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Abstract: Environmental concerns and rising energy prices put great pressure on the manufacturing
industry to reduce pollution and save energy. Electricity is one of the main machinery energy sources
in a plant; thus, reducing energy consumption both saves energy costs and protects our planet. This
paper proposes the novel method called variable neighborhood strategy adaptive search (VaNSAS) in
order to minimize energy consumption while also considering job priority and makespan control for
parallel-machine scheduling problems. The newly presented neighborhood strategies of (1) solution
destroy and repair (SDR), (2) track-transition method (TTM), and (3) multiplier factor (MF) were
proposed and tested against the original differential evaluation (DE), current practice procedure (CU),
SDR, TTM, and MF for three groups of test instances, namely small, medium, and large. Experimental
results revealed that VaNSAS outperformed DE, CU, SDR, TTM, and MF, as it could find the optimal
solution and the mathematical model in the small test instance, while the DE could only find 25%, and
the others could not. In the remaining test instances, VaNSAS performed 16.35–19.55% better than
the best solution obtained from Lingo, followed by DE, CU, SDR, TTM, and MF, which performed
7.89–14.59% better. Unfortunately, the CU failed to improve the solution and had worse performance
than that of Lingo, including all proposed methods.

Keywords: variable neighborhood strategy adaptive search; differential-evolution algorithm; meta-
heuristic; parallel-machine scheduling; green scheduling; energy consumption

1. Introduction

The manufacturing industry is facing a great deal of pressure with regard to sav-
ing energy and reducing emissions, since it is an energy-intensive industry. In 2020, its
energy consumption reached 1443.1 trillion British thermal units (Btu), of which elec-
tricity consumption was 200.7 trillion Btu [1]. In the same year, energy-related carbon
dioxide emissions by the manufacturing industry reached 1057 million metric tons [2].
Studying energy-efficiency scheduling under electricity cost is of great significance for
manufacturing firms to improve their energy efficiency. In a factory, machinery is the main
energy-consuming unit [3–6]. Reducing machine energy consumption economically and
environmentally improves sustainable manufacturing. There are many potential energy-
reduction approaches in a manufacturing plant, such as developing more energy-efficient
machines and processes. In the production line, production planning and scheduling
generally impact energy efficiency. Energy efficiency can also be increased by the suitable
utilization of machines in the shop floor [6–12]. In the production process, the electricity
consumption of each job is sometimes different, indicating that an operation with high
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electricity consumption is arranged for low processing time jobs, and an operation with
low electricity consumption is arranged for high processing time jobs, so that the electricity
cost can be decreased [5,6,13]. Paying too much attention to energy cost as an outstanding
optimization objective may cause a long makespan and imbalanced workload on machines,
as well as lead to bottlenecks, late deliveries, and even untimely machine failure [14–17].

Production scheduling is explicitly important in a modern manufactory, consisting
of planning and sequencing jobs into machines, since mass production heavily relies on a
large number of machines working in parallel. Parallel machines can process several jobs
simultaneously without affecting each other. Parallel machine scheduling is defined as
sequencing and assigning jobs into machines when similar types of machines are available
and jobs can be scheduled in these machines. A variety of sequencing and/or processing
restrictions often exist when decision makers try to minimize some related objective func-
tions [14–24]; however, most enterprises still use advanced machines running alongside
outdated ones. In contrast to the old ones, modern machines are usually adjusted to work
at a high speed and save energy. Speeding up old machines to operate as fast as modern
ones results in them consuming more electric power and releasing more pollutants [25].
Sequencing and assigning jobs to a particular machine that can process different jobs at
different production rates is considered to be the parallel-machine-scheduling problem.
Solutions or algorithms constructed to schedule parallel machines are important because,
when implemented in all sorts of parallel-machine problems, they can obtain good solutions
for the overall production-planning process in a factory [18,19].

Although most scheduling problems consider production efficiency, cost, and quality
as optimization problems, considering the costs of energy and gas emissions—known as
the green scheduling problem—has attracted the attention of researchers [9–11,14,25]. In
addition, various constraints have been addressed in parallel-machine-scheduling prob-
lems, such as setup time, machine-available time, ready time, release date, due date, and
delivery time [14,26]. In this study, the due-date constraint was considered with makespan
control, since late-delivery cost and production-overhead cost per working hour may be a
thorny issue for entrepreneurs. Therefore, job priority and makespan control should be
seriously considered for production planning as well. On the basis of the above discussion,
many scholars and manufacturing firms should be aware of the importance of energy-
efficiency and job-priority concerns, on top of minimizing the makespan. There are a few
studies on the parallel-machine-scheduling problem with a concept of energy consumption
that consider job priority and makespan control. Therefore, this addressed scheduling is
both an objective optimization problem and an NP-hard problem. The differential evo-
lutionary (DE) algorithm is suitable to solve this kind of problem because it can obtain
non-dominated solutions in a single run and has been successfully applied to optimization
problems [17,20,24,27–29]. In addition, metaheuristics based on local search methods, such
as the variable neighborhood strategies adaptive search (VaNSAS), have been successfully
applied to solve many combinatorial optimizations problems [30–40], which inspired us to
develop a parallel-machine-scheduling model, and to propose VaNSAS and new neighbor-
hood strategies: (1) solution destroy and repair (SDR); (2) track-transition method (TTM);
and (3) multiplier factor (MF).

