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Abstract: Youth and adults with autism spectrum disorder have poor skills such as communication, 

qualitative interaction, and emotional expression resulting in low social awareness. In this paper, 

we propose and explore a contactless bio-signal measurement and functional contents for improv-

ing social awareness of individuals with communication challenges. We implemented four individ-

ual methods for collecting and analyzing the bio data of the individuals without requiring their 

attention: (1) heart rate, (2) respiration, (3) facial expression, and (4) interaction. The four techniques 

are all based on image data received and analyzed from a normal web camera. The data were ana-

lyzed in a real-time, fully functional algorithm: implementing the algorithm on a mobile device will 

require future work. However, we have evaluated our method by developing a functional content 

including the four methods. Based on the analysis of the collected data from the content and quali-

tative responses from the field, the contactless bio-signal measurement technology combined with 

friendly designed user interfaces for the individuals with communication challenges could train 

them to improve their social awareness. 
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1. Introduction 

Recently, the emergence of autism spectrum disorder (ASD) has been increasing, and 

the prevalence of highly functional autistic children is increasing. High-functioning au-

tism (HFA) usually refers to a child with mild verbal impairment or autism symptoms 

and a verbal IQ of seventy or higher. They tend to be on the higher side of language de-

velopment and appear to communicate effectively, but children with HFA show a deficit 

in their ability to attempt appropriate communicative signals for social purposes. In ad-

dition, because they focus on their area of interest and often strictly adhere to the subject, 

they have difficulty not only in repeating their interests, but also initiating, maintaining, 

and closing conversation [1,2]. Although expressing emotions is often considered a given 

ability, many people struggle with them on daily basis. For example, studies have shown 

that many individuals on the autism spectrum suffer speech impairment [3–5]. They may 

also show atypical facial expressions [5,6]. To make the matters worse, their expressions 

are more poorly recognized by others, whether autistic or neuro-typical individuals [7]. 

Management of the autism spectrum focuses on symptom relief and quality of life 

improvement rather than cure. For example, there are attempts to reduce discord with 

neighbors or family through counseling, reduce various symptoms with drugs or psycho-

therapy, and minimize social and occupational problems through behavioral correction. 

In general, the higher the intelligence, the more effective the treatment and the better the 

prognosis [8]. However, in the case of autistic children, treatment and education are lim-

ited because they cannot properly express their emotional state. In fact, when a child with 
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autism spectrum disorder yells while participating in a treatment program, it is difficult 

to know whether they are yelling because they are feeling happy or excited.  

Trying to understand their emotions using alternative methods such as physiological 

signal analysis can help manage the autism spectrum. According to James–Lange and 

Cannon–Bard’s Emotion Theory [9,10], human emotions appear as physiological phenom-

ena such as muscle tension, heart rate, and changes in skin temperature. Facial expression 

has a communication function and serves as a medium for delivering specific information 

[11]. Understanding emotions is a key component of social interaction because it allows 

you to accurately recognize the intentions of others and respond appropriately. 

Scientific interest in the use of sensor technology to obtain psychological and emo-

tional states from ASD biometric data has recently increased significantly.  

Chung and Yoon [12] presented a framework for autism spectrum disorder treatment 

system using bio-signal sensing (EEG, ECG) and emotional computing technology. Billeci 

et al. [13] and Marco et al. [14] used EEG, MEG, and functional Magnetic Resonance Im-

aging (fMRI) while Wang et al. [15] used HRV and Skin conductance and John et al. [16] 

focused on works of eye tracking. By using bio-signals in this way, individuals can per-

ceive human emotions with more objective and high reliability. However, in previous 

studies, collecting biometric data through contact sensors such as ECG, EMG sensors, and 

wearable devices sense the mental burden and resistance to physical contact of the indi-

viduals. This can be a factor that degrades the accuracy of the acquired data and can have 

a great impact on the status analysis of the subject. One of the major problems with using 

bio-signals for such applications has been the complexity of measurement device setups 

and their cost, which can render them impractical outside laboratories [17,18]. 

Therefore, we would like to propose a non-contact bio-signal collection technology 

for those with limited communication: high-functioning autistic boys who have difficulty 

in communication as discussed above. The above method can collect and analyze bio-

metric data by detecting light blood flow (heart rate), respiration, facial expressions, gaze 

and facial movements, and hand movements with only a webcam-level camera without 

the need to collect biometric data using multiple contact sensors. It is possible to judge the 

status of a person with poor communication skills by analyzing the four kinds of status 

data.  

For example, people with weak communication respond to sounds or actions that 

they do not like, and their changes in heart rate are larger than those who do not suffer 

from ASD. Breathing can become coarse as your heart rate increases. This can be judged 

as a state of excitement for those with weak communication. While communicating, most 

people can determine whether their gaze is focused on the other’s face or whether their 

gaze is directed to a place other than their face. In addition, if the gaze is focused on the 

face, it can be determined whether the communication-weak person is communicating 

smoothly depending on which part of the face is focused. The gazes of those with weak 

communication clearly show a different gaze pattern from those who do not suffer from 

ASD [19–21].  

When communicating, their focus is often on the mouth instead of the eyes [22–27].  

This is a typical aspect of those with weak communication who have difficulty mak-

ing eye contact during communication [16].  

This paper focuses on technology for collecting and analyzing state data. Mobile and 

VR contents for social skills training that can contribute to improving the quality of life 

through the improvement of communication skills of the communication-impaired by in-

corporating the proposed non-contact state data collection and analysis technology are 

under research. 

