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Abstract: In the past few decades, vibration-based structural damage detection (SDD) has attracted
widespread attention. Using the response data of engineering structures, the researchers have
developed many methods for damage localization and quantification. Adopting meta-heuristic
algorithms, in which particle swarm optimization (PSO) is the most widely used, is a popular
approach. Various PSO variants have also been proposed for improving its performance in SDD,
and they are generally based on the Global topology. However, in addition to the Global topology,
other topologies are also developed in the related literature to enhance the performance of the PSO
algorithm. The effects of PSO topologies depend significantly on the studied problems. Therefore, in
this article, we conduct a performance investigation of eight PSO topologies in SDD. The success
rate and mean iterations that are obtained from the numerical simulations are considered as the
evaluation indexes. Furthermore, the average rank and Bonferroni-Dunn’s test are further utilized to
perform the statistic analysis. From these analysis results, the Four Clusters are shown to be the more
favorable PSO topologies in SDD.

Keywords: particle swarm optimization; structural damage detection; PSO topologies

1. Introduction

In the last two decades, vibration-based structural damage detection (SDD) has re-
ceived considerable attention since the dynamic responses of engineering structures are
easy to obtain. The main idea is that the structural dynamic responses can be regarded as a
function of its physical parameters (mass, stiffness, and damping). Hence, the presence
of damage leads to the change of modal parameters, such as natural frequencies, mode
shapes, and structural flexibility. The objective of SDD is to infer the physical parameters
from the measured response data to locate and quantify structural damage. Therefore,
vibration-based SDD belongs to a typical inverse problem [1,2].

Nowadays, various popular meta-heuristic algorithms have been developed to solve
this inverse problem in SDD. When compared with the traditional optimization algo-
rithms [3], such as Newton’s method and the gradient descent method, they are effective
and robust in coping with uncertainties and incomplete information. The meta-heuristic
algorithms [4] mainly simulate the physical laws or biological phenomena in nature, and
they use simple coding methods to represent various practical problems. In different
meta-heuristic algorithms, the PSO algorithm has received extensive attention because
of its few parameters, fast convergence, and easy implementation. The PSO algorithm
is a population-based meta-heuristic that was proposed by Kennedy and Eberhart [5].
It is based on simulating the foraging behavior of bird flocking, and it has been widely
used in many fields, such as benchmark function optimization [6], image processing [7],
scheduling decision [8], and engineering [9]. However, it is well-known that the classical
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PSO algorithm yields premature convergence. Consequently, various PSO variants have
been proposed to alleviate this phenomenon in different research fields. When dealing
with the SDD problem, the improvement of the algorithm mainly includes hybrid PSO
schemes [10–12] and multi-stage PSO schemes [13–15].

In all of these recent works in SDD, only the Global topology is considered, which is the
most commonly used one. In the Global topology, all of the particles are connected. Each
particle adjusts its position according to its self-experience and global social experience.
In addition to the Global topology, other topologies [16–18] have also been developed
to enhance the performance of the PSO algorithm. A proper PSO topology can alleviate
premature convergence and improve search efficiency [19]. Therefore, it is crucial to study
the effects of PSO topologies on the performance of the studied problems. Cheng [19]
examined the influences of four topologies, namely Global, Local, Four Clusters, and Von
Neumann, on the population diversity in benchmark functions. The experimental results
demonstrated that the Ring topology performs better than others. Andrich [20] analyzed
the performances of Global, Local, and Von Neumann topologies in Neural Networks
training, but all of these three topologies exhibit overfitting and non-convergent behaviors.
Figueiredo et al. studied the effects of five topologies (Global, Local, Von Neumann, Wheel,
and Four Clusters) on PSO performance in extreme learning machines [21]. The results
showed that the Global topology is more promising than other topologies. From the
literature, it can be concluded that there is no one best topology for all issues, and the
performances of PSO topologies depend significantly on the studied problems. However,
to the best of our knowledge, there is no research on the effects of different PSO topologies
in SDD. Therefore, this paper investigates the performances of eight PSO topologies in the
SDD of a cantilever beam.

This paper is organized, as follows: in Section 2, the basic principles of SDD are briefly
introduced. Section 3 presents the definition of the basic PSO and the characteristics of eight
topologies. In Section 4, the performances of different topologies are compared under single-
damage and multi-damage scenarios of a cantilever beam. Finally, Section 5 concludes this
work and gives the topology guideline for SDD. Some future works are depicted.

