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Abstract: Pigments from microalgae and cyanobacteria have attracted great interest for industrial
applications due to their bioactive potential and their natural product attributes. These pigments
are usually sold as extracts, to overcome purification costs. The extraction of these compounds
is based on cell disruption methodologies and chemical solubility of compounds. Different cell
disruption methodologies have been used for pigment extraction, such as sonication, homogenization,
high-pressure, CO2 supercritical fluid extraction, enzymatic extraction, and some other promising
extraction methodologies such as ohmic heating and electric pulse technologies. The biggest constrain
on pigment bioprocessing comes from the installation and operation costs; thus, fundamental
and applied research are still needed to overcome such constrains and give the microalgae and
cyanobacteria industry an opportunity in the world market. In this review, the main extraction
methodologies will be discussed, taking into account the advantages and disadvantages for each
kind of pigment, type of organism, cost, and final market.

Keywords: phycobiliproteins; carotenoids; green solvent; cell disruption

1. Introduction

Microalgae and cyanobacteria are photosynthetic organisms that produce distinct
kinds of pigments in order to harvest light. Such pigments are usually grouped in three
major classes—chlorophylls, carotenoids, and phycobiliproteins [1]. The presence of differ-
ent kinds of pigments in microalgae and cyanobacteria varies according to the phylum to
which the organism belongs. Chlorophyll is the most fundamental one; it is responsible
for oxygenic photosynthetic activity and it is present in all photosynthetic microalgae and
cyanobacteria [2]. Carotenoids can be both primary and secondary pigments and the profile
changes within the species and growth conditions; the most well known and commercial-
ized ones being astaxanthin, lutein, and β-carotene [3]. Moreover, phycobiliproteins are a
special class of pigments present only in cyanobacteria and red algae and can represent the
major light absorber in these organisms, where the most well-known phycobiliproteins are
phycocyanin and phycoerythrin [4]. Together, the three classes of pigments maximize light
harvesting in microalgae and cyanobacteria through the whole visible light range.

Pigments from microalgae and cyanobacteria are known for their highly attractive
properties for industrial use in food, feed, pharmaceuticals, nutraceuticals, and cosmetics,
mainly due to their color and bioactive properties, but also for being natural and eco-
friendly components [3,4]. The demand for natural colors (instead of synthetic ones) is
increasing the need for a more sustainable source, however, the use of microalgae and
cyanobacteria in the market is still related to high added-value products, in part due to the
scale of biomass production being small when compared to synthetic alternatives [5].
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Microalgae and cyanobacteria can be sold both as raw biomass (dried) or processed for
the obtention of specific compounds. When only a specific compound is the final product,
it requires downstream processing of extraction and possibly purification. The cost for the
production of purified pigments is still high and it restricts the application to high-value
markets, for example as cosmetics [6].

Three cases of successful production of pigments from microalgae and cyanobacteria
are known: phycocyanin from Arthrospira platensis [4]; β-carotene from Dunaliella salina [7];
and astaxanthin from Haematococcus pluvialis [8]. Other compounds and sources appear as
potential products, such as lutein from Scenedesmus almeriensis [9] and phycoerythrin from
Porphyridium spp. [10]. The market for these pigments represents about $1.5 billion (USD),
including all sources (natural and synthetic). The phycocyanin market alone has a size of
about $100 million (USD), β-carotene ca. $270 million (USD), lutein ca. $350 million (USD),
and astaxanthin ca. $800 million (USD) [4]. Pigments are usually found as a part of extracts
obtained from the mentioned organisms, because as already mentioned, the purification
process leads to unjustifiable costs [8].

Several factors can affect the extraction of pigments, including the target pigment,
organism, market trends, available technology, and costs. Extraction usually requires a cell
disruption method and a compatible solvent; however, it is also possible to extract some
of these compounds without a cell disruption process, using the so-called “cell milking”,
where the product is extracted while the culture grows [11].

When it comes to the available technology, many extraction methodologies were de-
veloped and optimized in recent years. In general, extraction can be performed using two
distinct kinds of methodologies: (i) non-mechanical, such as chemical, thermal, and enzy-
matic; and (ii) mechanical, such as pressurized systems, ultrasonication, microwave, electric
fields, and supercritical extraction. Some systems are based on a synergy between non-
mechanical and mechanical characteristics, considering the effects of solvents, temperature
and the technology mechanism (e.g., microwave-assisted extraction and ohmic heating).
Furthermore, industrial scale extraction methodologies for microalgae and cyanobacteria
are not widely described, and scalable downstream processes are still needed.

This review will cover the most commonly used techniques for the extraction of pig-
ments from microalgae and cyanobacteria, paying particular attention to carotenoids and
phycobiliproteins. The main advantages and disadvantages of each extraction technique
will be highlighted, and some insights into the process optimization for specific cultivation
of organisms and production of pigments will be addressed.

2. Classic Extraction

Classic extraction of microalgae and cyanobacteria pigments is performed using a
solvent extraction associated, or not, to a thermal treatment (heat or cold), as depicted
in Figure 1. The process of solvent extraction entails mixing the two phases (solvent +
biomass) so that the solute can come into contact with the solvent until an equilibrium is
reached. The transference from one phase to the other is driven by chemical affinities. The
solution of solvent plus solute obtained at the end of the process is called “extract”.

The main advantage of this kind of extraction is the reduced cost in terms of infrastruc-
ture and operating procedures. Solvent extraction, on the other hand, frequently demands
large volumes of organic solvents for carotenoids extraction, or even a lengthy processing
time, as in the case of phycobiliproteins extraction, due to cyclic thermal treatment. In both
cases, efficiency is usually not enough for industrial application [12]. When selecting a sol-
vent, solubility of the compound, toxicity, and ecological impact of residues are important
points to consider.
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alga does not require harsh disruption methods due to cell composition can solvent ex-
traction be as efficient as other methods. For example, Isochrysis galbana is a source of fu-
coxanthin, which can be obtained via a single solvent extraction with ethanol [14]. 