2. Integrated Interface Implementation 

Communication weak people sometimes find it difficult to do things outside their 

area of interest. Therefore, a real-time signal detection integrated interface was defined 

and implemented by visualizing the status data obtained in a non-contact manner, which 
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does not require the attachment of a special contact sensor, so that the expert managing 

the communication-weak person can easily recognize and understand the status of the 

individual. The integrated state data interface enables the extraction of photo blood flow 

(heart rate), respiration, and facial expression state data from real-time camera images, as 

well as state data extraction and batch processing for recorded images in Figure 1. 

Light blood flow, respiration, and facial expressions have different signal detection 

methods and data formats, so the integrated structure of the signal detection algorithm is 

applied equally so that even if a new signal detection algorithm is added, it can be easily 

linked. The preprocessing process that must be performed to detect the signal is defined 

in the same way, and the user’s image is acquired in real time so that the preprocessing 

process for signal detection, such as image conversion and face detection, can be per-

formed. 

 

Figure 1. State data integration interface. 

In addition, the UI was applied to intuitively express the functions of the integrated 

interface, and each algorithm was threaded and operated to make the most of the perfor-

mance of the PC running the integrated interface. On the top left, a face image including 

the upper body received from the camera is displayed, and on the right, real-time status 

data is displayed as a graph and visualized, and status data and measurement time can 

be separated and saved in CSV. 

3. Measurement of State Data Based on Non-Contact Image Analysis 

3.1. Optical Blood Flow (Heart Rate) Signal Acquisition 

Photo-plethysmography (PPG) is used to measure the blood flow signal by measur-

ing the change in blood flow that occurs according to the heartbeat through the color 

change of the fingertip or face image. We acquire the optical blood flow signal through 

the face image, and in order to stably extract the optical blood flow signal, accurate face 

detection and consistent tracking of the skin area are required. To minimize the back-

ground pixels unrelated to the skin during face detection, an SSD [28]-based face detector 

was used instead of the traditional Vi-ola-Jones detector [29]. 

As shown in Figure 2a, parts that are not related to pulsating skin such as hair, eye-

brows, and background pixels are still included in the face area detected through the SSD. 

In consideration of real-time characteristics, the background area was removed by mod-

eling the skin color distribution through a statistical method in the YCbCr color space 

instead of a deep learning-based segmentation algorithm. 
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Figure 2. Skin pixel filtering applied to the face area detected through SSD. (a) Before filtering, (b) 

After filtering. 

In the RGB color space, the red, green, and blue channels have a high correlation, and 

it is difficult to separate the lighting component and the color component. 

In addition, it is very likely that noise is included in the extracted signal due to the 

fine movement of the body, the three-dimensional structure of the face surface, and the 

position change with the lighting. The light component was discarded, and the light blood 

flow signal was extracted by focusing on the change in skin color according to the change 

in the amount of light blood using the color difference component. Compared to other 

color signal components, the color-difference signal shows a distinct pulsating waveform, 

and a component corresponding to the pulse in the frequency spectrum is well revealed. 

The color difference signal extracted from Figure 2b shows a distinct pulsating waveform 

compared to other color signal components, and it is shown in Figure 3 that the compo-

nent corresponding to the pulse rate is well revealed in the frequency spectrum. 

 

Figure 3. Comparison of (a) time series and (b) frequency spectrum for each channel of the skin 

pixel filtering applied face area. 
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In the signal extracted from Figure 3, elements not related to cardiac activity are also 

included and a process to remove them is necessary. This is the normalization work to 

remove noise such as facial movement and breathing, which have relatively low frequen-

cies. The signal was normalized using the average according to the time interval, and the 

window size was set as the sampling rate to include at least one pulse period in the inter-

val. As a result, it was possible to obtain a zero-centered signal from which the DC com-

ponent was removed during the normalization process. Since there are still noises corre-

sponding to high frequency generated by lighting changes in the signal, camera sensors, 

etc., band pass filtering was applied to remove them. The passband was set to (0.7, 3.0) 

corresponding to 42–180 BPM, and a Butterworth filter of order 5 was used. 

As a result, as shown in Figure 4, a signal that facilitates heart rate estimation was 

obtained by removing a significant portion of noise from the contaminated signal through 

signal normalization and band-pass filtering of the raw signal. In addition, it is possible 

to extract additional physiological parameters by performing analysis in the frequency 

domain and time series domain by interpreting the normalized signal as an optical blood 

flow signal synchronized with the user’s cardiac activity. 

 

Figure 4. Removing low-frequency noise in the signal through signal normalization (a), removing 

high-frequency noise in the signal through bandpass filtering (b). 

Power spectral density detection and analysis as shown in Figure 5 was performed 

by converting to the frequency domain in order to extract the average pulse rate for the 

measurement section from the optical blood flow signal. The optical blood flow signal 

extracted according to the Nyquist sampling theory can be analyzed up to the frequency 

band corresponding to the maximum ‘1/frame rate’. For instance, 30 fps video analysis up 

to 15 Hz. Since the normal human pulse rate is between 42–240 beats per minute, the fre-

quency band of interest is set to the 0.7–4.0 Hz band to detect the band with the maximum 

peak. 
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Figure 5. Band detection and analysis with maximum peak for calculating average pulse rate. 