2. Structural Damage Detection
2.1. Problem Formulation

For an undamped system, the structure can be discretized into D elements while using
the finite element methods (FEM), and the structural characteristic equation is expressed as:

(K − λs M)Φs = 0, (s = 1, 2, . . . , m) (1)

where M is the global mass matrix, K is the global stiffness matrix, λs indicates the sth
eigenvalue of the structure, and Φs denotes the sth mode shape. Subsequently, M and K
are assembled by the corresponding element matrices:

K =
D

∑
j=1

kj (2a)

M =
D

∑
j=1

mj (2b)

where kj is the jth element stiffness matrix, mj is the jth element mass matrix, and D is the
number of elements of the structure.

In this paper, an Euler–Bernoulli beam is modeled using the FEM. The beam is
discretized into a number of D elements, with the displacement and slope as nodal degrees
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of freedom and cubic interpolation function. For a uniform beam of length L, the mass
matrix and the stiffness matrix of each beam element are given, as follows:

me =
ρAl
420


156 22l 54 −13l
22l 4l2 13l −3l2

54 13l 156 −22l
−13l −3l2 −22l 4l2

 (3)

ke =
EI
l3


12 6l −12 6l
6l 4l2 −6l 2l2

−12 −6l 12 −6l
6l 2l2 −6l 4l2

 (4)

where l = L/D is the finite element length, ρ is the mass density, A is the cross-section
area, E is Young’s modulus, and I is the moment of inertia. Subsequently, convert the local
coordinate system to the global coordinate system, the global mass matrix M, and global
stiffness matrix K can be obtained using Equations (2a) and (2b).

A scenario should first be defined in order to simulate any damage in the structure.
In fact, each damage scenario is a D-dimensional vector, and the jth component of the
vector represents the damage to the structure. In this study, the damage is modeled using
the Young’s modulus reduction, and the decrease in mass is negligible [22]. Assuming that
the element stiffness of the structure is uniformly reduced after damage, then the reduction
factor is used to indicate damage:

αj =
E − Ej

E
(5)

where E and Ej are the Young’s modulus of the jth element before and after the damage.
αj ∈ [0, 1] and αj = 0 mean no damage, while αj = 1 indicates a complete loss of the
element stiffness, and α = (α1, α2, . . . , αD) is the damage vector of the structure.

This definition is profitable, because it allows for estimating not only the severity of
the damage, but also its location at the elemental level. When considering the damage
vector α, the stiffness matrix K after the damage is changed as:

Kd =
D

∑
j=1

(1 − αj) kj (6)

where Kd is the global stiffness matrix after damage.

2.2. Fitness Function

The FEM-based SDD is an optimization problem. Defining a fitness function that can
minimize the discrepancy of the response between the measurement and model is one of
the essential steps in optimization.

Because the natural frequencies of the structure are easy to obtain with high accuracy,
a fitness function that is composed of pure natural frequencies is considered. An efficient
correlation-based index (ECBI) was introduced in [23] to formulate the fitness function,
which is expressed as follows:

S(α) = −1
2

 ∣∣∆FT · δF(α)
∣∣2

(∆FT · ∆F)(δFT(α) · δF(α))
+

1
m

m

∑
s=1

min
(

f d
s , fs(α)

)
max

(
f d
s , fs(α)

)
 (7)

where ∆F is the change of natural frequency vector before and after damage, which is
defined as:

∆F =

{
∆ fs =

f h
s − f d

s
f h
s

}
(s = 1, 2, . . . , m) (8)
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where f h
s and f d

s are the sth component of the healthy (undamaged) natural frequency
vector Fh and damaged natural frequency vector Fd, respectively.

δF(α) represents the change of natural frequency vector that is predicted by FEM with
regard to the healthy natural frequency vector, which is denoted as:

δF(α) =

{
δ fs(α) =

f h
s − fs(α)

f h
s

}
(s = 1, 2, . . . , m) (9)

where α = (α1, α2, . . . , αD) is the damage vector and fs(α) is the sth component of the
natural frequency vector that is predicted by the FEM. In this article, m = 9 is used
uniformly. Besides, when compared with other forms of the fitness function composed of
pure natural frequencies, the superiority of fitness function that is shown in Equation (7)
has been demonstrated in [24].