Nowadays, the cost of energy consumption is key in terms of production efficiency
and environmental sustainability for industrial firms. A significant amount of research has
been done on parallel-machine-scheduling problems that are strongly NP-hard. We refer
to Chen [41], Pinedo [42] and Behera [43] for the discussion on the complexity of parallel-
machine scheduling. Therefore, this study investigates the parallel-machine-scheduling
problem for minimizing energy consumption while considering job priority and makespan
control. In order to obtain the near Pareto front, we developed VaNSAS: (1) solution destroy
and repair (SDR); (2) the track-transition method (TTM); and (3) multiplier factor (MF). On
the basis of the problem characteristic and evolutionary algorithm, the proposed VaNSAS
uses a new encode scheme that can convert discrete optimization problems into continuous
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optimization problems, and applies VaNSAS with three different techniques to further
improve quality.

The remainder of the study is organized as follows: Section 2 reviews the literature
related to parallel scheduling, considering energy consumption, job priority, and makespan
control, including DE and VaNSAS applications; Section 3 describes a formal definition
of the addressed problem and a mathematical model for the proposed problem; Section 4
describes the proposed VaNSAS, SDR, TTM, and MF with multiple operators in order to
handle the scheduling problem; Section 5 presents and analyzes the experiment results
of our proposed VaNSAS, SDR, TTM, and MF; Section 6 provides the conclusion and
suggestions for future studies.

2. Literature Review

Environmental and sustainable energy is a critical topic. CO2 emissions into the
atmosphere are strongly related to energy consumption in human activities; they are
generated by traditional fuels from natural resources which are becoming depleted [44].
Liu [39] studied scheduling problems that were related to an environment where the
objective of minimizing CO2 emissions was investigated with total weighted tardiness
(TWT). The non-dominated sorting-based genetic algorithm II (NSGA-II) and the ε-archived
genetic algorithm (ε-AGA) were presented to solve two batch-scheduling problems. In
their subsequent article, Liu and Huang [10] demonstrated both the effectiveness of an
adaptive multi-objective genetic algorithm (AMGA) in finding the Pareto optimal set, and
the efficiency of NSGA-II in bicriterion scheduling on a batch-processing machine with
dynamic job arrivals. Regarding low carbon emissions in the parallel-machine-scheduling
problem, Pan et al. [40] introduced the advantages of a novel imperialist competitive
algorithm (ICA) to minimize total tardiness, total energy consumption, and CO2 emissions.

Various energy concerns (e.g., energy consumption, energy efficiency, carbon footprint,
and energy cost) are investigated in production-scheduling problems. There are also
several studies on energy-efficient production systems. For example, Mouzon et al. [45]
improved product operation methods, such as several dispatching rules and mathematical
programming, in order to minimize the total completion time and energy consumption of
manufacturing equipment in production-scheduling problems. Angel et al. [46] introduced
a randomized approximation algorithm for the problem of energy-consumption scheduling
for unrelated parallel machines with the average weighted completion time. Sobottka
et al. [47] demonstrated the development and evaluation of a digital method for multi-
objective optimization problems considering traditional business aims and energy efficiency
in a metal-casting manufactory. The improved method, including hybrid simulation-based
multi-criterion optimization as a multi-stage hybrid heuristic and metaheuristic method,
was employed in a heat-treatment process, which requires order batching and sequencing
on parallel machines under complex restrictions.

In the context of energy cost, a number of works attempted to reduce it during produc-
tion when energy and electricity prices vary with time of use. For example, Fang et al. [7]
proposed a mixed integer programming model for optimizing the operating schedule of a
flow shop considering both productivity- and energy-related criteria. Zeng [23] studied the
uniform parallel-machine-scheduling problem with electricity cost and time-dependent or
time-of-use electricity tariffs, where electricity price changes by the working hour within
a day. Firstly, a bi-objective mixed-integer linear-programming model was constructed
for this problem. Then, the proposed method (an insertion algorithm) was applied to
minimize total electricity cost and the number of operated machines. Zhou et al. [19]
presented a multi-objective differential evolution algorithm to solve the parallel-batch-
processing machine-scheduling problem (BPM) in the presence of dynamic job arrivals and
a time-of-use pricing scheme. The objective was to simultaneously minimize makespan
and minimize total electricity cost (TEC). Recently, Nanthapodej et al. [48] introduced the
hybrid differential devolution algorithm and adaptive large neighborhood search, and
demonstrated a superior performance in finding high quality solutions within a short
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computation time of the proposed algorithm for solving the parallel-machine-scheduling
problem, with minimizing total energy cost (TEC) as key for environmental sustainability,
and controlling machine load balance as an indicator of production efficiency.

Although more attention is now paid to energy cost in parallel-machine-scheduling
problems, some constraints for job priority and makespan control are also important, such
as starting time, completion time, due date, and delivery time, since late-delivery cost
and production-overhead cost per working hour impact manufacturers. Some studies
attempted to avoid late- or express-delivery charges, such as lateness and tardiness issues.
For instance, Chaudhry et al. [49] considered the minimization of total tardiness in identical
parallel-machine-scheduling problems by using a genetic algorithm (GA), and compared it
with branch-and-bound and particle-swarm-optimization methods. Then, Pei et al. [50]
demonstrated minimizing maximal earliness and number of tardy jobs in parallel-machine-
scheduling problems. That article proposed the hybrid variable neighborhood search
(VNS)–gravitational search algorithm (GSA), which is a combination of VNS and GSA
to find a solution. Solution-search efficiency is also an attractive goal for many studies.
Maecker and Shen [51] also applied the VNS algorithm with the fast evaluation technique
(FET) to improve the computational efficiency of solution finding in the identical parallel-
machine problem with machine-dependent delivery times in order to minimize total
weighted tardiness.

