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Abstract: Cracking in concrete structures affects performance and is a major durability problem.
Cracks must be detected and repaired in time in order to maintain the reliability and performance
of the structure. This study focuses on vision-based crack detection algorithms, based on deep
convolutional neural networks that detect and classify cracks with higher classification rates by using
transfer learning. The image dataset, consisting of two subsequent image classes (no-cracks and
cracks), was trained by the AlexNet model. Transfer learning was applied to the AlexNet, including
fine-tuning the weights of the architecture, replacing the classification layer for two output classes
(no-cracks and cracks), and augmenting image datasets with random rotation angles. The fine-tuned
AlexNet model was trained by stochastic gradient descent with momentum optimizer. The precision,
recall, accuracy, and F1 metrics were used to evaluate the performance of the trained AlexNet model.
The accuracy and loss obtained through the training process were 99.9% and 0.1% at the learning rate
of 0.0001 and 6 epochs. The trained AlexNet model accurately predicted 1998/2000 and 3998/4000
validation and test images, which demonstrated the prediction accuracy of 99.9%. The trained model
also achieved precision, recall, accuracy, and F1 scores of 0.99, respectively.

Keywords: crack detection; deep learning; convolutional neural networks; image processing;
AlexNet network

1. Introduction

Many of the existing concrete structures built during the 1960–70s are rapidly nearing
the end of their service life [1]. It is estimated that nearly 10% of bridges built during
this time have been repaired in the United States [2]. In Korea, the number of buildings
over 30 years old was evaluated as 3.8% in 2014, reaching 13.8% by 2024, and 33.7% by
2029 [3,4]. Likewise, concrete structures are often exposed to aggressive environments,
fatigue stresses, and cyclic loading that initiate cracks on the surfaces [5,6]. The cracks in
structures have a significant impact on durability and make it easy for external aggressive
substances to reach the reinforcement bars and cause corrosion [7,8]. In addition, cracks
in the structures also reduce the local stiffness and cause material discontinuities [9,10].
Therefore, cracks must be detected and repaired in time in order to maintain the relia-
bility and performance of the structure. Generally, crack detections were performed by
non-destructive and destructive tests [11]. Visual inspections combined with surveying
equipment were manually performed to detect cracks in the structures [12]. A PZT-based
electro-mechanical admittance method combined with FEM analysis was enacted to quan-
titatively identify the damage caused by concrete cracking and steel yielding of flexural
beams subjected to monotonic and cyclic loading [13]. Chalioris et al. [14] developed a wire-
less impedance/admittance monitoring system to identify the incipient damages caused by
concrete cracking. In addition, non-destructive testing techniques such as infrared, thermal,
ultrasonic, laser, and radiographic tests were also used to detect and analyze the crack
development in concrete structures [15]. Although the above methods provide reliable
crack detection results, they are difficult and time-consuming to perform because they
require large instrumentation, and are expensive and labor intensive [16]. To overcome the

Appl. Sci. 2021, 11, 5229. https://doi.org/10.3390/app11115229 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app11115229
https://doi.org/10.3390/app11115229
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11115229
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11115229?type=check_update&version=2


Appl. Sci. 2021, 11, 5229 2 of 13

shortcomings of the manual methods, several image processing methods were developed
to provide automated crack detection and visualization in concrete structures. Most of the
image processing methods used filtering, thresholding, and feature extraction techniques to
identify and localize the cracks [17–22]. Furthermore, the crack regions were separated by
fuzzy transforms and segmentation algorithms [21]. Although image processing methods
were effective in detecting cracks, the real-time applicability in structures was limited
due to the variations in external environmental factors such as light, shadows, and rough
surfaces. To improve the performance of image processing techniques, machine learning
algorithms were developed through pattern recognition and extraction [23]. Machine
learning algorithms such as support vector machine (SVM) and artificial neural network
(ANN) have also been explored to detect cracks in the concrete structures [24–27]. A local
entropy-based thresholding algorithm was proposed that automatically detects spalled
regions on the surface of the reinforced concrete columns [28]. In addition, the length
and width of cracks were also measured using a local binary pattern (LBP) algorithm [29].
Machine learning algorithms consisting of feature extraction and classification were used to
extract relevant crack features. The machine learning algorithm extracts only a few layers
of features, and the algorithm might not provide accurate crack detection results if the
extracted features do not reflect the cracks.