In the power spectral density of the detected optical blood flow signal, factors such 

as respiration and motion noise are included. In the process of setting the frequency band 

of interest, the estimated pulse rate was within the effective pulse rate range by ignoring 

periodic components not related to the human pulse. The power spectral density of a 

physiological signal includes a fundamental frequency corresponding to the pulse rate 

and a harmonic frequency component that is an integer multiple of the source frequency. 

Pulse rate can be estimated through source frequency detection. 

When the frequency band with the detected maximum power was ����, (1) was used 

to convert it into beats per minute (BPM). 

HR = ����  × 60 (1)

For example, when the frequency band having the maximum power in a certain op-

tical blood flow signal is 1.1, the average heart rate can be estimated as 66 bpm. 

In order to obtain heart rate variability (HRV) information for further analysis, it is 

necessary to measure the peak-to-peak interval (PPI) in the signal in the time series do-

main. In order to obtain heart rate variability (HRV) information for further analysis, it is 

necessary to measure the peak-to-peak interval (PPI) in the signal in the time series do-

main. A separate peak detector module was used for peak position detection, and con-

straints were used to detect peak intervals within the effective pulse rate range. The guar-

anteed distance between the minimum peaks is determined by ‘fps/maximum pulse rate 

frequency’, and the maximum pulse rate is a variable that can be adjusted to suit the ap-

plication scenario. For PPI calculation, position information of the peaks was stored in a 

separate array, and the timestamp difference value of the two most recent peaks was cal-

culated as the current PPI. 

The resolution is determined according to the frame rate, and considering 30 FPS 

(Frames Per Second), it has a resolution of about 2 BPM in the pulse section at rest and 

about 8 BPM in the high heart rate section. Considering 60 FPS, it can have a resolution of 

about 1 BPM in the pulse section at rest and about 4 BPM in the high heart rate section. 

Recently released general webcams have a performance of about 30 FPS in an uncom-

pressed format with a resolution of 640 × 480 pixels, but detailed analysis of heart rate 

variability is possible depending on the performance conditions of the camera used. 

Heart rate variability refers to a periodic change in heart rate and can be used to 

estimate stress status and health status through additional analysis. In addition, in the 

case of healthy people, the heart rate variability is irregular and complex in order to 

achieve a physiological balance in a short time by responding sensitively to changes, but 

the reduction in heart rate variability indicates that the dynamic changes and complexity 

of the heart rate has decreased. It was confirmed that the body’s ability to adapt has de-

creased as shown in Figure 6. 
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Figure 6. Peak detection results in the time series domain for PPI calculation. 

In order to extract physiological parameters from the signal, a window of a certain 

size is covered to estimate the parameters for the corresponding signal section. In this 

case, a sliding window method was used to extract continuous physiological parameters 

in real time. In order to estimate the heart rate that changes according to the physiological 

state of the body in real time and to estimate the stable heart rate from the power spectral 

density, a sliding window is applied at 1 s intervals while using a window of about 4 s. 

The physiological parameters obtained in this way operate well when the user is not in 

motion, but stable estimation may be difficult due to noise when facial movement occurs. 

This is because, while the face is close to an ellipse, it is detected in a rectangular 

shape due to the characteristics of the existing face detector, increasing the probability of 

including background areas other than the face. When the face is rotated, the light reflec-

tion from the surface of the face changes, causing unstable detection of areas such as skin 

color, background, and hair. In order to alleviate the instability caused by noise, pulse rate 

filtering was performed using the characteristic that the pulse rate continuously beating 

follows a Gaussian distribution. Outliers were removed by applying Gaussian filtering to 

the power spectral density for pulse rate estimation by deriving the mean value and stand-

ard deviation of recent pulse rate estimates. 

The input data can be largely divided into pre-recorded video files and image se-

quences, or real-time camera input. In the case of pre-recorded video files and image se-

quences, the input data must be assumed to be a fixed frame rate or include frame-by-

frame timestamp information. In the case of real-time camera input, processing time per 

frame may vary depending on the state of the processor, leading to difficulty to assume a 

fixed frame rate. Assuming a real-time camera input with a frame rate of 30, it is theoret-

ically possible to read 30 frames per second, but in reality, there may be cases where only 

one or two frames are missing and only less than 30 frames are read. For example, assum-

ing that a time window having a length of 4 seconds is used, an error of a physiological 

parameter estimated later may increase due to the accumulation of such missing frames. 

To solve this problem, in the case of real-time camera input, the real-time frame rate was 

calculated by storing the timestamp at the point of processing each frame internally in a 

separate array. If the signal length corresponding to the time window is k, the real-time 

frame rate is calculated by (2). 

frame rate =  
�

×  �����[� − 1]  − ×  �����[0]
 (2)



Appl. Sci. 2021, 11, 5169 8 of 23 
 

More accurate physiological parameter estimation is possible by calculating the 

frame rate at the time of calculating the filtering unit and the physiological parameter 

estimating unit as a value approximating the actual frame rate. 

3.2. Respiration Signal Acquisition 

Figure 7 shows the user’s motion extracted by applying the optical flow proposed by 

Brox [30]. Since this optical flow is a dense optical flow that calculates motion information 

for all pixels, it is possible to extract motion information of the entire image. Since the 

movement caused by respiration is mainly related to the up/down movement, only the 

up/down movement information was used among the detected movement information. 