Classical extraction of astaxanthin from H. pluvialis is performed by using organic 
solvents such as chloroform and methanol or more eco-friendly solvents such as acetone, 
ethyl acetate, and ethanol. The single solvent extraction with acetone can induce cell-wall 
disintegration and extraction of pigments, although the efficiency is relatively low and the 
process requires a long time [15,16]. Thus, it is possible to use a mixture of solvents or 
extraction steps in order to increase efficiency. Zou et al. [17] used both ethanol and ethyl 
acetate in a 1:1 mixture for the extraction of astaxanthin from H. pluvialis, the optimization 
was performed varying the percentage of ethanol from 30% to 70%, and consequently 
changing the polarity of the solvent mixture.  

Furthermore, a simple solution for enhancing the extraction rate is to apply a thermal 
treatment. Carotenoid’s extraction can be more efficient if the process is performed at a 
temperature between 50 to 65 °C. At these temperatures, the cell wall becomes less re-
sistant, and the process is further enhanced by the increased solubility of pigments in or-
ganic solvents at higher temperatures [18]. However, a long exposure to temperatures 
above 70 °C can cause degradation of carotenoids and chlorophylls that are considered 
thermally sensitive compounds [19]. 

When it comes to phycobiliproteins, one of the most common extraction techniques 
uses the freeze-thaw method, using phosphate buffer or water as a solvent. The freeze-
thaw method consists of the crystallization of the intracellular water by freezing the wet 
biomass, followed by thawing under refrigeration temperatures (4 °C), which causes cell 
lysis due to the expansion of the ice crystals. The extraction can involve several freeze and 
thaw cycles, leading to a time-consuming process and lack of reproducibility, which is 
highly affected by the number of cycles [20,21]. Optimization of the process involves ad-
justment of solvent, freezing temperature, freezing and thawing time, and biomass-to-
solvent ratio, among other factors. The extraction of phycocyanin is not limited by low 
temperature; Silveira et al. [22] optimized A. platensis phycocyanin extraction at 25 °C. The 
extraction used water as the extractant, and an orbital mixer for 4 h. Moreover, the freeze-
thaw method has also been used as pre-treatment for other extractions. After the freeze-
thaw process, the biomass can be submitted to ultrasonication, microwave-assisted ex-
traction, or homogenization. Considering that the cells become more fragile, the extraction 
is more efficient [12,23]. 

Figure 1. Diagram of classical extraction: solvent extraction, thermal extraction, and freeze−thaw extraction.

The extraction performed with organic solvents happens when the solvent is absorbed
within the cell wall, causing some rupture and making the cell content available for
extraction. The complete extraction can take a long time and usually improved efficiency
can be achieved with stirring or mixing [12,13]. Only in the few cases where microalga
does not require harsh disruption methods due to cell composition can solvent extraction
be as efficient as other methods. For example, Isochrysis galbana is a source of fucoxanthin,
which can be obtained via a single solvent extraction with ethanol [14].

Classical extraction of astaxanthin from H. pluvialis is performed by using organic
solvents such as chloroform and methanol or more eco-friendly solvents such as acetone,
ethyl acetate, and ethanol. The single solvent extraction with acetone can induce cell-wall
disintegration and extraction of pigments, although the efficiency is relatively low and
the process requires a long time [15,16]. Thus, it is possible to use a mixture of solvents or
extraction steps in order to increase efficiency. Zou et al. [17] used both ethanol and ethyl
acetate in a 1:1 mixture for the extraction of astaxanthin from H. pluvialis, the optimization
was performed varying the percentage of ethanol from 30% to 70%, and consequently
changing the polarity of the solvent mixture.

Furthermore, a simple solution for enhancing the extraction rate is to apply a thermal
treatment. Carotenoid’s extraction can be more efficient if the process is performed at a
temperature between 50 to 65 ◦C. At these temperatures, the cell wall becomes less resistant,
and the process is further enhanced by the increased solubility of pigments in organic
solvents at higher temperatures [18]. However, a long exposure to temperatures above
70 ◦C can cause degradation of carotenoids and chlorophylls that are considered thermally
sensitive compounds [19].

When it comes to phycobiliproteins, one of the most common extraction techniques
uses the freeze-thaw method, using phosphate buffer or water as a solvent. The freeze-thaw
method consists of the crystallization of the intracellular water by freezing the wet biomass,
followed by thawing under refrigeration temperatures (4 ◦C), which causes cell lysis due to
the expansion of the ice crystals. The extraction can involve several freeze and thaw cycles,
leading to a time-consuming process and lack of reproducibility, which is highly affected by
the number of cycles [20,21]. Optimization of the process involves adjustment of solvent,
freezing temperature, freezing and thawing time, and biomass-to-solvent ratio, among
other factors. The extraction of phycocyanin is not limited by low temperature; Silveira
et al. [22] optimized A. platensis phycocyanin extraction at 25 ◦C. The extraction used water
as the extractant, and an orbital mixer for 4 h. Moreover, the freeze-thaw method has also
been used as pre-treatment for other extractions. After the freeze-thaw process, the biomass
can be submitted to ultrasonication, microwave-assisted extraction, or homogenization.
Considering that the cells become more fragile, the extraction is more efficient [12,23].
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3. Enzymatic Extraction

The enzymatic extraction is based in the use of hydrolytic enzymes that are able to
break the membrane and/or the cell wall of the microalgae or cyanobacteria, exposing
their intracellular components to the solvent, as shown in Figure 2.
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The main advantage of the use of enzymatic extraction is the specificity of enzymes
for cell wall lysis, as in the case of cellulase, once cellulose and hemicellulose are the main
components in most cell walls [12,24]. Other advantages can be listed, such as the use of
mild reaction conditions in terms of pH and temperature, absence of corrosion, and higher
extraction rate, and the fact that this kind of extraction does not require drying steps [25].
On the other hand, some limitations are present and hamper the use of this extraction
process, such as the high cost of enzymes and the necessity of ensuring stable conditions
during the process [26], once enzymes are very sensitive in terms of temperature and pH
changes. In addition, enzymatic reactions may take a long time, becoming less attractive
for industrial applications [27].