Deep learning algorithms such as convolutional neural networks (CNNs) have been
used in many studies for crack detection and classification to improve the feature extraction
process. CNN models can extract relevant features from the input data through multilayer
neural networks, which are more advantageous than the existing limitations of image
processing and machine learning methods. CNN-based crack detection was performed for
the safety diagnosis and localization of damages in concrete structures in [30]. Similarly,
Bayesian algorithms were used to identify cracks in nuclear power plants, and deep learn-
ing segmentation algorithms were used to identify cracks in the tunnels [31]. Furthermore,
deep convolutional neural networks (DCNNs) were recently explored for crack detection
and classification [32,33]. Most of the DCNNs focused on pixel-wise crack classification
through semantic segmentation by associating each pixel [32,34]. Deep learning networks
require a large amount of training data and time. These can be minimized by fine-tuned
pretrained DCNNs that use small amounts of data and provide reliable results in minimal
time. Fine-tuned pretrained DCNNs such as AlexNet, GoogleNet, ResNet, SqueezeNet,
and VGGNet have recently been used to detect and classify cracks in concrete structures.
A VGG19 pretrained model was applied to create pixel-level crack maps on concrete pave-
ments and walls [35]. Crack segmentations were performed using SegNet, U-Net, and
ResNet models [36–39]. A DenseNet-121-based fully convolutional network was studied to
provide the pixel-level detection of multiple damages including cracks, spalling, efflores-
cence, and holes in concrete structures [40]. Furthermore, DCNNs based on VGG16 were
also used for crack segmentation on the concrete surfaces [41].

All aforementioned deep learning approaches have shown promising performance in
the crack detection of structures. Since the performance of DCNNs depends on various
factors, such as data, filters, the number of layers, the number of epochs, and the network
depth, it is difficult to select an appropriate pre-trained DCNN for crack detection with
high precision and accuracy. The advantage of selecting an appropriate DCNNs is that it
ensures better generalization and prevents overfitting. AlexNet, with many pre-trained
DCNNs, is the most influential CNN widely applied to image classification and won the
ImageNet LSVRC-2012 competition with a minor error rate of 15.3% [42]. The highlights of
AlexNet are listed as follows: there are more filters in each layer; each convolutional layer
is followed by a pooling layer; it uses ReLU instead of tanh, arctan, and logistic to add
non-linearity that increases speed by up to 6x with the same accuracy; it uses a dropout
layer instead of regularization to deal with overfitting; and it makes use of an overlap
pooling layer to reduce the size of the network [43,44]. These characteristics motivated the
utilization of AlexNet in this study for crack detection and classification.
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This study utilized AlexNet, a pre-trained deep convolutional neural network, for the
automated vision-based crack detection and classification. The proposed method consists
of three steps: (1) collecting a large number of images from an open-source image dataset
with subsequent categorization of two classes (no-crack and crack images); (2) developing
a DCNN model, transferring the learning and augmentation process; and (3) automatically
detecting and classifying the images using the trained deep learning model. Additionally,
a cross-dataset study was performed to verify the ability of the trained AlexNet model.
The precision, recall, accuracy, and F1 metrics were used to evaluate the performance
of the trained AlexNet model. The accuracy of the trained AlexNet model was further
compared to other pretrained DCNNs such as GoogleNet, ResNet101, InceptionResNetv2,
and VGG19.

2. Methodology
2.1. Scheme of the CNN Model

In this study, a pre-trained DCNN was used for automated crack detection and
classification. Pre-trained DCNNs consist of convolutional layers for extracting features
and classifying images. Pre-trained DCNNs have been widely used in many applications to
classify images, and there are many pre-trained DCNNs available (e.g., AlexNet, GoogleNet,
ResNet, SqueezeNet, and VGGNet). This study used the AlexNet pre-trained model to
detect and classify images in three stages: image database acquisition, CNN model and
transfer learning process, and classification. Figure 1 shows the scheme of crack detection
and classification model. First, an image database consisting of thousands of images was
acquitted for two classes: crack images and no-crack images. Second, a CNN classifier
model was developed to detect and classify images using AlexNet. Third, the trained
DCNNs detected cracks and classify the set of validation and test images. Then, the
cross-dataset was used to verify the ability of the trained model.
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Figure 1. Scheme of the crack detection model.