The objective of SDD is to search for a specific damage vector α∗ for which its predicted
natural frequency vector exactly matches with the modeled damage vector α. When α∗ = α,
this fitness function reaches its minimum value of −1. Therefore, the SDD problem is
transformed into an inverse optimization problem:

arg min S(α∗)

where α∗ = (α∗1 , α∗2 , . . . , α∗D)

subject to α∗j ∈ [0, 1](1 ≤ j ≤ D)

(10)

Subsequently, the optimization algorithms, such as the popular PSO algorithm, can be
employed to find a damage vector α∗ to minimize Equation (7).

3. Particle Swarm Optimization
3.1. Basic Model

The PSO algorithm is inspired by the foraging behavior of birds and it is widely
used to solve optimization problems. Each bird in the flock is called a particle, the PSO
algorithm contains a population composed of a certain number of particles, and each
particle represents a potential solution. All of the particles fly in a D-dimensional search
space, each particle has its own position and velocity, and the fitness function is used to
judge its quality. The whole population is randomly initialized, and then each particle
evolves toward the best ones through iteration. Suppose that there is a swarm consisting
of N particles in a D-dimensional search space, and the current position of the particle
i can be expressed as a vector Xi = (xi1, xi2, . . . , xiD)

T , i = 1, 2, . . . , N; the velocity of the
particle i is Vi = (vi1, vi2, . . . , viD)

T . In the tth iteration, the particle updates its velocity
and position by tracking the personal best position (pbest) and global best position (gbest),
as follows [25]:

vij(t + 1) = ω vij(t) + c1 r1ij(pbestij(t)− xij(t)) + c2 r2ij(gbestj(t)− xij(t)) (11)

xij(t + 1) = xij(t) + vij(t + 1) (12)

where t is the number of iterations, j = 1, 2, . . . , D; vij(t) and xij(t) are the jth components of
the position and the velocity of particle i at iteration t, and pbestij(t) and gbestj(t) represent
the jth components of the personal best location and the global best location, respectively.
ω is the inertia weight, and it reflects the impact of the particle’s current velocity on the
next iteration. r1ij, r2ij are random numbers that are uniformly distributed between [0, 1]; c1
and c2 are the acceleration coefficients, c1 controls the tendency of the particle towards its
personal best location, and c1 adjusts the trend of the particle approaching the global best
location. The particle updates itself by tracking the pbest and gbest until the termination
criteria are satisfied. During the search process, in order to avoid the invalid search,
the position and velocity are limited to a certain interval [Xmin Xmax] and [−Vmax Vmax],
which are generally set by the user.
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The main steps of the PSO algorithm are given, as follows:

(1) Initialize the position and velocity of the particles.
(2) Calculate the fitness value S(Xi) (i = 1, 2, · · · , N) using Equation (7).
(3) For each particle Xi, compare its fitness value S(Xi) with the local best location

S(pbesti) that it has experienced. If S(Xi) < S(pbesti), update it as the current
personal best position.

(4) For each particle Xi, compare its personal best fitness value S(pbesti) with the global
best fitness value S(gbest). If S(pbesti) < S(gbest), update it as the current global
best position.

(5) Adjust the velocity and position of the population according to Equations (11) and (12),
also perform the boundary condition.

(6) If the algorithm reaches the maximum number of iterations or the minimum value of
the fitness function, stop the algorithm, and output the result; if not, go to step (2).

3.2. PSO Topologies

The PSO topologies describe the neighbor relationship and interaction between parti-
cles, which can control the propagation of information in the particle swarm and directly
affect the particle swarm’s optimization ability and convergence. The PSO topologies
can be divided into two categories: static topologies and dynamics topologies. For static
topologies, each particle’s neighborhood does not change in the whole optimization pro-
cess; for dynamics topologies, the neighborhoods of some individuals vary during the
iterations. Subsequently, some commonly used static topologies and dynamic topologies
are briefly introduced.

1. Global topology: the Global topology is the most widely used in the literature.
Each particle is directly connected to all other particles in the swarm and is each other’s
neighbors, so the particles can quickly exchange information, as illustrated in Figure 1.
Thus, the algorithm with this topology can achieve convergence fast, but there is a risk of
falling into a local optimum [16].

Figure 1. Global topology.

2. Local topology: in the Local topology, the particles are directly connected to their m
immediate neighbors. When m = 2, each particle only has two neighbors, as illustrated in
Figure 2. Different regions in the search space can be simultaneously explored by using
this topology [17].
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Figure 2. Local topology.

3. Von Neumann topology: the Von-Neumann topology is a grid structure, as shown
in Figure 3; each particle is connected to its four neighbors: top, bottom, left, and right.