 

Figure 7. Motion information detected using optical flow. 

In order to extract respiration information using the motion information detected in 

Figure 7, motion vectors for all pixels within a frame for a certain time window must be 

obtained. The time window size was used as 23 in the 4 fps environment because the time 

window should be set to a sufficient size to cover at least one breathing cycle. Motion 

vectors are compressed into Eigen vectors to obtain a motion matrix. Respiration infor-

mation was amplified through a chi-square kernel for all motion trajectories in the motion 

matrix, and noise was removed and refined. It is shown in Figure 8 that the respiration 

information descriptor present in the image is extracted from the refined result. 

 

Figure 8. The extracted motion, the calculated motion matrix, and the breathing descriptor of the image calculated from 

the motion matrix. 

Respiration descriptor was used to detect the region containing respiration infor-

mation in the image as an ROI. The similarity was calculated through the dot product of 

the respiration descriptor and the motion vector of each pixel: it is shown in Figure 9 that 

the final respiration ROI is detected by applying pixel similarity dimensionality reduction. 
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Figure 9. ROI detection, purification process and actual detection results. 

Changes in pixels can be observed in a certain time window, and movements of the 

chest and head due to breathing also cause these changes in pixels. Since the pixels in 

which the change is caused by respiration shows a change pattern similar to the actual 

respiration signal, it is possible to classify the presence or absence of respiration infor-

mation by analyzing the similarity between the pixel change and the respiration signal. 

We have designed a learning model (Figure 11) that analyzes the pattern of changes 

in pixels obtained in Figure 10 to classify whether changes are caused by respiration or 

not. Compared to the case where video is input (input data is four-dimensional; time win-

dow, image height, image width, image channels), the model has a characteristic that the 

structural characteristics of the image are not reflected in the classification of the model 

(the input data is two-dimensional; time window, image channels) can significantly re-

duce the complexity of training data. In the case of using a video as an input, one video is 

one data sample, but the designed model contains more than 300,000 data samples in one 

video, so efficient learning is possible (Figure 11). 

 

Figure 10. Comparison of actual measured respiratory signal and chest and background pixel 

changes. 

 

Figure 11. Learning-based ROI detection flow and detected ROI. 
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Pixels (ROI) including respiration information can be detected using the learned 

model, and pixels from which noise components are almost removed can be selected and 

refined using the classification result. In addition, it is possible to obtain breathing infor-

mation by amplifying the motion of the video in the normal breathing frequency band 

(0.17~0.7Hz), and by amplifying the breathing information, a breathing signal that is ro-

bust to noise was extracted as shown in Figure 12. 

 

Figure 12. ROI extracted through learning-based ROI detection model (Figure 11) and signal types 

for each area. 

If the average of the ROI signal values is used for signal extraction, the respiration 

information is canceled by the inverted phase, and the correct respiration signal cannot be 

estimated, so a method of aligning the phase is needed to improve this problem. For ex-

ample, assuming that the signal of one pixel is a 64-dimensional vector, it is possible to 

determine the trend of clustering of pixels having the same phase in the corresponding 

space, so that the phase of the signal can be classified through a clustering algorithm. Rep-

resentative clustering algorithms are k-means [31], a distance-based clustering method, 

and DBSCAN [32], a density-based clustering method. In the distance-based clustering 

method, the criterion for determining clusters is Euclidean distance, and since each cluster 

tends to form a prototype, correct performance cannot be guaranteed for clusters that can-

not be expressed as a prototype. The density-based clustering method is robust to the 

shape of the data distribution, but the results are greatly changed by parameters such as 

epsilon that are determined in advance, and there is a limit to the detection of clusters 

with different densities. Since a vector whose phase is inverted has a characteristic of op-

posite directions in a 64-dimensional space, using the cosine distance can obtain a direc-

tion similarity independent of the size of the vector. Therefore, as shown in Figure 13 by 

applying hierarchical clustering based on the cosine distance, it is possible to classify clus-

ters with different vector directions, and through phase alignment, it is possible to extract 

a refined signal by reducing noise such as cancellation caused by integrating signals with 

different phases. 
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Figure 13. Respiration vector visualization using clustering algorithm (Hierarchical clustering 

shows the best in extracting refined respiration signals by reducing destructive noise). 

The higher the precision of the ROI detector, the higher the quality of the signal con-

tained in the pixel, but it is susceptible to noise, making it difficult to detect ROI even with 

small movements other than breathing. On the other hand, the higher the recall of the ROI 

detector, the more robust the ROI can be detected, but the quality of the signal included 

in the ROI is degraded, and pixels other than the respiration may be included in the ROI. 

To detect an appropriate ROI that can be used for analysis, precision and reproducibility 

must also be considered, so some noise may be included in the ROI detection result. When 

noise pixels are included in the ROI, when clustering is performed in two clusters, noise 

is included in each cluster, making it difficult to obtain an appropriate respiration signal. 

Therefore, it is necessary to utilize additional information that can separate the noise from 

the respiratory information cluster. 

The phase of the signal is opposite when the movement caused by the same breath 

changes from light to dark and from dark to light. This means that the movement induced 

by breathing has a symmetry with respect to the origin. 

Therefore, if one performs clustering by adding the origin-symmetric data to the orig-

inal data(Figure 14), one can obtain the result shown in Figure 15 by this symmetry. Ana-

lyzing the type of data included in the cluster, it is determined that the two clusters have 

symmetry when the same type of data is included in another cluster. Therefore, noise can 

be removed by using this symmetric data cluster for respiration signal estimation. 