2.2. Image Database Acquisition

An open-source dataset of concrete crack images was used for detection and classi-
fication [45]. The image dataset consists of 20,000 images, evenly divided into crack and
no-crack classes, with an input image size of 227 × 227 × 3 pixels. The image dataset was
divided into 70% for training, 10% for validation, and 20% for testing. The image dataset
details are shown in Table 1. For training, classification, and testing, the images were
divided into 14,000, 2000, and 4000 images, respectively. This study also used an image
dataset consisting of crack and no-crack images to perform a cross-dataset study [46]. The
dataset consists of 16,285 images taken on bridge-decks, walls, and pavements. The details
of the cross-image datasets are shown in Table 2.
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Table 1. Concrete crack image datasets.

Total Number of Images 20,000

Crack Images 10,000
No-crack Images 10,000

Size (Pixels) 227 × 227
Number of Color Channels 3

Training Data 14,000
Validation Data 2000

Test Data 4000

Table 2. Cross-image datasets.

Total Number of Images 16,285

Bridge-Decks 4086
Pavements 7300

Walls 4899

2.3. AlexNet CNN Model

A CNN consists of several hidden layers as well as input and output layers. The
layers of a CNN generally consist of convolutional, ReLU, pooling, fully connected, and
normalization layers. This study analyzed the image database by applying a DCNN
classifier to classify the input images into two categories: no-crack and crack. The CNN
network was designed based on AlexNet for image classification. Figure 2 shows an
overview of the CNN classifier based on AlexNet. AlexNet, a large neural network with
60 million parameters and 650,000 neurons, consists of 5 convolutional layers followed by
max-pooling layers, 3 fully connected layers, and a final 1000-way SoftMax layer. AlexNet
has been widely trained on more than a million images and can classify images into
1000 classes. Since the number of image classes in this study was two (no-crack and crack),
the output number of classes was changed to two.
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A new activation function was used in the AlexNet neural networks to provide
nonlinearity. Several traditional activation functions, including logistic function, tanh
function, and arctan function, tend to cause gradient vanishing problems. To overcome
this, a new activation function was used, the rectified linear unit (ReLU), and its definition
is shown in Equation (1).

ReLU(x) = max(x, 0) (1)

Deep neural networks with ReLU as the activation function converge faster than those
with tanh units. Dropout was employed in fully connected layers to avoid overfitting that
trains only a portion of the neurons in each iteration. The dropout reduces joint adaptation
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between neurons and improves generalization and robustness. Convolution was employed
for automatic feature extraction and defined as in Equation (2).

C(m, n) = (M.w)(m, n) = ∑
k

∑
l

M(m − k, n − l)w(k, l) (2)

where w is the convolution kernel. Pooling was employed for automatic feature reduction,
which considered a group of neighboring pixels in the feature map and generated a
representation value. Cross-channel normalization was used to improve the generalization.
In addition, fully connected layers were used for classification in which the neurons in
fully connected layers were directly linked. The SoftMax activation function was expressed
as in Equation (3). The SoftMax activates neurons by constraining the output in the
range of (0, 1).

SoftMax (x)i =
exp(xi)

∑n
j=1 exp

(
xj
) (3)

2.3.1. Transfer Learning

The network analyzer was applied to display interactive visualizations of network
architectures and detailed information about network layers. The network architecture is
shown in Table 3. The first layer was an image input layer with an input image size of
227 × 227 × 3, where the 3 is the number of color channels. Additionally, the CNN consisted
of convolution layers, pooling layers, fully connected layers, and the SoftMax layer. It also
included other operations such as ReLU, cross-channel normalization, and dropout layers.
The last three layers, fully connected, SoftMax, and the classification output layer of the
pretrained network, were configured for 1000 classes. These three layers were fine-tuned by
the transfer learning for the two classes (no-crack and crack) as shown in Table 4.

Table 3. Network architecture of AlexNet.