In a continuous search space for function optimization, differential evolution (DE) is
a type of evolutionary algorithm that is widely implemented [27]. The DE algorithm has
gained much attention from scholars since it was first presented by Storn and Price [28].
There are a variety of DE algorithms in industrial applications studied for optimization
problems. For instance, the DE algorithm was implemented for solving production-
scheduling problems. Wang et al. [29] demonstrated hybrid differential evolution (HDE) in
scheduling problems with splitting jobs. The study proposed a global search method with
block mutation and block crossover. Experiment results revealed that the proposed HDE
performed better than the traditional DE did. Zhou et al. [52] showed the performance
of the hybrid DE algorithm for the uniform parallel-machine-scheduling problem with
arbitrary job sizes, non-identical capacities, and different speeds. The objective was to
minimize makespan. The HDE algorithm was proposed for solving large-scale problems.
In this algorithm, individuals were represented as a discrete job sequence. The proposed
algorithm and novel mutation were designed on the basis of this representative. Wu and
Che [53] proposed a memetic differential evolution algorithm for an energy-efficient bi-
objective-unrelated parallel-machine-scheduling problem in order to minimize makespan
and total energy consumption. Efficient speed adjusting and job machine swap heuristic
were introduced and integrated into the algorithm as a local search method with an adap-
tive meta-Lamarckian learning strategy. Zhou et al. [19] presented a multi-objective DE
algorithm for effectively solving the parallel-batch-processing machine-scheduling problem
while considering energy cost on a large scale. In this algorithm, individuals were encoded
into job permutations and discrete mutations; crossover operators were designed on the
basis of the encoding structure, and a Pareto selection operator was proposed to select
what the individuals for the next population are. Defining job permutation, a heuristic was
employed to group jobs into batches and schedule them on BPMs.

In addition, a procedure to minimize the total energy cost of a schedule without
compromising the makespan was proposed by Li et al. [54]. They investigated the parallel-
machine-scheduling problem with different-colored families, sequence-dependent setup
times, and machine-eligibility restriction of the dyeing process in textile manufacturing.
Generally, the dyeing optimization problem is NP-hard, and the HDE algorithm was pro-
posed to solve real-world data problems. The proposed HDE algorithm, a special encoding
and decoding scheme, was constructed to deal with the machine-eligibility constraint,
and chaos theory was applied to determine the parameter settings of the DE algorithm.
Kusoncum et al. [17] presented the traditional DE with embedded heuristics to obtain near-
optimal solutions in realistically sized machine scheduling, including capacitated machine
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restrictions and sequencing-independent setup-time considerations. Results revealed that
the proposed method’s performance tended to find a new optimal solution during the
simulation, while the local-search-based heuristics were trapped at some local optima, and
the DE was insufficient for search intensification.

Variable neighborhood strategies adaptive search (VaNSAS) is a new type of meta-
heuristics that was first introduced by Theeraviriya et al. [36], with the concept of solving
combinatorial optimization problems. The primary idea of the VaNSAS is to allow for
algorithms to search in many different areas to obtain the best possible solution by using
several searching methods. VaNSAS is very flexible to use in many optimization problems,
such as the location and routing problem (LRP). Theeraviriya et al. [36] studied the LRP
in the Thai rubber industry, and proposed VaNSAS to solve the problem with the objec-
tive function of fuel-cost minimization, including a realistic constraint that allowed for a
vehicle to collect products by visiting rubber farms more than once in cases where they
had more rubber than vehicle capacity. Computation results showed that VaNSAS could
find solutions for all problem sizes in much less processing time than that needed by the
exact method. After that, Pitakaso et al. [37] presented VaNSAS with another LRP, the
green 2-echelon location-routing problem (G2ELRP), which is a variant of the capacitated
location-routing problem (CLRP) and the 2-echelon location routing problem (2ELRP).
The G2ELRP aims to reduce overall fuel consumption on the basis of distance and road
conditions in both echelons. A new constraint considered in the G2ELRP is that a customer
can be served more than once. The finding demonstrated that VaNSAS could solve this
case and be applied to other industries.

Kusoncum et al. [17] introduced another application of VaNSAS in a sugar mill as a
computational tool for scheduling sugarcane-vehicle-unloading systems. The objective
was to minimize the makespan of parallel-machine-capacity scheduling with a cyclic
sequence, and machine restriction included sequencing-independent setup time. Numerical
results showed that, during the simulation, VaNSAS could find optimal solutions. In a
manufacturing case study regarding the garment industry, the VaNSAS proposed by
Jirasirilerd et al. [22] presented a better solution and less computation time in order to
minimize cycle time for a simple assembly line, balancing the Type 2 problem while
considering the number and types of machines operated in each workstation. Recently,
Pitakaso et al. [38] applied VaNSAS to minimize the cycle time while considering the
limited number of machine types in a particular workstation for the special case of the
simple assembly line balancing Type 2 problems, where multi-skilled workers have a set
of competencies that allow them to work on more than one machine in a workstation.
Results showed that VaNSAS was able to reduce the cycle time and increase assembly line
effectiveness.