 

Figure 14. Clustering of breathing pixel and noise data and the data contained in each cluster. 
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Figure 15. Clustering of respiratory pixel and noise data with origin symmetric data and data con-

tained in each cluster. 

The technology to classify breathing signals by utilizing the symmetry of the signal 

as a feature shows excellent performance when it is a stable breathing signal, but when 

noise occurs in the breathing signal itself, the symmetry is broken and the performance is 

degraded. In particular, when the object is moving, noise, not breathing information, can 

be easily included in the breathing pixel. In the case of movement, stable breathing infor-

mation must be maintained for as long as the time window to restore symmetry and to 

obtain correct breathing information again. Whenever movement occurs, there may be a 

delay in which correct breathing measurements cannot be made for this reason. It is 

shown in Figure 16 that unlike the previous method, in which all information of a certain 

time window was used, it was possible to continuously measure breath without delay by 

using only the motion of the most recent frame. 

 

Figure 16. Optical flow tracking result for pixels detected by ROI. 

Since the parameters of the ROI detection model are adjusted to accommodate some 

noise in consideration of the reproducibility, respiration pixels can be detected robustly 

against noise caused by movement, etc. If the detected breathing pixels are tracked by 

optical flow, it is possible to quantify the movement of the pixels, and among them, the 

breathing information can be estimated through up-and-down motion information di-

rectly related to breathing. Unlike the previous method, in which all information of a cer-

tain time window was used, it is possible to continuously measure breath without delay 

by using only the motion of the most recent frame. 

Typical causes of changes in blood flow are heart rate and respiration. As shown in 

Figure 17, changes in chest pressure caused by breathing can cause changes in blood flow. 
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Since such a change in blood flow causes a minute change in skin color, respiration infor-

mation obtained through observation of the change in skin color can be used to improve 

signal quality when a skin area is detected in an image. The respiration measurement 

method through motion analysis is susceptible to movement other than the movement 

caused by respiration, whereas the skin color change analysis method enables stable ob-

servation of changes through facial area tracking. If motion analysis is difficult due to 

movement, the method of measuring respiration from changes in skin color can be used 

as a good alternative. 

 

Figure 17. Changes in blood flow due to respiration observed in PPG (Photoplethysmogram). 

Changes in blood flow due to heart rate are mainly periodic, and the cycle is shorter 

than changes due to breathing. Therefore, it is possible to estimate the respiration signal 

from which the heart rate component has been removed through a high-pass filter that 

can filter short periodic signals from the blood flow change signal. As shown in Figure 18, 

it is possible to extract more refined and stable breathing signals by integrating breathing 

information that can be obtained from skin color changes as well as motion analysis. 

 

Figure 18. The result of removing the skin color change and heart rate component measured from the actual skin of the 

face. 

3.3. Face Feature Point Detection and Facial Expression Recognition Implementation 

Facial feature points were detected using CE-CLM [33], a deep learning-based algo-

rithm. A total of 68 major facial feature points to be detected were used as facial expression 

recognition and behavior analysis data. Figure 19 is a facial feature detection and facial 

expression recognizer using CE-CLM that can detect facial feature points at FHD resolu-

tion in real time and analyze facial behavior such as facial pose tracking and gaze tracking 

based on the detected facial feature points. 
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Figure 19. Facial feature point detection and facial expression recognizer. 

Since the location and change of facial feature points have different size and direction 

distributions for each person due to differences in appearance, a normalization function 

was implemented that can measure changes in facial feature points based on their neutral 

expressions in order to normalize individual differences. In Figure 20, facial rotation and 

movement were corrected and individual differences were normalized by measuring the 

movement of each facial element after aligning the neutral expression and the expression 

to be measured using rigid body transformation for the feature points of the joy feature 

and the neutral feature obtained through Figure 19. 

 

Figure 20. Changes in the position of facial feature points by movement (a), before rigid body 

transformation (b), after rigid body transformation (c). 

In addition, facial asymmetry has been studied as an index of facial behavior that can 

grasp the psychological state, and since artificial and spontaneous expressions are ex-

pressed in different motor cortex, there is a difference in the degree of facial lateral asym-

metry. The asymmetry measurer in Figure 21 measures the degree of asymmetry of a pair 

of feature points in a lateral symmetry relationship by a geometric operation using the dot 

product between the face center vector and the feature point vector. 
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Figure 21. Face side asymmetry meter using facial feature points. 

For real-time state data analysis, a facial expression recognition model with a fast and 

small amount of computation is required, and the input data dimension of the model must 

be reduced. Accordingly, an expression recognition model based on facial feature points 

(Figure 22) was designed. In the case of images, data is stored in the form of three dimen-

sions (image height, image width, image channels), which requires a lot of computation 

when using input data. Dimensional reduction was performed using facial feature points 

with geometry features according to facial expressions as input data of the facial expres-

sion recognition model. The facial feature point data used as input enables facial expres-

sion recognition in consideration of the movement and rotation of the face through the 

facial feature point normalization method described above. In addition, features using 

HOG [34] (Histogram of Oriented Gradients) are used as input data of the model, and 

even texture features are used as input data. 

 

Figure 22. Facial feature recognition model based on facial feature points. 