No. Layer Output

1 Image Input 227 × 227 × 3
2 Convolution 55 × 55 × 96
3 ReLU 55 × 55 × 96
4 Cross Channel Normalization 55 × 55 × 96
5 Max Pooling 27 × 27 × 96
6 Grouped Convolution 27 × 27 × 256
7 ReLU 27 × 27 × 256
8 Cross Channel Normalization 27 × 27 × 256
9 Max Pooling 13 × 13 × 256

10 Convolution 13 × 13 × 384
11 ReLU 13 × 13 × 384
12 Grouped Convolution 13 × 13 × 384
13 ReLU 13 × 13 × 384
14 Grouped Convolution 13 × 13 × 256
15 ReLU 13 × 13 × 256
16 Max Pooling 6 × 6 × 256
17 Fully Connected 1 × 1 × 4096
18 ReLU 1 × 1 × 4096
19 Dropout 1 × 1 × 4096
20 Fully Connected 1 × 1 × 4096
21 ReLU 1 × 1 × 4096
22 Dropout 1 × 1 × 4096
23 Fully Connected 1 × 1 × 1000
24 SoftMax 1 × 1 × 1000
25 Classification Output 1000
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Table 4. Transfer learning.

AlexNet Layers Transfer Learning

No. Layers Output No. Layers Output

23 Fully Connected 1 × 1 × 1000 23 Fully Connected 1 × 1 × 2
24 SoftMax 1 × 1 × 1000 24 SoftMax 1 × 1 × 2
25 Classification Output 1000 classes 25 Classification Output 2 classes

2.3.2. Augmentation Process

The AlexNet network requires input images of size 227 × 227 × 3. Therefore, image
augmentations were used to automatically resize the training images as the image size in
the datastore may differ. Additional augmentation operations to perform on the training
images were also specified and included randomly flipping the training images along the
vertical axis and randomly converting up to 30 pixels horizontally and vertically. The data
augmentation prevented the network from overfitting and memorizing the exact details of
the training images.

2.4. Training and Classification by AlexNet CNN Model

Matlab R2020b was used for image processing and data analysis. The fine-tuned
AlexNet model was trained by stochastic gradient descent with momentum (SGDM)
optimizer. The initial learning rate was set as 0.001 and 0.0001, the minibatch size was set
as 15, and the max epoch was set as 6. After the training, the validation images and test
images were classified using the fine-tuned network, and the images were displayed with
their predicted labels. To quantify the accuracy of the trained model, the precision, recall,
accuracy, and F1 scores were computed using Equations (4)–(7).

Precision =
TP

TP + FP
(4)

Recall =
TP

TP + FN
(5)

Accuracy =
TP + TN

TP + TN + FP + FN
(6)

F1 = 2 × Precision × Recall
Precision + Recall

(7)

where TP, FP, FN, and TN represent true positive, false positive, false negative, and true
negative, respectively.

3. Results and Discussion
3.1. Performance of the Trained Network

The training progress included the accuracy and cross-entropy loss for each epoch of
training and validation. To determine the appropriate learning rate, neural networks with
different learning rates over 6 epochs were trained. The training progress with learning
rates of 0.0001 and 0.001 were trained and compared. During the training process, the
maximum number of iterations was 5598, with 933 iterations per epoch. The training
progress plot of accuracy (%) with different learning rates is shown in Figure 3. The
accuracy obtained from the 0.0001 learning rate and 6 epochs was 99.9%. The change in
accuracy at the 0.0001 learning rate was minimal after 1 epoch. With the 0.001 learning
rate, the obtained accuracy was 50%. At two different learning rates, a better performance
was achieved with the learning rate of 0.0001 after 6 epochs. In the same way, the training
progress plot of loss (%) with different learning rates is shown in Figure 4. The loss obtained
from the 0.0001 learning rate was 0.1%. At the 0.001 learning rate, the acquired loss of
training and validation was 50%. In the two different learning rates, the loss was least at
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the 0.0001 learning rate. Considering the above results, the learning rate of 0.0001 and 6
epochs was fixed and trained in this study.
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3.2. Classification Using the Trained Network

The pre-trained DCNN was trained with the training set of 14,000 images using the
AlexNet model, which obtained 99.9% accuracy during the training process. After training,
the trained model was validated before the test. The validation image dataset consisted
of 10% of the total image dataset, and had 2000 images. During the validation process,
the trained model predicted the images into two classes: crack and no-crack. Sample
images of predicted crack and no-crack classes in the validation images are shown in
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Figure 5. The confusion matrix for the validation images is shown in Figure 6. From the
set of 2000 images, 1000 images had cracks and 1000 images had no-cracks. An amount
of 1998 of the 2000 images were accurately predicted, representing a 99.9% accuracy. In
the crack image dataset, 1000 images were accurately predicted. Similarly, 998 no-crack
images were accurately predicted. The prediction accuracies of crack and no-crack images
were both 99.9%. In the validation images, 99.9% accuracy and 0.1% loss were obtained.
The performance metrics were computed, and are shown in Table 5. The precision, recall,
and F1 scores obtained from the confusion matrix were 1, 0.99, and 0.99. The prediction
accuracy was 0.99.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 14 
 