Most enzymatic extractions in microalgae and cyanobacteria are related to the extrac-
tion of lipidic compounds (incl. carotenoids), being usually used as a pre-treatment that
requires a solvent extraction afterwards [12,24,28]. Specifically, for pigment extraction, Ta-
vanandi et al. [29] suggested an enzymatic extraction for the obtention of allophycocyanin
from A. platensis. In this case, the extraction is performed with lysozyme for 20 h, at 37 ◦C
and pH 7.0. When compared to surfactant-assisted extraction, the use of an enzymatic
extraction led to higher purity of allophycocyanin. Furthermore, increasing the extraction
efficiency is possible if the biomass is pre-treated prior to enzymatic extraction. Tavanandi
et al. [29] have also observed the increase of 30% of the final content of phycocyanin when
the biomass is pre-treated with ultrasound prior enzymatic extraction.

4. Pressurized Systems

The use of pressure as a cell disruption technique is one of the most promising
methods for the extraction of pigments from microalgae and cyanobacteria. High-pressure
homogenization (HPH) and pressurized liquid extraction (PLE) have high extraction
capacity and are both scalable and able to be applied in large-scale processes. The effects of
pressurized extraction processes on the cell are represented in Figure 3.
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HPH forces the suspension (biomass + solvent) through a small orifice, increasing
the pressure drastically; the consequent mechanical effects of turbulence, shear stress, and
cavitation induce cell disruption [30].

The system must take into account the loading pressure, solvent viscosity, biomass
concentration and cell wall composition. However, the increase in the pressure and the
shear in the orifice induce a significant increase of the temperature in the system, requiring
cooling to prevent pigments degradation [31]. The system is also limited to the high-energy
requirement and high cost of implementation and operation [30]. Thus, the pressure
required depends on the cell wall composition and varies according to the species. Spiden
et al. [32] showed that in the microalgae Nannochloropsis sp., Chlorella sp., and Tetraselmis
suecica, the pressure needed to disrupt 50% of the cells per cycle is ca. 2000, 1000, and
170 bar, respectively. A similar result was found by Mulchandani et al. [33], where the
optimal condition for lipids extraction from Chlorella saccharophila was 800 bar with 10 cycles
through the system. Moreover, Bernaerts et al. [34] showed that HPH using 1000 bar for
4 cycles in Nannochloropsis sp. biomass has enhanced the bioaccessibility of carotenoids
for food products, while decreasing the pigment content due to degradation, in particular
violaxanthin.

On the other hand, PLE is an alternative to classical thermal solvent extraction. In
this method, the suspension (biomass + solvent) is placed in an oven at high temperatures
(50 to 200 ◦C) and increased pressure (100 to 140 bar). The high pressure prevents the
solvent from boiling, as the boiling temperature increases; in the liquid state and with high
temperature, the solvent has a high diffusion coefficient, low viscosity, and higher solubility
strength. At the same time, the high temperature reduces cell wall stability and increases
the solvent flux into the cell. After the extraction time, the liquid is pumped out of the
extraction chamber by the addition of compressed nitrogen, and the biomass is retained by
a filter, reducing the processing steps. The main limitations of this system are, on the one
hand, the use of high temperatures, and on the other, the high costs of the facilities [35].

Cha et al. [36] used PLE for the extraction of carotenoids and chlorophylls from
Chlorella vulgaris. The optimization was performed through a response surface methodol-
ogy using temperature and time as factors, and the optimal extraction conditions varied
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between the target products: 148 ◦C, 35 min for lutein; 117 ◦C, 25 min for β-carotene; 173 ◦C,
15 min for chlorophyll a; and 170 ◦C, 3 min for chlorophyll b. The pressure in this study
was kept constant at 100 bar. Although high temperatures were used, the extraction was
more effective when compared to maceration, Soxhlet, and ultrasound extraction. Similar
findings were reported to D. salina, Herrero et al. [37] optimized PLE also in terms of
temperature and extraction time for the recovery of antioxidant compounds, and in special
β-carotene, where the increase in temperature also increased the extraction rate, reaching
the optimal extraction at the conditions 160 ◦C, 30 min, and 100 bar [37]. Moreover, in
Phormidium spp., the optimal extraction yield for carotenoids was found at 150 ◦C; 20 min
of time of extraction and pressure were not optimized and were kept constant between
treatments at 100 bar [38].

Furthermore, a process of pressurized liquid but using low temperatures (30 to 70 ◦C)
has been suggested by Amaro et al. [39]. The so called continuous pressurized solvent
extraction (CPSE) system provides a cheaper and more environmentally friendly approach
than the PLE system described above. In this system, the solvent and the extraction
chamber, containing the biomass, are heated to the desired temperature; the pressurized
solvent is then pumped through the extraction chamber, promoting the contact between
solvent and biomass and thus leading to a more efficient extraction. The system has as
major advantages the use of mild temperatures (room temperature to 70 ◦C) and pressures
(70 to 260 bar), and also allows recirculation of the solvent, thus reducing its consumption.
Amaro et al. [39] used this system with Gloeothece sp. biomass, and the optimal condi-
tions for carotenoid extraction were determined to be 60 ◦C and 180 bar with 3 cycles of
ethanol recirculation.

5. Wave-Energy-Based Cell Disruption

Two wave-based extractions—microwave-assisted extraction (MAE) and ultrasound
assisted extraction (UAE)—have been studied and optimized for the extraction of high-
value compounds from microalgae and cyanobacteria. Regarding the extraction of pig-
ments, both methods have been suggested, although only a few studies have been carried
out regarding their optimization. The effects of wave-based extraction processes in the cell
are represented in Figure 4.
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MAE occurs due to the heat shock caused when the radiation is applied to the solution,
causing cell wall degradation. As a thermal process, the main limitation of its use is
the limited thermostability of pigments. The main benefits of MAE are the reduced
extraction time and low solvent consumption, making it a green extraction method [30].
Furthermore, because of the short extraction time, this extraction method is not restricted
to thermoresistant molecules. Also, low temperatures can be used when performing MAE
under vacuum conditions, although this option significantly increases the cost of the
extraction process [40].