Figure 3. Von Neumann topology.

4. Wheel topology: as shown in Figure 4, the particles using the Wheel topology are
isolated from each other, and one particle is randomly selected as the focal point for all
information flow.

Figure 4. Wheel topology.

5. Four Clusters topology: there are four subgroups in the four clusters topology,
as displayed in Figure 5. The particles in each subgroup spread information under Global
topology; each subgroup communicates with each other through three particles.
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Figure 5. Four Clusters topology.

6. Clan topology: the Clan topology is a type of dynamic topology that was proposed
by Carvalho et al. [17], in which the swarm is divided into several subgroups, called clans.
The particles in each clan adjust their positions under the fully-connected structure (Global
topology). Figure 6 shows an example of four clans (A, B, C, and D) used in this article.
Each clan has five particles and the particle with the best fitness is selected as the leader
of the clan in each iteration. In Figure 6, the leaders of A3, B5, C5, and D1 are marked in
gray. Subsequently, a conference between the leaders occurs. In the conference, only the
leaders of each clan are employed to perform a new PSO search. The leaders’ members may
change during the search process. When the conference takes place, it can use the Global
or Local topologies to exchange information and is referred to as Clan Global topology and
Clan Local topology. As shown in Figure 7, the Clan Global topology adopts the global
information propagation mechanism among the leaders, enhancing the exploitation ability.
In the Clan Local topology of Figure 8, the leaders take the local information propagation
mechanism that can strengthen their exploration ability.

Figure 6. Individual clans.
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Figure 7. Clan Global topology.

Figure 8. Clan Local topology.

7. Multi-Ring topology: the dynamic topology proposed in [18] is based on coupling
different ring layers. There are n layers of this topology, and each layer has the same
number of particles, as shown in Figure 9. The particles in the Multi-Ring topology take the
same communication way as with the Von Neumann topology, except that the particles in
the first layer do not communicate with the final layer. Thus, consider a layer k, one particle
ki will exchange information with its neighbors being denoted as (ki−1, ki+1, k− 1i, k + 1i)
when 1 < k < n. Otherwise, when k = 1 or k = n, the neighbors of the particle ki
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are (ki−1, ki+1, k + 1i), and (ki−1, ki+1, k− 1i), respectively. Moreover, the ‘rotation skill’ is
added in this topology in order to reduce the possibility of falling into a local optimum.
Thus, if the layer does not improve its own best location in tr iterations, it will be rotated.
A rotation example can be seen in Figure 10. It can be seen that the three layers of particles
are named from a to i, and the particle e communicates with its neighbors {d, f, b, h}. After
the rotation, its neighborhood is changed to {d, f, a, g}. More generally, the index of each
particle in this layer is changed to i = (i + d)mod(nl), where d is the rotation distance and
nl is the particle numbers in the layer. In this article, tr = 20, nl = 4, d = 2, according to the
recommendations presented in [18].

Figure 9. Multi-Ring topology.

Figure 10. Rotation skill example.

4. Numerical Simulations for SDD of the Cantilever Beam

Figure 11 is a 2D finite element model of the cantilever beam structure. The length
of the beam is 1 m, and thirty identical finite elements are considered. Table 1 provides
the physical parameters of the beam structure.
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Figure 11. The Euler–Bernoulli cantilever beam model.

Single damage and multiple damages are all considered to evaluate the performance of
different PSO topologies. Nine damage cases with different sites and degrees are assumed
in the paper, as displayed in Table 2. According to the number of damaged elements, those
scenarios are classified into three categories: type I is composed of cases with one damage
element; type II has cases with two damage elements; and, type III is the scenarios with
three damage elements.

Table 1. The physical parameters of the beam structure.

Young Modulus Poisson Ratio Density Width Thickness
E (Pa) ν ρ (Kg·m−3) w (m) d (m)

2.0× 1011 N/m2 0.33 7850 2.49× 10−2 m 5.3× 10−3 m

Table 2. Damage scenarios for the cantilever beam.

Damage Scenarios Types Elements Severity

1 I 8 (Front) 20%
2 15 (Middle) 30%
3 25 (End) 50%
4 II 5, 6 (Neighbor) 10%, 10%
5 13, 18 (Symmetrical) 20%, 50%
6 15, 25 20%, 30%
7 III 5, 6, 25 30%, 30%, 20%
8 10, 16, 22 30%, 30%, 30%
9 15, 19, 20 10%, 10%, 10%

The parameter settings of the PSO algorithm are outlined, as follows:

1. Initialization: the positions of the initial population are randomly created in the search
space, and the initial velocities of the population are set to zero to prevent the swarm
explosion at the beginning of the algorithm [26].