The studies discussed above show that global search metaheuristics (e.g., VNS, GA,
DE and VaNSAS) are effective in solving optimization problems such as parallel-machine
scheduling. Due to the importance of the environmental and economic impact, studies
on energy-cost concerns, job priority, and makespan control are obviously attractive and
important in terms of theoretical and application value; however, no previous articles had
investigated this kind of problem and employed the VaNSAS algorithm to find the solution.
As a result, this paper’s objective is to minimize total energy consumption while considering
job priority and makespan control for the parallel-machine-scheduling problem. In order
to solve this problem, we developed a mathematical model, and introduced VaNSAS, SDR,
TTM, and MF algorithms to further improve solution-search efficiency.

3. Mathematical-Model Formulation
3.1. Problem Description

This paper considers the problem of energy consumption concerning scheduling,
while considering job priority and makespan control for parallel machines, to improve
energy consumption and production efficiency for environmental sustainability [9]. Produc-
tion costs such as overhead and late delivery are also significant and should be mentioned.
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Therefore, the objective of this study is to minimize total energy cost, including considering
due-date and lateness constraints. In this context, a set of I different jobs {j1, j2, ..., jI}
were scheduled on M parallel machines {m1, m2, ..., mM}. We assumed that each job j had
deterministic processing time pjm on each machine. The jobs could be assigned to any
machine. Due to the job characteristics, each machine required different levels of energy
consumption ejm to process each job. All jobs were available at time zero. The completion
time of job j is denoted by Cjm, which is the time when the processing of the job was
completed on machine m. Only after the machine starting the process could no idle time be
inserted into the schedule with no preemption. Additionally, in each time period, only one
job could be processed on machine m.

On the basis of these assumptions and the following notations, a mathematical model
is proposed to formulate this problem in order to minimize energy consumption while
considering job priority and makespan control. This is defined as the minimization of
energy-consumption, late-delivery, and production-overhead costs.

3.2. Mathematical Formulation

On the basis of the characteristics of minimizing energy consumption with job priority
and makespan control for a parallel-machine-scheduling problem, the mathematical model
is formulated. The details of index, parameters, decision variables, objective function, and
constraints are as follows:

Index

i, j
Job indices; j, i = 1, 2, . . . , I when i or j = 0, 0 represents the dummy node,
which is always produced first in each machine

m, n Machine indices; m, n = 1, 2, . . . , M
Parameters
I Total number of jobs
M Total number of machines
Pjm Processing time of job j on machine m
Ejm Energy consumption for producing job j on machine m
Dj Due date of job j
aj Penalty cost of job j (priority of job)
B Cost per time units of processing with all machines.
Ajm Job-machine restriction; Ajm = 1 when job j can produce on machine m.
LMAX Maximal lateness that is allowed
TMAX Maximal number of tardy jobs that are allowed
KKK Cost conversion for used energy
Decision Variable

Xijm

{
1 when job i immediately produces be f ore job j in machine m
0 Otherwise

Yjm

{
1 when job j is assigned to machine m
0 Otherwise

Sjm Start time of job j on machine m
Cjm Completion time of job j on machine m
Li Lateness of job i

Ti

{
1 when job i delivers late
0 otherwise

Objective function

min Z =
M

∑
m=1

I

∑
j=1

EjmYjm +
I

∑
j=1

ajTj +
M

∑
m=1

B×MaxI
j=1Cjm (1)

Subject to
I

∑
j=1

X0jm ≤ 1 ∀ m (2)
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M

∑
m=1

I

∑
i=1, i 6=j

Xijm = 1 ∀ j (3)

I

∑
j=1,i 6=j

Xijm ≤ Yim ∀ i, m (4)

I

∑
i=1,i 6=j

Xijm = Yjm ∀ j, m (5)

M

∑
m=1

Yim = 1 ∀ i (6)

Sjm =
I

∑
i=1,i 6=j

CimXijm ∀ j, m (7)

Cjm ≥ Sjm + Pjm ∀ j, m (8)

S0m = 0 ∀ m (9)

C0m = 0 ∀ m (10)

Li =

{
MaxM

m=1Cim − Di i f MaxM
m=1Cim ≥ Di

0 otherwise
∀ i (11)

Li ≤ LMAX ∀ i (12)

Ti =

{
1 i f Li > 0
0 otherwise

∀ i, j; i 6= j (13)

I

∑
i=1

Ti ≤ TMAX ∀ j, m (14)

The objective function in Equation (1) attempts to minimize energy used to produce
all jobs, the priority cost for jobs that deliver late, and the production-overhead cost per
working hour. Equations (2) and (3) show that all jobs must be assigned to at most one
machine, and the start of all assigned jobs must be Job 0 (dummy job). Equation (4) is the
relationship constraint of Xijm and Yim. Equation (5) confirms that job i is processed before
job j in machine m only when job j is assigned to machine m. Equation (6) ensures that a job
can be assigned to at most one machine. Equation (7) calculates the starting time of job j in
machine m, and Equation (8) is the calculation of the completion time of job j. Equations (9)
and (10) define the starting and completion time of the dummy job. Equation (11) calculates
the lateness of job i, while Equation (12) is used to ensure that the lateness of job i does
not exceed the predefined value (LMAX). Equation (13) decides whether job i is late, and
Equation (14) ensures that the number of tardy jobs does not exceed the predefined number
(TMAX).