Juin et al. [40] used MAE to obtain phycobiliproteins from Porphyridium purpureum.
Optimal phycoerythrin extraction was achieved at 40 ◦C in 10 s of microwave application.
On the other hand, phycocyanin and allophycocyanin were extracted more effectively
at a temperature of 100 ◦C. The temperature was controlled by oscillating the power
applied [40]. In another study, Pasquet et al. [41] also suggest microwave extraction for the
obtention of carotenoids and chlorophylls from Cylindrotheca closterium, with an optimal
condition at 5 min and 50 W, at 56 ◦C, with a higher extraction rate when compared with
classic thermal extraction and UAE.

Regarding UAE, the process is based in the use of acoustic cavitation for producing
cavitation bubbles, that locally increase the pressure when they collapse. The consequent
disruption of the cell wall allows the penetration of the solvent, and higher extraction
rates are achieved [42]. UAE thus increases extraction yield, reducing the time and en-
ergy for processing, while ensuring good reproducibility, low solvent consumption and
low temperature ranges (<70 ◦C), allowing UAE to be associated as a green extraction
approach [42,43].

Dey and Rathod [42] optimized the use of UAE for the extraction of β-carotene from
A. platensis. Optimal conditions were found by using heptane at a temperature of 30 ◦C and
an electrical acoustic intensity of 167 W.cm−2, over 8 min [42]. The use of a UAE continuous
system has been proposed by Natarajan et al. [44] for the extraction of lipids from Chlorella
sp., pointing at a possible scaling up of UAE processes. Finally, Zou et al. [17] optimized
astaxanthin extraction from H. pluvialis using UAE using a response surface methodology,
and the optimal condition was set at an ultrasound power of 200 W and frequency of
40 kHz at 41.1 ◦C, during 16 min, with a yield 35% higher than classical solvent extraction.

6. Electroextraction

Electric field technologies have been developed and used in food processing since the
1970s, more specifically the pulsed electric fields (PEF), that are based in the application
of an electric current through the biomass in contact with a solvent for a certain period
of time, in order to induce an electroporation effect [45]. The electric field can be applied
continuously or in pulses, applying a charge to the cell membrane and inducing a destabi-
lization of its structure, eventually leading to an electroporation effect by opening pores in
the cell (reversibly or irreversibly), allowing solvent penetration and thus facilitating the
extraction of intracellular compounds [46]. The effects of electroextraction processes on the
cell are depicted in Figure 5.
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In microalgae and cyanobacteria, electrotechnologies can be used for bioproduct ex-
traction, but also for harvesting and for production, by inducing stress for the production
of secondary metabolites (including carotenoids and total antioxidant compounds) [47,48].
Changes in the intensity, shape of the electrical wave, frequency, temperature, time of ex-
traction, number of pulses, and pulse duration can influence the efficiency of the extraction,
which is dependent on the matrix biomass and the desired product or effect [48].

Electro-based methods, in special PEF, have been proposed as suitable extraction meth-
ods for several microalgae and cyanobacteria pigments. Luengo et al. [49,50] optimized
PEF for the extraction of chlorophylls and carotenoids from C. vulgaris using pulse duration
values between microseconds and milliseconds. The optimized treatment (25 pulses of
3 µs at an electric field strength of 20 kV.cm−1) was efficient for both cell permeabilization,
cell inactivation, and extraction of pigments. In another study, Luengo et al. [51] suggest
the use of a controlled temperature between 25 to 30 ◦C for the extraction of lutein from C.
vulgaris. The temperature range is the same used in the production of the microalgae, thus
avoiding extra costs for heating.

In the case of A. platensis, PEF have been suggested by Martínez et al. [52] for the
extraction of phycocyanin. The minimum electric field required was 15 kV.cm−1, being
the optimal 25 kV.cm−1 associated with a treatment of 50 pulses of 3 µs at temperature of
40 ◦C. In another study, a higher purity of phycocyanin extracted from Nostoc commune was
achieved by using PEF, although at a lower concentration than freeze thawing extraction,
using an electric field of 5 kV.cm−1, a frequency of 2 Hz, and 1500 pulses of 1 µs each, at
40 ◦C [53]. Chittapun et al. [53] also suggest that the PEF methodology seems to be not
suitable for some organisms, as in the case of Oscillatoria okeni, where the cell wall is much
more resistant. Moreover, for the extraction of phycoerythrin from the red microalgae
Porphyridium cruentum, the optimized conditions of PEF were an electric field of 10 kV.cm−1,
a frequency of 0.5 Hz, and 50 pulses of 3 µs each with temperature kept between 20 and
30 ◦C [54].

As a pre-treatment, PEF was used for the extraction of pigments from Nannochloropsis
spp. using a two-stage solvent extraction process: the first stage with water as the solvent
and the second one with an organic solvent mixture. The PEF treatment (20 kV.cm−1,
400 pulses of 10 µs) is applied only in the first stage and pigments are recovered in the
second stage [55]. In addition, PEF pre-treatment was also suggested for the extraction
of astaxanthin in H. pluvialis, with a treatment of 1 kV.cm−1, 10 pulses of 5 ms, at 20 ◦C
providing an extraction 1.2-fold more efficient than other disruption methods [56].