For deep learning-based real-time facial feature point extraction using CE-CLM 

model, parallel processing using GPU is essential, and real-time performance of facial fea-

ture point extraction using CE-CLM model cannot be guaranteed in an environment with-

out GPU. Therefore, we implemented a real-time facial feature extraction function suitable 

for a GPU-free environment using face alignment provided by the dlib library. dlib’s face 

alignment outputs two-dimensional facial feature points, and enables the extraction of 

facial feature points with a speed of 40 fps or more with only an operation using only the 

CPU (i7-6700). However, due to the limitation of 2D facial feature point extraction, there 

is a problem that the accuracy of feature point extraction decreases when there is a face 

rotation based on the x-axis and y-axis in the 3D camera coordinate system. 

In the CPU calculation-based algorithm, the result of performing size normalization 

by dividing 21 facial feature points and 38 feature point distance measurements by the 

distance between the two eyes is shown in Figure 23. 
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Figure 23. Extraction of feature points from neutral expressions (left) and smiley expressions 

(right) and results of size normalization, Participant 1 (a), Participant 2 (b). 

The facial feature points obtained through Figure 23 have not been normalized for 

differences by feature distance due to the different appearances of each individual. 

In the existing person-specific normalization between three-dimensional facial fea-

ture points, a rigid body transformation method was used to normalize the measured val-

ues, but in a CPU calculation-based algorithm, a normalization method based on the dis-

tance measurement value between the feature points as 2D data was used. Figure 24 

shows the result of performing person-specific normalization based on facial features dur-

ing expressionless expression. Through this, it was possible to measure facial movements, 

which partially solved the problem of reducing the accuracy of feature point extraction in 

case of facial rotation. 

 

Figure 24. A graph of characteristic values of smiley expressions before (a) and after (b) person 

specific-normalization for Participant 1 (left) and Participant 2 (right). 
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3.4. Contactless Interaction Implementation 

3.4.1. Gaze and Facial Movement Tracking Interaction 

In order to recognize and track the user’s gaze, it is important to accurately identify 

the location of the user’s face and pupil. Among the 20 feature points extracted using 

WrnchAPI [35], the tip of the nose is used as the root to grasp the movement of the head. 

Up, down, left, and right movements can be identified, but in order to increase accuracy, 

only three directions (center, left, and right) can be identified. Eye tracking must perform 

calibration that defines the camera’s intrinsic parameter, the positional relationship be-

tween units, and the eye parameter. Using web camera-based gaze tracking provided by 

OpenCV, the coordinates of the pupils in the web camera are estimated in real time, the 

left, center, and right directions are recognized, and movement is estimated in Figure 25. 

 

Figure 25. Implementing gaze and face motion tracking interaction. 

3.4.2. Hand Movement Tracking Interaction 

To detect the skin color corresponding to the candidate area of the hand, the image 

in the RGB color space is converted to the YCrCb color space, and then 128 ≤ Cr ≤ 170, 73 

≤ Cb ≤ 158 excluding the luminance (Y) is used for each channel value. The skin color was 

detected by comparing the results. Then, the point where the direction of the line changes 

was designated as a finger candidate by calculating the convexHull for the hand area. 

However, when all fingers were bent, there was a problem of detecting non-finger parts. 

To compensate for this, the contour was approximated, and a defect was implemented to 

detect the finger. Since the location where the finger candidates are found is the place 

where the two locations meet, it is recognized as a finger only when the angle formed by 

the left and right edges is less than 90 degrees. Afterwards, based on the previously de-

tected hand region mask, the feature points were extracted by receiving the coordinate 

values of the feature points in all areas of the finger. 

Among the input coordinate values, the feature point corresponding to the center of 

the hand area was extracted as a red point to recognize the hand motion. As shown in 

Figure 26 to visualize the hand movement-based interaction, we implemented an event in 

which a blue square randomly occurs in three directions, left, center, and right. When the 

red dot stays in the blue square for a certain period of time, the next action is performed. 

 

Figure 26. Implementing hand movement tracking interaction. 
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4. Experiment 

The purpose was to secure a selection factor for the state data set for training to im-

prove the communication function of the communication-weak by combining the previ-

ously developed technology with the training contents under development, and to verify 

the validity of the non-contact biometric data collection and analysis technology. The test 

group is the target of 8 people with weak communication and 14 people in the control 

group as shown in Table 1. The criterion for selecting a group of people with communica-

tion weakness is adolescents and adults aged 13 to 40 years old. The comparative group 

is a person who voluntarily agreed to participate in the study after reading the study guide 

and consent to participate in the study for adolescents and adults aged 13 to 40 years old. 

Contents consist of Music based Attention Test (MAT) and Comprehensive Attention Test 

(CAT). 

Observation items are contact and non-contact optical blood flow signals/respiration 

signals, facial features, and facial expression recognition. 

Status data was collected and analyzed based on the face images of individuals with. 

ASD through a webcam or front camera in a PC or tablet environment in which the con-

tent is driven. The participants of the experiment wore ECG and EMG sensors, and were 

conducted in an environment of 200 lux or more of illumination. 

Tables 2 and 3 compare ECG and EMG sensor data with heart rate and respiration 

data acquired through non-contact biosignal measurement technology. With the subject 

sitting in a chair, the distance between the subject and the camera was about 60 cm, and 

the heart rate measurement data was acquired from the subject’s face image, and the ac-

curacy was calculated by sampling at 6 second intervals. In simple numerical terms, the 

difference is 1.27 in heart rate and 0.29 in respiration on average, and the RMSE (Root 

Mean Square Deviation) is less than 2 in heart rate and less than 1 in breathing. Compared 

to the conventional contact collection method, it was verified in Tables 2 and 3 that our 

non-contact technology shows competitive results. 