The mathematical model was formulated and tested on Lingo software. The optimal
solution was obtained for a small problem, albeit with intolerable computation time.
Solving medium or large problems desired more computation time, even for an incomplete
solution. Therefore, in this study, we developed metaheuristics to solve a medium or large
problem as a realistically sized problem.

4. Proposed Method

When a problem becomes larger and more complicated, solving it may not be possible
by mathematical methods. Therefore, we introduced a variable neighborhood strategy
adaptive search (VaNSAS), a new type of metaheuristics, which successfully improved
solution-search efficiency in previous studies by adapting some VaNSAS mechanisms.
This study aims to solve the parallel-machine-scheduling problem in order to minimize
energy consumption with job priority and makespan control, and proposes VaNSAS for
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improving solution-search efficiency. The goal of VaNSAS is to allow algorithms to search
for the best possible solution in different areas by using several searching methods. The
solution-searching steps are to find more diversification and intensification at all times,
depending on the black-box methods that were designed. The search method in VaNSAS
can be a basic local search, well-known heuristics, modified metaheuristics, and a newly
designed local search; therefore, VaNSAS is very flexible for applying new ideas to the
algorithm and can be implemented to many optimization problems.

VaNSAS is composed of two main steps: (1) generating the initial solution (the set
of tracks); and (2) performing the track-touring process. The track-touring process of
VaNSAS comprises four steps: (1) the track selects the neighborhood strategy (NS); (2) the
track performs the selected NS; (3) heuristic information is updated; and (4) Steps 1 to 3
are repeated until the algorithm reaches the termination condition. The overall VaNSAS
processes are presented in Algorithm 1.

Algorithm 1. Variable neighborhood strategy adaptive search (VaNSAS).

Input: number of jobs, number of machines, production time, energy consumption
Output: consumed energy
Begin
Randomly generate predefined number of tracks (NT) Zijt
While t is less than the predefined number of iterations,
Perform track-touring process
1. Each track individually selects a black box
2. Each track performs a black-box searching process

2.1 Solution decompose and repair method (SDR) (optional)
2.2 Track-transition method (TTM) (optional)
2.3 Multiplier factor (MF) (optional)

3. t = t + 1;
End

4.1. Generating an Initial Solution

Indirect encoding was used to solve the proposed problem while we randomly gener-
ated the set of tracks. Table 1 shows an example of five tracks to operate in VaNSAS.

Table 1. Example of a set of five tracks used in VaNSAS.

Track

Position
Job Elements Machine Elements

1 2 3 4 5 6 7 8 9 10 A B C

1 0.48 0.70 0.22 0.43 0.75 0.91 0.04 0.41 0.48 0.34 0.95 0.31 0.65

2 0.99 0.06 0.84 0.63 0.38 0.87 0.03 0.94 0.74 0.41 0.39 0.26 0.63

3 0.04 0.49 0.62 0.44 0.13 0.49 0.59 0.32 0.97 0.44 0.02 0.52 0.01

4 0.94 0.16 0.34 0.67 0.17 0.90 0.26 0.25 0.93 0.95 0.59 0.62 0.37

5 0.46 0.90 0.68 0.60 0.19 0.26 0.15 0.30 0.60 0.22 0.54 0.46 0.72

The tracks shown in Table 1 were composed of 13 positions. The first 10 positions
were the track elements that represented the jobs assigned to Machines A, B, and C. We
used indirect encoding, so the decoding method is essential to let the tracks reflect the real
solution. The decoding method is explained as follows:

4.1.1. Decoding Methods

1. Separately apply the rank order value (ROV) between job and machine vectors. The
ROV of jobs is called the job sequence at position i (SJi), and machine sequence in
position m is called SMm.
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2. Assign the first job in Position 1 of SJi to Machine 1 of SMm, assign the second job
in Position 2 of Sji to the machine in Position 2 of SMm, and continuously assign the
remaining jobs in position i + 1 to machine m + 1 until m = M, where M is the total
number of machines. In the context of job or machine restrictions, job j is assigned to
machine m only when job j is allowed to be produced on machine m. If job j is not
allowed to be produced on machine m, job j is assigned to the next order of machine.

3. Continue assigning jobs in position i + 1 to the machine that has minimal total
processing time among all M machines until all jobs are assigned to a machine. While
assigning a job to a machine, the maximal number of tardy jobs and maximal lateness
must be controlled to be less than the maximal predefined number.

4. Calculate completion time and energy used in Step 3.

4.1.2. Decoding-Method Example

An example value of a scheduling problem with 10 jobs and 3 machines is provided
in Table 2.

Table 2. Values of Pjm and Ejm for 10 jobs and 3 machines.

Job j m 1 2 3 4 5 6 7 8 9 10

Pjm

A 22 15 30 16 29 25 26 18 26 19

B 24 N/A 20 29 25 22 29 N/A 16 16

C 24 16 18 22 18 N/A 17 17 18 27

Ejm

A 26 17 29 19 27 25 26 23 22 29

B 21 N/A 30 18 25 23 30 N/A 28 26

C 24 29 19 30 17 N/A 19 18 28 24

Dj 30 45 80 85 120 45 150 30 50 200

aj 483 421 338 449 438 480 383 321 389 418

Remarks: N/A is a job-machine restriction in which the job could not be produced on that machine.