2. Boundary conditions: according to the guidance in [27,28], the following restricted
boundary condition is used, and Vmax = Xmax:

i f xij > Xmax i f vij > Vmax

xij = Xmax vij = Vmax

else i f xij < Xmin else i f vij < −Vmax

xij = Xmin vij = −Vmax

3. ω, c1, c2, N, and tmax: the population size N is set to 100 and the maximum number of
iterations is tmax = 200; the inertia weight ω is linearly decreasing with the number of
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iterations from 0.9 to 0.4; the time-varying acceleration coefficient strategy for c1 and
c2 is formulated as [12]:

ct
1 = cini

1 + (c f in
1 − cini

1 )
t

tmax

ct
2 = cini

2 + (c f in
2 − cini

2 )
t

tmax

where cini
1 , c f in

1 , cini
2 , c f in

2 are constants and their values are 2.5, 0.5, 0.5, 2.5, respectively,
and t is the current iteration number.

4. Calculation accuracy: in view of the limitation of measurement accuracy in the experi-
ment, the calculation accuracy of the algorithm adopts 1 × 10−4.

In this section, performances of the PSO with eight different topologies are evaluated
on multiple damage scenarios of the cantilever beam. The experimental simulations are
conducted using MATLAB, and the simulation environment is: Inter(R) Core(TM)i5-7600
CPU @ 244 3.50 GHz RAM: 16.0 GB.

The success rate and mean iterations are selected as the performance measures for
evaluating the performances of eight PSO topologies. One hundred trials are performed
for each damage scenario shown in Table 2. A trial is defined to be successful when the
minimum fitness value is obtained. Subsequently, the success rate, as a critical indicator,
can be calculated:

SR =
No. of Success

No. of Total Trials
(13)

The value of mean iterations is the average number of iterations to achieve one
successful trial. Thus, only successful trials are considered for its calculation.

Tables 3 and 4 present the SR values and the average number of iterations for the
eight PSO topologies, respectively. The best results in the table are highlighted in bold.
For damages of type I, except for Global and Wheel topologies, the SR values of PSO
topologies all exceed 95%. For the damages of type II, the minimum success rate of the
Local, Von Neuman, Four Cluster, and Multi-Ring topologies are still greater than or equal
to 70%. Nevertheless, starting from damage scenario 6, the SR values of all the topologies
show a downward trend, and the Wheel topology has fallen to less than 30%. The Local
topology always has the most significant success rate, except for damage scenarios 2 and
7. The Clan Global and Clan Local topologies simultaneously possess the shortest mean
iterations for type I and II damages. The Global topology holds the smallest mean iterations
for damages of type III.

Table 3. The comparison results of success rate and for each damage scenario among PSO topologies.

Types Damage Scenarios Global Local Von Neumann Wheel Four Clusters Clan Global Clan Local Multi-Ring

I
1 0.98 1 1 0.96 1 1 1 1
2 0.7 0.96 0.98 0.54 0.93 0.93 0.93 0.99
3 0.79 1 1 0.80 1 0.97 0.97 1

II
4 0.92 1 1 0.76 1 0.98 0.98 1
5 0.88 1 1 0.8 0.99 0.97 0.96 1
6 0.38 0.86 0.73 0.23 0.7 0.56 0.55 0.74

III
7 0.42 0.62 0.71 0.28 0.6 0.47 0.5 0.71
8 0.24 0.38 0.28 0.23 0.36 0.23 0.27 0.32
9 0.29 0.55 0.47 0.15 0.38 0.35 0.31 0.47
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Table 4. Comparison results of mean iterations for each damage scenario among the PSO topologies.