Table 1. Basic information of research participants. 

Classification Category Comparative Group Control Group Total 

Gender 
Male 3 8 11 

Female 11  11 

Age 

12~15 1 2 3 

16~19 5 4 9 

20~24 6 1 7 

25~29 2 1 3 

Education 

Junior Highschool 2 2 4 

Attending Highschool 4 2 6 

Graduated Highschool 1 2 3 

Attending University 5 2 7 

Graduated University 2  2 

Disability 
ASD  2 2 

ID  6 6 

ASD: Autism spectrum disorder, ID: Intellectual disability. 
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Table 2. Non-contact heart rate measurement data compared to contact (unit: bpm). 

 Num 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean Err RMSE 

1 

contact 90 81 79 81 77 81 82 85 91 90 79 73 82 78 88 83 80 78 75 76  
1.673 

ours 88 81 78 80 80 82 80 85 90 90 81 73 78 80 87 82 81 78 77 74  

err 2 0 1 1 3 1 2 0 1 0 2 0 4 2 1 1 1 0 2 2 1.3  

2 

contact 78 77 88 78 82 86 85 86 87 88 83 85 88 85 95 89 82 80 84 83  
1.774 

ours 77 77 86 76 81 87 85 86 85 89 80 85 86 85 90 89 84 78 83 83  

err 1 0 0 2 1 1 0 0 2 1 3 0 2 0 5 0 2 2 1 0 1.15  

3 

contact 83 82 86 70 88 81 81 83 82 87 85 86 82 86 85 84 85 89 78 85  
1.244 

ours 84 81 84 71 87 81 82 82 83 86 84 85 83 85 85 86 86 89 77 82  

err 1 1 2 1 1 0 1 1 1 1 1 1 1 1 0 2 1 0 1 3 1.05  

4 

contact 84 87 86 86 89 86 86 79 84 77 79 99 78 80 82 79 82 78 86 80  
2.626 

ours 84 87 86 87 87 86 84 74 84 76 82 90 77 81 80 78 83 77 86 78  

err 0 0 0 1 2 0 2 5 0 1 3 9 1 1 2 1 1 1 0 2 1.6  

5 

contact 84 88 79 87 90 85 93 86 86 80 84 81 86 82 86 87 86 91 87 88  
1.466 

ours 84 86 78 86 87 85 90 85 84 81 82 82 85 83 85 86 85 90 86 87  

err 0 2 1 1 3 0 3 1 2 1 2 1 1 1 1 1 1 1 1 1 1.25  

mean 1.27 1.756 

Table 3. Non-contact breathing measurement data compared to contact type (unit: number of breaths). 

 Num 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Mean Err RMSE 

1 

contact 19 19 20 18 18 17 15 16 16 15 16 16 17 15 15 21 21 17 16 17  
0.591 

ours 19 20 20 18 19 17 16 16 16 15 16 17 17 15 15 22 21 16 16 18  

err 0 1 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0.35  

2 

contact 14 15 11 14 11 14 13 12 13 15 22 21 22 15 15 14 13 12 14 15  
0.447 

ours 14 15 11 14 11 14 13 12 13 15 21 22 21 15 15 14 13 12 14 14  

err 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 0.2  

3 

contact 13 15 14 13 15 13 14 11 15 14 14 14 14 23 26 23 20 20 20 18  
0.387 

ours 14 15 14 13 15 13 14 11 15 14 14 14 14 23 27 23 20 20 21 18  

err 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0.15  

4 

contact 17 14 17 16 13 15 13 13 13 11 16 14 14 14 12 15 13 13 16 16  
1.140 

ours 17 19 17 16 13 15 13 13 13 11 16 14 14 15 12 15 13 13 16 16  

err 0 5 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0.3  

5 

contact 15 15 14 15 14 13 25 20 19 18 15 14 14 13 13 13 13 18 13 13  
1.396 

ours 15 15 14 16 14 13 25 20 19 18 14 14 14 13 12 13 13 12 13 13  

err 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 6 0 0 0.45  

mean 0.29 0.792 

In Table 4, the expression recognition rate of the subjects was calculated through (3) 

for 6 types of expressions (joy, surprise, disgust, sadness, fear, neutral) by comparing the 

DISFA dataset [36] with the subject’s face image. 

ACC =  R × 100, R =
�

� + �
, (0 ≤ R ≤ 1), 

T = Number of successful recognition,  

F = Number of failed recognition  

(3)

For each of the six expressions, the test was performed 100 times, and the accuracy 

of 95.7% was verified in the expression recognition rate with 574 times of recognition and 

26 times of false recognition. 
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Table 4. Non-contact image-based facial expression recognition (unit: %). 

 Status Ground-Truth 
Number of 

Trials 
T F Ratio 

1 joy 

 

100 ea 

95 5 95 

2 surprise 

 

100 0 100 

3 disgust 

 

98 2 98 

4 sadness 

 

97 3 97 

5 fear 

 

89 11 89 

6 neutral 

 

95 5 95 

mean 95.7 

Table 5 is the determination of the measurement accuracy for the gaze (face direction) 

and hand interaction. Three interaction areas were selected in consideration of the camera 

angle of the environment using the tablet and to characterize that precise interactions of 

the people with ASD. The screen size was based on 640 × 480, and the accuracy was de-

termined for the following three areas. x is the abscissa, y is the ordinate, and the size of 

the area was determined empirically through sufficient tests. 