Pim is the processing time of job i on machine m, and Eim is the energy consumed to
produce job i on machine m. Di is the due date of job i and aj is penalty cost of job j.

Step 1: Separately apply ROV to the job and machine tracks from the smallest to the largest
value; results are shown in Table 3.

Step 2: Apply Jobs 7, 3, and 10 to Machines B, C, and A, respectively.
Step 3: Assign Job 8 to B, but it is not allowed to produce Job 8 on Machine B; thus,

assign Job 8 to Machine C instead of Machine B. Since it has the lowest total
processing time, Jobs 9, 8, 5, 6, 3, and 7 are assigned to Machines A, B, A, C, B, and
B, respectively. The results of this assignment are shown in Table 4.

Table 3. Track 1 before and after applying rank order value (ROV).

Track
before
ROV

Job/Machine 1 2 3 4 5 6 7 8 9 10 A B C

Value in
position 0.48 0.7 0.22 0.43 0.75 0.91 0.04 0.41 0.48 0.34 0.95 0.31 0.65

Track after
ROV

Job/Machine 7 3 10 8 4 1 9 2 5 6 B C A

Value in
position 0.04 0.22 0.34 0.41 0.43 0.48 0.48 0.7 0.75 0.91 0.31 0.65 0.95
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Table 4. Results of the proposed decoding method in Step 3.

Job 7 3 10 8 4 1 9 2 5 6

Machine B C A C B A B C A B

Energy used (THB) 30 19 29 18 18 26 28 29 27 23

In this assignment, the job-production sequence of Machine B produces jobs {7, 4, 9,
6}, and Machines C and A produce jobs {3, 8, 2} and {10, 1, 5}, respectively. Then, the total
energy consumption of this plan is THB 247. Table 5 shows the sequencing and scheduling
of jobs and machines.

Table 5. Sequence and scheduling from Table 4.

Job 10 1 5

Machine A S10,A C10,A S1,A C1,A S5,A C5,A
Sjm/Cjm 0 19 19 41 41 70

Dj 200 30 120
Lj 0 11 0
Tj 0 1 0

Job 7 4 9 6

Machine B S7,B C7,B S4,B C74B S9,B C9,B S6,B C6,B
Sjm/Cjm 0 29 29 58 58 76 76 98

Dj 150 85 50 45
Lj 0 0 26 53
Tj 0 0 1 1

Job 3 8 2

Machine C S3,C C3,C S8,C C8,C S2,C C2,C
Sjm/Cjm 0 18 18 35 35 51

Dj 80 30 45
Lj 0 5 6
Tj 0 1 1

Table 5 illustrates that the makespan equals 98 m. The minimum labor cost was
assumed to be THB 100 per m, production-overhead cost per working unit was THB 9800,
and the number of tardy jobs was 5, so the penalty cost was THB 2094. Therefore, the total
cost for this assignment was THB 247 + THB 9800 + THB 2094 = THB 12,141.

4.2. Performing the Track-Touring Process

The track selects one out of a certain number of neighborhood strategies with the
probability function shown in Equations (15) and (17), proposed by Pitakaso et al. [39].

Gbt =
Sbt

∑C
c=1 Sct

(15)

Sbt = FNbt−1 + (1− F)Abt−1 + KIbt−1 (16)

Pbt =


GMax i f Gbt > GMax

Gmin i f Gbt < Gmin

Gbt otherwise
(17)

where Gbt is the probability of black box b selecting in iteration t before it is adjusted by the
edge boundary. C is equal to the total number of black box c, and b is the index of black
box b or c. Sbt is the weight to select black box b in iteration t. Nbt−1 is the number of tracks
that select black box b in the previous iteration. Abt−1 is the average objective function
of all tracks that select black box b in the previous iteration. Ibt−1 is a binary decision
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variable. It is equal to 1 if the box contains the iterative best solution of the last iteration;
otherwise, it is equal to 0. F is a predefined random variable that lies between 0 and 1. K is
predefined factors that are located between 1 and 5. Pbt is the probability to select black
box b in iteration t after the edge boundary. GMax and Gmin are the maximal and minimal
probabilities that are allowed to select a black box, respectively.

The black boxes (neighborhood strategies) applied in this research were: (1) solu-
tion decompose and repair (SDR); (2) track-transition method (TTM); and (3) multiplier
factor (MF).

4.2.1. Solution Decompose and Repair (SDR) Method

This neighborhood strategy comprises three steps: (1) destroy the current solution by
using N-job-string removal algorithm; (2) select the repair methods; (3) perform the repair
method; and (4) redo Steps 1–3 until it meets the termination condition.

a. Destroy Method
In this section, the destroy method was employed to disassemble the initial solution so
it would become an incomplete solution that made the solution move to other search
areas, and a new solution was thereby obtained. This paper applied N-job-string
removal as the destroy method, the value of the considered solution on the basis of a
randomly generated job sequence before removing jobs from list I. The N-job-string
removal algorithm is shown in Algorithm 2.

Algorithm 2. N-job-string removal

1. Randomly select a value of N that lies between 2 to I (number of jobs)
2. B = I; I = {Sequence of all jobs}
3. L = {}
4. Randomly select job position in sequence B and name it position e
5. Remove job in position e + N-1 from list B
6. Insert removed job into list L

b. Repair Method After the destroy procedure deconstructed the initial solution, the
repair procedure was performed to reconstruct the solution by randomly using one
of two repair methods: (1) best insertion and (2) random insertion.

b.1 Best Insertion Best insertion was used to repair a solution by determining
the processing time to move the job from list L into an empty machine for
operating that job. The best-insertion algorithm is shown in Algorithm 3.