As the main advantages, electrotechnologies require much lower energy input, shorter
extraction times, and lower amounts of solvent than classical, enzymatic, and wave-based
methods [27]. They have advantages in the operational process when compared to tradi-
tional mechanical methods; they are scalable, they are considered a “green” method for
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industrial extraction due to a reduced used of solvents, and they can be operated in contin-
uous mode [46,54]. On the other hand, these technologies can have a higher capital and
installation cost. In addition, the use of organic solvents often remains necessary and the
extraction parameters such as pulse number and duration and electric field strength must
be optimized for each microorganism and desired product [45]. For example, cyanobacteria
require much more energy to achieve electroporation than microalgae, due to their smaller
size and membrane composition [54].

7. Supercritical Fluid Extraction

From scalable techniques, supercritical extraction stands out as an efficient method
for obtaining pigments from microalgae and cyanobacteria, especially carotenoids and
chlorophylls. Supercritical fluid extraction (SFE) is based on the use of a supercritical
solvent, which can permeate the cell by acting like a gas while also solubilizing compounds
by acting like a liquid solvent [57]. Because of its low polarity, supercritical CO2 is the
most commonly used solvent in carotenoids and chlorophyll extraction, and due to its non-
flammable and non-toxic properties, this method is associated with a more environmentally
friendly approach [3,58]. In general, SFE is recognized as a green methodology due to lower
consumption of organic solvents and shorter extraction time, when compared to classic
solvent extraction. However, the main limitation of SFE is still the cost of implementing
and operating it [3]. Supercritical extraction may also open the possibility for processes
operating under a “biorefinery” approach, once it allows further treatment and extraction
of the remaining biomass [59].

The SFE consists of a high–pressure pump for CO2, a heating chamber, an extrac-
tion chamber, and a collecting chamber. The CO2 is pumped into the heating chamber
where it will reach the supercritical conditions, then it is pumped into the extraction vessel,
where it diffuses into the biomass. The extraction occurs as a result of the solvent per-
meating the biomass, which causes cell expansion and simultaneous solubilization of the
target compounds. The extract then goes to the collecting chamber where CO2 is cooled,
re-compressed and recycled, leaving an oil-like highly concentrated extract containing
carotenoids and chlorophyll [57,60]. Figure 6 shows a schematic representation of SFE and
its effects on the cell.
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Supercritical CO2 extraction has been applied to the extraction of carotenoids in many
microalgae and cyanobacteria. In D. salina, Jaime et al. [61] found a pressure of 443 bar
and a temperature of 27.5 ◦C to be the optimal conditions for the extraction of β-carotene.
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In another work, Hosseini et al. [62] showed that the optimal operating conditions for
extraction of carotenoids from D. salina were 400 bar and 55 ◦C, although the highest
carotenoids/chlorophylls ratio was indeed found at a lower temperature (30 ◦C). Changes
in pressure have been associated to the selective extraction of carotenoids.

Liau et al. [63] optimized supercritical CO2 extraction in Nannochloropsis oculata, and
the system used ethanol addition (as co-solvent) to enhance the extraction yield. The
optimal condition for lipids and carotenoids extraction was set at 350 bar, 50 ◦C, and 16.7%
of ethanol addition. In the case of Nannochloropsis gaditana, Macías-Sánchez et al. [64]
used supercritical CO2 extraction for carotenoids and chlorophyll extraction. The high-
est yield was obtained at a pressure of 400 bar and a temperature of 60 ◦C. The best
carotenoids/chlorophylls ratio was also obtained by decreasing the pressure (200 bar)
and maintaining the temperature at 60 ◦C. The pressure of 400 bar and a temperature of
60 ◦C was also the optimal condition for lutein and β-carotene extraction in S. almeriensis.
Although the extraction yield of β-carotene is up to 50% of its total content, the percentage
of extraction for lutein is very low [65]. For Scenedesmus obliquus, Guedes et al. [66] tested
supercritical CO2 extraction of carotenoids and chlorophylls for use in food processing.
The highest carotenoid yield and ratio of total carotenoids to chlorophyll was attained at
250 bar and 60 ◦C, using ethanol (7.7%, v/v) as co-solvent.

Regarding astaxanthin from H. pluvialis, Nobre et al. [67] showed that the highest
recovery of carotenoids (92%) was obtained at a pressure of 300 bar and temperature of
60 ◦C, using ethanol as a co-solvent (10%), while Di Sanzo et al. [68] found the maximum
recovery of astaxanthin, at 50 ◦C and 550 bar, without the addition of a co-solvent.

Supercritical extraction was also applied for the extraction of carotenoids in cyanobac-
teria. Montero et al. [69] optimized temperature and pressure of Synechococcus sp. extrac-
tion, and the optimal settings varied regarding specific carotenoids: 358 bar and 50 ◦C for
β-carotene; 454 bar and 59 ◦C for cryptoxanthin; and 500 bar and 60 ◦C for zeaxanthin. Also,
Macías-Sánchez et al. [70] studied the SFE of carotenoids and chlorophyll in Synechococcus
sp. For the extraction of carotenoids, a pressure of 300 bar and a temperature of 50 ◦C were
suggested, while for chlorophyll the optimal condition was 500 bar and 60 ◦C. For a higher
selectivity of carotenoids, the pressure should be decreased to 200 bar and the temperature
kept at 60 ◦C.

8. Cell Milking

Products coming from microalgae and cyanobacteria traditionally followed the pro-
cess of biomass cultivation, harvesting, dewatering, extraction, and purification; thus,
alternatives to improve the process have been suggested along the years. The term “cell
milking” has gained popularity due to the potential of bypassing a portion of the process.
Cell milking works on the basis of a two-phase cultivation system that includes an aqueous
phase (medium) and an extraction phase with a hydrophobic solvent. The contact of the
solvent with the cell creates pores in the membrane, exposing the target compounds that
pass to the solvent phase due to their compatibility and solubility in the solvent. The cells
are then allowed to recover and produce more of the compound and possibly be milked
again in a short time interval [71].