3.2. Classification Using the Trained Network 
The pre-trained DCNN was trained with the training set of 14,000 images using the 

AlexNet model, which obtained 99.9% accuracy during the training process. After train-
ing, the trained model was validated before the test. The validation image dataset con-
sisted of 10% of the total image dataset, and had 2000 images. During the validation pro-
cess, the trained model predicted the images into two classes: crack and no-crack. Sample 
images of predicted crack and no-crack classes in the validation images are shown in Fig-
ure 5. The confusion matrix for the validation images is shown in Figure 6. From the set 
of 2000 images, 1000 images had cracks and 1000 images had no-cracks. An amount of 
1998 of the 2000 images were accurately predicted, representing a 99.9% accuracy. In the 
crack image dataset, 1000 images were accurately predicted. Similarly, 998 no-crack im-
ages were accurately predicted. The prediction accuracies of crack and no-crack images 
were both 99.9%. In the validation images, 99.9% accuracy and 0.1% loss were obtained. 
The performance metrics were computed, and are shown in Table 5. The precision, recall, 
and F1 scores obtained from the confusion matrix were 1, 0.99, and 0.99. The prediction 
accuracy was 0.99.  

Table 5. Performance metrics of the validation images. 

Precision Recall F1 score Accuracy 
1 0.99 0.99 0.99 

 

Figure 5. Classification and labelled images with the validation data. 
Figure 5. Classification and labelled images with the validation data.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 14 
 

 
Figure 6. Confusion matrix of validation images. 

After the validation of the trained model, the test images were classified using the 
trained network. The test image dataset consists of 20% of the images from the original 
dataset, comprising 4000 crack and no-crack images. The predicted crack and no-crack 
classes of the test images are shown in Figure 7. In the test image dataset, there were 2000 
images of each class (crack and no-crack). The confusion matrix of the test images is shown 
in Figure 8. The model trained in the test images accurately predicted 3998 from a total of 
4000 images. Only two images were left unpredicted. A total of 1999 crack images and 
1999 non-crack images were accurately predicted, representing a 99.99% accuracy. Con-
sidering the total test images, the prediction accuracy was 99.9% with a 0.1% loss. The 
computed performance metrics are shown in Table 6. The precision, recall, and F1 scores 
obtained from the confusion matrix were all 0.99. In addition, the accuracy of the predic-
tion in the test images was 0.99. 

 

Figure 6. Confusion matrix of validation images.



Appl. Sci. 2021, 11, 5229 9 of 13

Table 5. Performance metrics of the validation images.

Precision Recall F1 Score Accuracy

1 0.99 0.99 0.99

After the validation of the trained model, the test images were classified using the
trained network. The test image dataset consists of 20% of the images from the original
dataset, comprising 4000 crack and no-crack images. The predicted crack and no-crack
classes of the test images are shown in Figure 7. In the test image dataset, there were
2000 images of each class (crack and no-crack). The confusion matrix of the test images is
shown in Figure 8. The model trained in the test images accurately predicted 3998 from a
total of 4000 images. Only two images were left unpredicted. A total of 1999 crack images
and 1999 non-crack images were accurately predicted, representing a 99.99% accuracy.
Considering the total test images, the prediction accuracy was 99.9% with a 0.1% loss. The
computed performance metrics are shown in Table 6. The precision, recall, and F1 scores
obtained from the confusion matrix were all 0.99. In addition, the accuracy of the prediction
in the test images was 0.99.
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The accuracy of the trained model was further compared to the other pretrained
models and is shown in Table 7. The GoogleNet, ResNet101, InceptionResNetv2, and
VGG19 DCNNs were compared to the trained AlexNet DCNN model. The AlexNet,
GoogleNet, and VGG19 obtained accuracies of 0.99. In addition, the ResNet101 and
InceptionResNetv2 models obtained accuracies of 0.9833 and 0.95, respectively. While the
other DCNN models also obtained high accuracies, the AlexNet has fewer layers compared
to other DCNNs, and can be trained in less time. The other DCNNs have more layers for
feature extraction, which requires more time for training. Therefore, AlexNet was superior
to other pretrained DCNNs for crack detection and classification.