Algorithm 3. Best insertion.

1. B = L {a, b, c, d.., Z}
2. While |B| > 0, do

Insert job in position a into the machine that currently has the lowest energy consumption among
all M machines except for the machine from which it was removed.

For instance, there was a list of jobs {2,10,8,5}. Producing Job 2 consumed 14,
41, and 39 energy units for Machines A, B, and C, respectively. Since Job 2
was removed from machine C, only two choices remained, namely machines
A and B. Therefore, Job 2 was placed into Machine A due to it needing the
least energy to produce Job 2. After that, Jobs 10, 8, and 5 were continuously
executed with the same mechanism until all jobs in B had been reassigned.

b.2 Random Insertion Random insertion is a method used to repair an incomplete
solution by finding a random machine to operate the job under conditions to
reconstruct the solution. Algorithm 4 shows the random insertion algorithm.
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Algorithm 4. Random insertion.

1. B = L
2. While |B| > 0, do
Insert the job in list B into randomly selected machines that are not the machine from which

the job was removed.

For example, there was a list of jobs {2,10,8,5}, and Job 2 was removed from
Machine C. Therefore, Machines A or B were the choices to operate Job 2.
Algorithm 5 demonstrates the SDR procedure.

Algorithm 5. SDR.

Begin
Given current solution
While termination condition is not met, do
1. Perform destroy method (N-random jobs removal)
2. Randomly select repair methods
2.1 Best insertion method (optional)
2.2 Ransom insertion method (optional)

End

4.2.2. Track-Transition Method (TTM)

The track-transition method (TTM) is composed of three steps: (1) randomly select the
original track from the pool of the tracks that were not selected by the TTM as the black box;
(2) randomly generate a new track; (3) find the average value of the track for each track,
denote this number as lower boundary (LB), and denote the track to which this number
belongs as TLB; (4) find the minimal number of values in the tracks of the maximal value
of the track that is not a member of track TLB, denote this number as the upper boundary
(UB), and let the track to which the UB belongs be TUB; (5) generate transition rates (TRs)
for every element of the track; (6) transit the original track to a new track by using Equation
(18), while the value in track i in position h of the new track (VTN

ih ) is constructed. A track
that is neither TLB nor TUB is called an unplaced track (UT).

VTN
h =


VTTLB

h i f TR ≤ LB
VTUT

h i f LB < TR ≤ UB
VTTUB

h i f TR > UB
(18)

where VT∗h is the type of track, and * can be a TLB, UP, or TUB track. For example, if we
have Tracks 1 and 2, and a random track as shown in Figure 1a, then the average value in
the positions of Track 1, Track 2, and TR is 0.34, 0.46, and 0.51, respectively, as shown in
Figure 1b. Therefore, LB = 0.34, and TLB is Track 1. The maximal numbers of VT of Track 2
and the random track are 0.83 and 0.97; therefore, UP = 0.83 and TUB = Track 2. As a result,
Equation (18) was modified as shown in Equation (19), and the result of the transition is
shown in Figure 1b. The result of the new track is shown in Figure 1c.

VTN
h =


VT1

h i f TR ≤ 0.34
VTRT

h i f 0.34 < TR ≤ 0.83
VT2

h i f TR > 0.83
(19)

After the track was generated, the decoding method shown in Section 4.1.1 was
performed to find the answer for the proposed problem.
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Figure 1. Example of the track-transition method (TTM) procedure: (a) Tracks 1 and 2, and new random track; (b) Transition
rate (TR); (c) Result of new transition.

4.2.3. Multiplier Factor (MF)

MF is the neighborhood strategy of which the basic idea is to pull out the current
solution from the local optimum by multiplying the current value in that position of
the track by the learning multiplier factor. The new value in the track is obtained when
multiplied by the multiplier using Equation (20):

VTLMF
ih = RihVTN

ih , (20)

where Rih is the random number that corresponds to position h of track i, VTMF
ih is the track

after applying the MF strategy, and VTN
ih is the track before applying the MF. An example

of the MF method is shown in Table 6.

Table 6. Example values of the MF method.

Type Job Element Machine Element

Job 1 2 3 4 5 6 7 8 9 A B C D

VTN
ih 0.58 0.49 0.52 0.5 0.6 0.98 0.24 0.72 0.26 0.09 0.18 0.88 0.26

Rih 0.20 0.31 0.12 0.67 0.12 0.35 0.75 0.95 0.66 0.18 0.56 0.70 0.03

VTMF
ih 0.12 0.15 0.06 0.33 0.07 0.34 0.18 0.68 0.17 0.02 0.10 0.62 0.01
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After the MF operation, VTMF
ih uses the decoding method to obtain the solution for the

proposed problem. The MF is iteratively applied to the track that selects this strategy. The
predefined number of iterations was previously determined. In our method, 500 iterations
were set as the stopping criterion. The MF algorithm is shown in Algorithm 6.

Algorithm 6. Multiplier factor.