Types Damage Scenarios Global Local Von Neumann Wheel Four Clusters Clan Global Clan Local Multi-Ring

I
1 44.4796 89.72 66.33 69.1771 45.8 39.15 40.04 67.03
2 55.0857 97.7917 77.4592 85.6481 57.1828 51.5484 49.4839 80.2727
3 46.5443 91.28 65.12 74.0625 47.65 40.4639 42.7320 68.28

II
4 77.3913 124.49 99.42 104.0395 80.15 67.9796 70.2551 104.41
5 81.1136 141.02 110.97 113.6750 88.8081 81.0103 79.5938 117.1100
6 86.2895 137.9419 111.3151 106.7826 93.9 88.0714 84.9818 117.7027

III
7 97.6667 166.6452 131.6901 120.2857 106.5833 94.4468 98.48 140.2254
8 102.375 169.2368 147.5714 127.6087 113.3611 105.4783 112.7037 153.3438
9 93.1034 166.0727 132.4043 132.3333 111.3684 97.2857 115.6774 137.3617

Subsequently, the average ranks and Bonferroni-Dunn’s test [29] are employed to
measure the specific differences of one topology with others. Table 5 shows the average
ranks of the success rate on each type of damage. The numerical value of the overall
ranking for the Local topology is the best, while the Wheel topology ranks last numerically,
as stated in the table. Subsequently, the rank differences in the success rate among PSO
topologies are further statistically analyzed using the Bonferroni–Dunn’s test, and Figure 12
illustrates the result. The horizontal line in the figure represents the threshold for the best
performing topology. The height is equal to the sum of critical difference (CD) and the
lowest overall rank (Local topology), which is CD + 2.1667. The bar chart that does not
exceed the height demonstrates that there is no significant difference between the Local
topology and the compared one. The Bonferroni–Dunn’s procedure for calculating the
CD value is given in [30]. In this paper, the 95% significance level with CD = 3.1061 is
considered. Figure 12 indicates that the Local, Von Neumann, Four Cluster, and Multi-Ring
topologies perform best on the success rate, followed by the Clan Global and Clan Local
topologies, and the Global and Wheel topologies are the last.

Global Local Von Neumann Wheel Four Clusters Clan Global Clan Local Multi-Ring
Topologies

0

1

2

3

4

5

6

7

8

A
ve

ra
ge

 R
an

ks

Rank
95% sig level

Figure 12. A comparison of topologies with the Bonferroni–Dunn’s test.
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Table 5. Average rank of success rate for each damage type among PSO topologies.

Damage Type Global Local Von Neuman Wheel Four Cluster Clan Global Clan Local Multi-Ring

I 7.3333 3 2.6667 7.6667 3.6667 4.6667 4.6667 2.3333
II 7 1.8333 2.5 8 3.5 5.1667 5.8333 2.1667
III 6.6667 1.6667 2.6667 7.8333 3.3333 6.1667 5.3333 2.3333

Overall 7 2.1667 2.6111 7.8333 3.5 5.3333 5.2778 2.2778

When considering the mean iterations, Table 6 further shows the average iteration
ranks of the four topologies that performed best in terms of success rate. The rank order of
the mean iterations is always Four Cluster, Von Neumann, Multi-Ring, and Local, as shown
in the table. A small average number of iterations means fast convergence speed and it can
save the computational cost. Therefore, from this point of view, the overall performance of
the Four Cluster topology is better than others.

Table 6. The average rank of mean iterations for the four best performing topologies.

Damage Type Local Von Neuman Four Cluster Multi-Ring

I 4 2 1 3
II 4 2 1 3
III 4 2 1 3

Overall 4 2 1 3

5. Conclusions

The main factors that affect the performance of the PSO algorithm include parameter
strategies, topology structure, and boundary conditions. Researchers have designed many
different schemes for each of these factors. This article investigates the effects of eight PSO
topologies in SDD, and some guidelines are given. For the eight PSO topologies, their
success rates and mean iterations for three types of damages on the cantilever beam are
presented and discussed in this paper. From the point of view of success rate, it can be
concluded that the Local, Von Neumann, Four Clusters, and Multi-Ring topologies perform
the best, followed by the Clan Global and Clan Local topologies, and the Global and Wheel
topologies are the last. Subsequently, the comparison of the mean iterations among the
four best topologies in success rate is performed. The Four Clusters topology provides
the smallest mean iterations. In summary, it is verified that the most commonly used
Global topology is less effective in SDD; the Four Clusters topology has the best overall
performances and it should be choosen for this application.

Future work will conduct the influences of the boundary conditions and configura-
tion parameter strategies on the performance of the PSO algorithm in SDD. In addition,
although this study only simulated the SDD of a cantilever beam to investigate PSO topolo-
gies, the deformation and force characteristics of other types of beams are consistent with
the studied cantilever beam. Therefore, it is reasonable to believe that the findings of this
study can be generally applied to SDD problems of other beam structures. Nevertheless,
for non-beam structures, such as plates and columns, similar investigation procedures are
required, and the conclusion may be different.
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