3.3. Cross-Dataset Study of the Trained Network

To validate the ability of the trained AlexNet model, a cross-dataset was tested using
different images that were not used for training. The dataset consists of crack and no-crack
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images taken on bridge-decks, walls, and pavements. Examples of the cross-image dataset
are shown in Figure 9.

Table 7. Accuracies of pretrained DCNNs.

No. Pretrained DCNN Accuracy

1 AlexNet 0.99
2 GoogleNet 0.99
3 ResNet101 0.9833
4 InceptionResNetV2 0.95
5 VGG19 0.99
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The trained AlexNet model was saved, and a cross-image dataset was tested using
the trained model. The trained model predicted the images taken on bridge-decks with
an accuracy of 84.5%. The trained model also predicted the images taken on pavements
and walls with 89.3% and 81.9% accuracy, respectively. The loss obtained from the images
taken on bridge-decks, pavements, and walls was 15.5%, 10.7%, and 18.2%, respectively.
The confusion matrix of the cross-dataset test images is shown in Figure 10. To quantify
the trained model, the precision, recall, accuracy, and F1 scores were computed and are
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presented in Table 8. For the bridge-deck images, the obtained precision, recall, and F1
scores were 0.89, 0.91, and 0.90. The precision, recall, and F1 scores obtained from the
images taken on pavements were all 0.92. Similarly, the precision, recall, and F1 scores
obtained from the images taken on walls were 0.88, 0.82, and 0.85, respectively. In addition,
the prediction accuracies for the three categories were 0.84, 0.89, and 0.81, respectively. The
prediction accuracy obtained from the original dataset was 0.99, while the accuracy of the
cross-dataset were decreased to 0.84, 0.89, and 0.81, respectively. These decreases in the
prediction accuracy were due to the presence of a variety of obstructions including shadows,
surface roughness, scaling, edges, holes, and background debris in the images [46]. These
obstructions resulted in the loss of accurate prediction of the images.
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Table 8. Performance metrics of cross-dataset test results.

Type of Dataset Precision Recall F1 Score Accuracy

Bridge-decks 0.89 0.91 0.90 0.84
Pavements 0.92 0.92 0.92 0.89

Walls 0.88 0.82 0.85 0.81

4. Conclusions

This study investigated automated crack detection based on a CNN. An open-source
image dataset with two subsequent classes (no-crack and crack) was used. The image
datasets were divided into 70%, 10%, and 20% for training, validation, and testing, respec-
tively. The CNN model was designed based on AlexNet for image classification. AlexNet
consists of convolution layers, pooling layers, fully connected layers, and SoftMax layers,
as well as other operations such as ReLU, cross-channel normalization, and dropout layers.
The last three layers (fully connected, SoftMax, and classification output layer) of the
pretrained network were fine-tuned by transfer learning for the two classes (no-crack and
crack). Image augmentations were then used to automatically resize the training images.
The fine-tuned AlexNet model was trained by stochastic gradient descent with momentum
(SGDM) optimizer. After training, the validation images and test images were classified
using the fine-tuned network.

The fine-tuned AlexNet model was trained, and the training progress evaluated the
accuracy and cross-entropy loss for each epoch. The accuracy obtained at the 0.0001 learn-
ing rate and epoch 6 was 99.9%, and the validation loss was 0.1%. The trained model
was validated, and it accurately predicted 1998 from 2000 images. The accuracy obtained
during the validation was 99%, and the loss of accurate prediction was 0.1%. After the
validation, the test images were classified using the trained network. In the test images, the



Appl. Sci. 2021, 11, 5229 12 of 13

trained model accurately predicted 3998 from the total 4000 images. Considering the total
test images, the prediction accuracy was 99.9% with 0.1% loss. This study confirmed that
the CNN-based method demonstrates a high level of applicability to detect cracks, with
a 99.9% accuracy. The performance of the trained model was quantified by the precision,
recall, accuracy, and F1 metrics, which were all equal to 0.99. Furthermore, the accuracies
were compared to other pretrained DCNNs. AlexNet showed an accuracy of 0.99, which is
beneficial for detecting and classifying cracks with high precision. The trained AlexNet
model was further tested with different cross-dataset images which consisted of several
obstructions, including shadows, surface roughness, scaling, edges, holes, and background
debris. The existence of these obstructions resulted in a nominal loss of accurate predictions,
with an accuracy of around 0.81–0.89%.
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