Cell viability is the main factor that distinguishes milking from in situ extraction. In
situ extraction uses the same two-phase solvent system, but the cell is not restored after
the extraction. The continuous production of a compound through in situ extraction also
requires a high productivity in the cultivation phase to overcome cells’ death [11]. Figure 7
shows a schematic representation of cell milking and its effects on the cell.
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The main advantage of cell milking is that this process does not require harvesting
and the recovery of the products from the hydrophobic phase is relatively simple. Also,
the cultivation phase can be maintained continuously, significantly reducing costs [11]. As
disadvantages, the solvent needs to be biocompatible, green labelled, and safe, and the
solutes can be only extracted in the hydrophobic phase. Moreover, the need of agitation to
provoke contact of the two phases requires energy input, increasing costs, although most
microalgae and cyanobacteria cultures already have an agitator [11].

The most commonly used solvent in milking is dodecane, approved as food flavor-
ing but with restrictions for other uses. An important factor when considering solvent
compatibility is its log P (partition coefficient) value, which will determine its solubility
in the cultivation phase. Hejazi et al. [72] used solvents with log P ranging from 3 to 9
in order to extract β-carotene from D. salina and found that solvents with log P > 6 were
the most compatible with this microalga. Also, using a higher log P solvent would allow
specifying the extraction for β-carotene only, with less chlorophyll contamination. In this
study, the optimal extraction was achieved using dodecane. In another study, Kleinegris
et al. [73] tested milking with different D. salina strains; interestingly one of the strains
(CCAP 19/25) was not milkable, as no carotenoids were extracted. For the other tested
strains it was possible to extract different carotenoids profiles by using different mixing
methods. Using gentle mixing, it was possible to extract only secondary carotenoids, while
when using vigorous mixing primary carotenoids and chlorophyll were mostly extracted
instead, although with vigorous mixing the authors reported an increase in cell death.

The use of milking was also described for the obtention of astaxanthin from H. pluvialis
by using a two-phase solvent for the extraction phase, after the switch from the green
to the red phase. The process uses dodecane for extraction and methanol for recovering
the astaxanthin from the dodecane. The addition of NaOH to methanol is suggested in
order to increase the stability of astaxanthin [18]. As an alternative to dodecane, Kang
and Sim [74] suggested vegetable oils for the extraction of astaxanthin, with an increase in
recovery yields.

Milking can be applied for the extraction of other compounds besides pigments,
including lipids for biofuel. Jackson et al. [11] suggest the milking of the microalga Botry-
ococcus braunii (Chlorophyta) using hexane, octane or octanol as solvents, due to their
biocompatibility, boiling point, extraction effectiveness, cost, and safety.

9. Novel Extraction Methodologies

Novel methodologies have been suggested for cell disruption and extraction of valu-
able compounds from microalgae and cyanobacteria in special pigments. These method-
ologies are usually adaptations of the already-mentioned technologies or have the same
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fundamental principles as a basis. The next few paragraphs will detail the applicability
of laser, hydrodynamic cavitation, flotation, high-voltage electrostatic fields, and ohmic
heating for the extraction of microalgae and cyanobacteria products.

Laser is a wave-based mechanical method for cell disruption, as with ultrasounds and
microwaves. McMillan et al. [75] showed the use of laser as alternative for cell disruption
in Nannochloropsis oculata. The laser (1064 nm) used a third of the energy of microwave
extraction in order to obtain the same yield of disruption (95%). The biggest issue with
using laser for large-scale production is the difficulty of scaling-up. In that study, the laser
extraction was performed in only 30 µL of matrix.

Regarding hydrodynamic cavitation, cell disruption occurs after the formation of
microbubbles in the medium, which produce shock waves upon collapsing, momentarily
inducing higher pressure and temperature. These environmental changes created by those
shock waves are responsible for cell breakage. Lee and Han [76] applied hydrodynamic
cavitation to N. salina for cell wall disruption and lipid extraction, and this method seems
to be as suitable as ultrasonication. On the other hand, hydrodynamic cavitation requires
an efficient cooling system, proper facility design, and maintenance of high fluid velocity
for the cavitation effect, leading to significant increases in the cost of the process [30].

Also based on bubble formation, the liquid biphasic flotation combines solvent subla-
tion and a liquid biphasic system. The extraction occurs by selective adsorption of target
compounds on air bubbles connecting a two-phase system: one salt-rich aqueous phase and
the other an organic phase. Liquid biphasic flotation has been suggested for the extraction
of astaxanthin from H. pluvialis by using 2-propanol as the organic phase and (NH4)2SO4
as salt for the aqueous phase [77]. The system can be scaled-up, although it requires a large
amount of salt and organic solvents.

Moreover, the use of novel methodologies of electric field extraction—high voltage
electrical discharge and ohmic heating—seems to present the most scalable and econom-
ically viable options. High voltage electrical discharge (HVED) uses continuous electric
field of high intensity (E > 10 kV.cm−1) for extraction, which can also preserve the com-
pounds’ stability and the overall quality of the final product. However, only a few studies
have used this methodology for extraction [78]. In addition, the requirement for high
amounts of energy makes this method less attractive than other electric-based systems.
Zhang et al. [79] used HVED for extraction in N. oculata, and suggested a two-phase extrac-
tion for chlorophyll, carotenoids, and lipids using HVED as a pre-treatment with aqueous
washing, followed by vacuum drying and an organic solvent extraction.

In the case of ohmic heating (OH), an electric field of low to moderate intensity
is applied with an alternate current, causing internal heat generation (the Joule effect)
that can enhance cell breakage or electroporation [80]. This methodology does not have
restrictions in processing times and is currently used in foods thermal processing, mainly
due to the uniformity of heating, controllable heating rate, cost, and energy efficiency [47].
Although the use of ohmic heating has been suggested for the extraction of pigments in
plants [81,82], only a few studies have suggested the use of this methodology in algae
matrices. Yodsuwan et al. [83] suggested the use of OH as a pre-treatment of Chlorella sp.
biomass for the production of biodiesel. The optimal pre-treatment was performed at an
electric field strength of 15 V.cm−1 and a frequency of 5 Hz, for 2 min at 70 ◦C.