1. Left area : 10 < x <60, 250 < y < 350 

2. Center area : 295 < x < 345, 250 < y <350 

3. Right area : 580 < x < 630, 250 < y <350 

In the case of gaze, the target blue rectangle appears randomly on the screen, and the 

green rectangle corresponding to the subject’s gaze is placed on the blue rectangle. In the 

case of hand interaction, the direction of the subject’s palm was marked with a red circle, 

and the recognition accuracy was calculated through (3) by placing it on a randomly ap-

pearing blue square. 

Table 5. Determination of recognition accuracy for gaze and hand interaction (unit: %). 

 Method Ground-Truth Number of Trials T F Ratio 

1 gaze 

 100 ea 

100 0 100 

2 hand 

 

100 0 100 

mean 100 



Appl. Sci. 2021, 11, 5169 21 of 23 
 

In the experiment, it is more advantageous than the contact sensor in that it was pos-

sible to collect biometric data without noise and without using a contact sensor that can 

feel the mental burden of the people with ASD via their heart rate and breathing and a 

sense of resistance to physical contact. In addition, it was confirmed through Tables 2 and 

3 that similar biometric data measurement values were obtained when compared with the 

contact sensor. From the image-based facial expression recognition, as shown in Table 4, 

it has become an index that can grasp the psychological state of people with ASD. In Table 

5, the subjects accurately identified their gaze, and it was verified that the hand was accu-

rately recognized and matched to the target even in the hand interaction. 

5. Conclusions 

In this study, a technology for measuring the state data of people with ASD was pro-

posed through the development of a non-contact image-based bio-signal measurement 

technology. Data was collected by detecting light blood flow (heart rate), breathing, facial 

expressions, gaze and facial movements, and hand movements based on a single RGB 

camera rather than using individual sensors to measure each state data. Conventional 

contact sensors such as ECG and EMG can feel the mental burden and a sense of resistance 

to physical contact with people with ASD. In addition, not only can it have a great influ-

ence on the state analysis of the communication-weak, but it can also adversely affect the 

psychological state of the communication-weak. 

Based on the collected biometric data, a real-time signal detection integrated interface 

was defined and implemented by analyzing the condition of the communication-weak 

person and making it visible so that the expert who manages the person can easily recog-

nize and understand their status. It is predicted that it can be applied to various platforms 

based on contactless bio-signal measurement technology or integrated interface to de-

velop functional contents that provide opportunities for people with weak communica-

tion skills to live their daily lives and meet social needs. 

In the future study, applying a face detector for every frame in heart rate measure-

ment is disadvantageous to the overhead and stability of the detection area, so applying 

a circulated structure-based tracking algorithm based on object tracking technology could 

improve the learning speed and stability of the face area. In addition, noise generated in 

a motion situation has a limitation in simply mitigating the change in signal value through 

a normalization process. Therefore, it is expected that if a method of quantitatively detect-

ing facial motion by applying optical flow and a Kalman filter and mitigating the noise 

component based on the detected motion amount is applied, it is expected that the change 

in blood flow volume resilient to motion noise can be estimated. 

In respiration, the learning-based ROI detection model is expected to improve the 

overall respiration signal extraction performance by improving the ROI detection accu-

racy by applying an additional network structure to optimize the task of the model, such 

as the advanced shortcut of DenseNet or the bottle-neck layer. In addition, there is a dis-

advantage in that it is difficult to utilize structural information of an image due to the 

characteristics of the existing method of using a model that classifies whether a change is 

caused by respiration by analyzing a pattern of pixel change to detect a respiration signal. 

To improve this, the use of a 3D-CNN model that considers the structural characteristics 

of the image is expected to improve the stability of ROI detection. 

In facial expression recognition, features subjected to person-specific normalization 

are used as input data of the facial expression recognition model. In addition, we plan to 

test the performance of the model and the normalization method using two representative 

public databases (DISFA, MMI) in the field of facial expression recognition. 

In addition, the function of extracting facial feature points based on CPU computa-

tion enables real-time state data analysis in an environment without GPU support by us-

ing face alignment of the dlib library. 

However, it is still vulnerable to face rotation, occlusion, and movement using 2D 

facial feature points as an inference model. This should be possible to develop a model 
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with improved performance by removing the regression branch operation, which is used 

only for training during inference calculations, by using a 3DDFA model with a small 

number of parameters and a fast inference speed as a backbone network. 

In the case of the gaze, it will be supplemented to enable more precise measurement 

of gaze through area segmentation and enhancement of facial feature point extraction 

functions. In hand interaction, the function will be extended to simple gesture recognition 

as well as interaction through simple palm tracking. 

In the case of the integrated interface, the UI/UX will be supplemented so that the 

expert who manages the communication-weak person can more easily recognize the sta-

tus data of the communication-weak person acquired by contactless method. 

In addition, we will develop mobile and VR contents that utilize the state data of the 

communication weak, and recruit more experimental personnel. Future research will 

prove whether the content to be developed later can contribute to the improvement of 

quality of life through the improvement of communication skills of people with ASD. 
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