software
	FIT-IoT Environment
	Implementation Aspects
	MQTT
	CoAP
	OPC UA

	Experimental Settings
	Local Experiments Performance Evaluation
	Topology 1 and Fixed Message Size
	Topology 1, Variable Message Size
	Topology 2, Fixed Message Size
	Topology 2, Variable Message Size
	Summary of Results

	FIT-IoT Performance Evaluation
	Controlled Experiments
	1 to Many Experiments
	Many to 1 Experiments
	Many to Many Experiment
	Discussion

	Conclusions and Future Work
	References