A summary of techniques discussed in this review for the extraction of pigments from
microalgae and cyanobacteria is presented in Table 1.
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Table 1. Extraction parameters and yields of pigments from cyanobacteria and microalgae, using different extraction methods.

Extraction Method a Product Species Processing Parameters b Extraction Yield (mg.gDW) Reference

Classic solvent extraction Fucoxanthin Isochrysis galbana S: ethanol; T: RT; t: 60 min 18.23 ± 0.54 [14]

Classic solvent extraction Astaxanthin Haematococcus pluvialis S: acetone; T: RT; t: 16 h ca. 5.00 [16]

Classic solvent extraction Astaxanthin H. pluvialis S: ethanol:ethyl acetate (1:1, v:v); T: RT;
t: 90 min 16.48 ± 0.67 [17]

Classic solvent extraction Phycobiliproteins Arthrospira platensis S: water or sodium phosphate buffer;
T: 25 ◦C; t: 4 h 92.00 [22]

Enzymatic Allophycocyanin A. platensis S: lysozyme + surfactants; T: 37 ◦C; t:
20 h 32.27 [29]

HPH Carotenoids Nannochloropsis sp.
S: water/recovered with

hexane:isopropanol (3:2, v:v) p:
1000 bar; T: n.s.; c: 4 cycles

Violoxanthin—2.50 ± 0.24;
Antheraxanthin—1.74 ± 0.34;

Zeaxanthin—1.93 ± 0.24;
β-carotene—10.07 ± 1.70 c

[34]

PLE Carotenoids and chlorophyll Chlorella vulgaris

S: ethanol:water (9:1, v:v); p: 100 bar;
Lutein—T: 148 ◦C; t: 35 min;

β-carotene– T: 117 ◦C; t: 25 min;
Chlorophyll a—T: 173 ◦C; t: 15 min;
Chlorophyll b—T: 170 ◦C; t: 3 min

Lutein—3.70
β-carotene—0.67 Chlorophyll
a—10.83 Chlorophyll b—6.81

[36]

PLE β-carotene Dunaliella salina S: ethanol; p: 100 bar; T: 160 ◦C; t:
30 min 34.6 [37]

PLE Carotenoids Phormidium spp. S: ethanol; p: 100 bar; T: 150 ◦C; t:
20 min n.s. [38]

CPSE Carotenoids Gloeothece sp. S: ethanol; p: 180 bar; T: 60 ◦C; c:
3 cycles

Lutein—2.9 ± 0.1;
β-carotene—1.5 ± 0.1 c [39]

MAE Phycobiliproteins Porphyridium purpureum

S: water; P: n.s.; t: 10 s;
Phycoerythrin—T: 40 ◦C;

Phycocyanin/Allophycocyanin—T:
100 ◦C

Phycoerythrin—73.7 ± 2.3;
Phycocyanin—34.8 ± 6.4;

Allophycocyanin—32.3 ± 1.2
[40]
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Table 1. Cont.

Extraction Method a Product Species Processing Parameters b Extraction Yield (mg.gDW) Reference

MAE Fucoxanthin Cylindrotheca closterium S: acetone; P: 50 W; T: 56 ◦C t: 5 min 4.24 ± 0.09 [41]

UAE β-carotene A. platensis S: heptane; Pd: 167 W.cm−2; T: 30 ◦C t:
8 min

ca. 1.00 [42]

UAE Carotenoids H. pluvialis S: ethanol:ethyl acetate (1:1, v:v); P: 200
W; F: 40 kHz; T: 41.1 ◦C t: 16 min 27.58 ± 0.40 [17]

PEF Carotenoids C. vulgaris
S: citrate- phosphate McIlvaine

buffer/recovered with ethanol; E: 20
kV.cm−1; T: n.s.; t: 25 pulses of 3 µs

ca. 1.00 [49]

PEF Phycocyanin A. platensis S: water E: 15 kV.cm−1; T: 40 ◦C; t: 50
pulses of 3 µs

100.00 [52]

PEF Phycocyanin Nostoc commune S: water E: 5 kV.cm−1; F: 2 Hz; T: 40
◦C; t: 1500 pulses of 1 µs

29.66 ± 0.52 [53]

PEF Phycoerythrin Porphyridium cruentum
S: citrate- phosphate McIlvaine buffer;
T: 20 to 30 ◦C; E: 10 kV.cm−1; F: 0.5 Hz;

t: 50 pulses of 3 µs
32.00 [54]

PEF pre-treatment Carotenoids Nannochloropsis spp.

1st stage—S: water; T: 20 ◦C; E: 20
kV.cm−1, t: 400 pulses of 10 µs) (2nd

stage) S: recovered in DMSO or
ethanol + water (1:1, v:v); T: 20 ◦C

n.s. [55]

PEF pre-treatment Astaxanthin H. pluvialis
S: culture medium/recovered with

ethanol; T: 20 ◦C; E: 1 kV·cm−1; t: 10
pulses of 5 ms

18.3 [56]

SC-CO2 β-carotene D. salina S: SC-CO2; p: 443 bar; T: 27.5 ◦C; t: 100
min n.s. [61]

SC-CO2 Carotenoids D. salina S: SC-CO2; p: 400 bar; T: 30 ◦C; t: 90
min 115.43 [62]

SC-CO2 Carotenoids Nannochloropsis oculata S: SC-CO2 + Ethanol; p: 350 bar; T: 50
◦C; t: 30 min 7.61 [63]
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Table 1. Cont.

Extraction Method a Product Species Processing Parameters b Extraction Yield (mg.gDW) Reference

SC-CO2 Carotenoids and chlorophyll Nannochloropsis gaditana S: SC-CO2; p: 400 bar; T: 60 ◦C; t: 3 h Carotenoids—0.34;
Chlorophylls—2.23 [64]

SC-CO2 Lutein and β-carotene Scenedesmus almeriensis S: SC-CO2; p: 400 bar; T: 60 ◦C; t: 5 h Lutein—0.04;
β-carotene—1.50 [65]

SC-CO2 Carotenoids Scenedesmus obliquus S: SC-CO2; p: 250 bar; T: 60 ◦C; t: 4 h 0.18 [66]

SC-CO2 Astaxanthin H. pluvialis S: SC-CO2; p: 550 bar; T: 50 ◦C; t:
100 min 19.72 [68]

SC-CO2 Astaxanthin H. pluvialis S: SC-CO2 with addition of Ethanol; p:
300 bar; T: 60 ◦C; t: n.s. 1.8 [67]

SC-CO2 β-carotene Synechococcus sp. S: SC-CO2; p: 358 bar; T: 50 ◦C; t: 2 h 0.49 ± 0.10 [69]

SC-CO2 Carotenoids Synechococcus sp. S: SC-CO2; p: 300 bar; T: 50 ◦C t: 3 h 1.51 [70]

Cell Milking β-carotene D. salina S: dodecane 0.25 d [72]

Cell Milking β-carotene D. salina S: dodecane 5.30 d [73]

Cell Milking Astaxanthin H. pluvialis S: dodecane 85.00 e [18]

Cell Milking Astaxanthin H. pluvialis S: vegetable oils 76.00 e [74]

Laser n.s. N. oculata S: water; P: 10 W; F: 20 kHz; t: 1 min n.s. [75]

Hydrodynamic cavitation Lipidic extract N. salina S: culture medium/recovered
with hexane n.s. [76]

Liquid biphasic flotation Astaxanthin H. pluvialis
S: 2-propanol as organic phase and

(NH4)2SO4 as salt for the
aqueous phase

95.11 d [77]

HVED Chlorophyll, carotenoids N. oculata S: water; E: 40 kV.cm−1; T: 20 to 30 ◦C;
t: 400 pulses of 4ms

n.s. [79]

OH pre-treatment Lipidic extract Chlorella sp.
S: water (wet biomass); E: 0.015

kV.cm−1; F: 0.005 kHz; T: 70 ◦C; t:
2 min

n.s. [83]

n.s.—not specified. a HPH—high-pressure homogenization; PLE—pressurized liquid extraction; CPSE—continuous pressurized solvent extraction; MAE—microwave-assisted extraction; UAE—ultrasound-
assisted extraction; PEF—pulsed electric fields; SC-CO2—supercritical CO2 extraction; HVED—High voltage electrical discharge; OH—ohmic heating. b S—solvent; T—temperature; t—time; c—cycles of
extraction; p—pressure; P—power; Pd—power density; E—electric field; F—frequency; RT—room temperature. c mg.g of extract. d % of produced carotenoids. e mg Lculture

−1 .
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10. Final Remarks

Microalgae and cyanobacteria pigments show great potential for industrial applica-
tions, since there is already a commercial market for β-carotene, astaxanthin, and phyco-
cyanin. However, the process of extraction and the available technologies are still associated
with a high cost of implementation and operation. In addition, energetic requirements
represent a very significant part of the sustainability of the process [84]. As shown in this
review, the standardization of a biomass extraction protocol for obtention of the pigments
of interest is still a challenge. The variability of microalgae and cyanobacteria composition
needs case-by-case optimization. According to Grima et al. [85], extraction can account for
up to 60% of overall expenditures. To lower those expenses, it is still required to optimize
existing procedures and develop fresh procedures. The main advantages and limitations of
the methods discussed in this review for the extraction of pigments from microalgae and
cyanobacteria are summarized in Table 2.

Table 2. Advantages and limitations of the different methods for extraction of pigments in microalgae and cyanobacteria.

Methodology Advantages Limitations

Classic solvent extraction
• Reduced cost in terms of infrastructure

and operating
• Less efficiency
• High amount of organic solvents
• Time-consuming

Enzymatic
• Specificity
• High cell disruption

• High cost of enzymes
• Requires very controlled process
• Need of separation of the enzymes

Pressure • High cell disruption
• Reduced need of solvent

• High energy requirement
• High cost of infrastructure

Wave energy-based
• Eco-friendly
• Reduced time of extraction
• High extraction rate

• High cost of infrastructure
• Hard control of temperature
• Hard up-scaling process

Electric fields
• Lower energy input
• Reduced time of extraction
• Reduced need of solvent

• High cost of infrastructure

Supercritical extraction
• Eco-friendly
• Optimal temperature below degradation

point for pigments

• High cost of infrastructure
• Hard operating process

Cell milking • Non-destructive method
• Can operate in continuous

• Very sensible process to maintain the
culture in continuous production

Laser

• Eco-friendly
• Reduced time of extraction
• Lower energy input
• High extraction rate

• Only applicable to small volumes

Hydrodynamic cavitation

• Eco-friendly
• Reduced time of extraction
• Lower energy input
• High extraction rate

• High cost of infrastructure
• Hard operating process

Flotation • Reduced time of extraction
• High extraction rate

• Requires a large amount of salt and
organic solvents

High voltage electrical discharge • Reduced time of extraction
• High cell disruption • High energy requirement

Ohmic heating

• Reduced time of extraction
• Controlled and homogeneous

temperature
• High cell disruption

• High energy requirement
• High cost of infrastructure
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Moreover, the use of an optimized extraction method can reduce the necessity of
purification. Depending on the final application (e.g., in the case of food, feed, nutraceuti-
cals, and cosmetics) purification may or may not be needed. The need of purification can
increase the final price a hundred fold [86].

Finally, the optimal scenario for microalgae and cyanobacteria valorization is the
use of a biorefinery process, which will enhance the economic feasibility by allowing the
exploitation of different co-products which can be individually utilized [87]. Nevertheless,
only small-scale experiments and theoretical studies can be found in the literature, being
mostly inconclusive when larger scale applications are sought. There is, thus, still a gap in
technical feasibility studies, being necessary to improve the scale of biorefineries in order
to evaluate the viability of the process and its practical implementation.
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