Input: The value in track (VTN
ih), number of jobs, number of machines

Outputs: Track after MF (VTMF
ih );

Begin i = 1
While i ≤maximal number of iterations,
Randomly generate the random track (Rih)

Multiply VTN
ih by Rih and obtain VTMF

ih
Decode VTMF

ih to obtain solution for the problem
i = i + 1;

end while
End

Let S be the set of all feasible solutions and consider a solution Zijt∈ S. A neighborhood
strategy associates each Zijt ∈ S with a neighborhood Nk (Zijt) ⊆ F of the solution Zijt. For
this paper, the three neighborhood structures are SDR, TTM and MF. The time complexity
of neighborhoods (N1(Zijt), N2(Zijt) and N3(Zijt), respectively) are determined both by its
respective structure and by the solution it is being applied to. The size of neighborhood
N1(Zijt) is O(m · n), neighborhood N2(Zijt) is O(m + n) and neighborhood N3(Zijt) is O(m + n).

4.3. Updating Track and Other Information

The track is updated by using Equation (21):

Zijt+1 = Zijt + α(Zpb
ijt − Zijt) + (1− α)(Zgb

ijt − Zijt) + β(Z2jt − Z3jt), (21)

where Zijt+1 is the value of track i, element j iteration t + 1. α and β are predefined
parameters. In this research, we defined α and β as equal to 0.3. Z2jt is the first randomly
selected track, and Z3jt is the second randomly selected track. We iteratively performed
steps in Section 4.2; the number of iterations needed to simulate depends on the predefined
parameter of number of iterations (IT).

The proposed methods were tested with the case study and randomly generated data.
Results were compared with the current practice procedure. Details of the current practice
procedure are below.

4.4. Current Practice Procedure

The current practice procedure (CU) in vegetable-farm case-study data assigns veg-
etables (jobs) to grow in all farms (machines), and it is composed of four steps, shown
below.

Step 1. Sort jobs according to energy used from least to most used, and name this list job
list (JL).

Step 2. Calculate average number of jobs per machine and call this number AM.

AM =
Total number o f jobs

Total number o f machines
(22)

Step 3. Assign jobs to machines according to JL. Job j is assigned to the machine that uses
the least energy. If that machine has more jobs than AM, the next machine that uses
the least energy is selected and continuously performs until all jobs are assigned.

Step 4. Calculate the objective function of the assignment from Step 3.
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4.5. Differential Evolution Algorithm

The differential evolution algorithm (DE) was used to compare it with the proposed
method. DE was constructed by the following steps: (1) randomly select two other tracks
that are not the track that selected DE as the black box; (2) randomly generate a new
track; (3) perform the mutation process using Equation (23); (4) perform the recombination
process using Equation (24); (5) perform the selection process using Equation (25) and
repeat steps 1 to 5 until the termination condition is met. The DE algorithm is shown in
Algorithm 7.

Algorithm 7. Differential evolution (DE) pseudocode.

Set NP, CR, F, NP (size of track)
Generate initial solution
Begin
For G = 1 to Gmax when G = iterations and Gmax = Maximum iteration
Randomly generates the set of initial solution (tracks)
For N = 1 to NP
Perform mutation process using

vi,j,G = xr4,j,G + F
(

xr2,j,G − xr3,j,G

)
(23)

Perform the recombination process using

ui,j,G =

{
vi,j,G when CR ≤ rand
xi,j,G when CR > rand

(24)

Perform selection process using formula

Xi,j,G+1 =

{
Ui,j,G if f

(
Ui,j,G

)
≤ f

(
Xi,j,G

)
Xi,j,G otherwise

(25)

End

5. Computational Framework and Result

The proposed metaheuristics were coded in C++ and simulated on a computer with
Intel (R) Core i7-3520M CPU @ 2.90 GHz Ram 8.00 GB. We tested our algorithms on four
test instances: small, medium, large, and case study. The simulation was executed five
times, and the best solution among all was selected. Details of the test instances are shown
in Table 7.

Table 7. Test-instance details.

Group Test
Instance

Number of
Test Instances

Pjm
(m)

Number of
Jobs

Number of
Machines

Ejm
(THB) TMAX B LMAX

Small 12 4–30 5–30 2–5 30–75 20–30% 10–50 10–100
Medium 12 4–20 40–52 3–5 30–75 20–30% 10–50 10–100

Large 12 4–20 80–134 5–8 30–75 20–30% 10–50 10–100
Case study 1 4–20 201 11 30–75 20–30% 10–50 10–100

Table 7 shows that we tested 37 sample data (12 small, 12 medium, and 12 large
sample data, and 1 case study). For small test instances, the proposed methods were tested
and compared with the optimal solution obtained from Lingo V.11 (mathematical method).
For the medium and large samples, the proposed method was compared with the lower
bound that was obtained by Lingo v.11 within 72 h of computation. Pjm is the processing
time of job j of machine m (in minutes). Ejm is the energy used to produce job j on machine
m and then converted into money units (THB). B is a constant number (THB), which is the
production-overhead cost per hour of production in the factory. The proposed method was
compared with the result of a traditional DE algorithm and the current practice method
(CU). Details of the investigated algorithms are shown in Table 8.
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Table 8. Proposed-method details.

Algorithm Detail

DE Traditional DE

CU Current practice procedure

VaNSAS Variable neighborhood strategy adaptive search

SDR Solution destroy and repair methods

TTM Track-transition methods

MF Multiplier factor

Table 8 shows that six algorithms were tested in the provided sample datasets. The
performance of VaNSAS and other proposed methods was compared with that of a tradi-
tional DE.

The first experiment was executed with the small and medium test instances. The
stopping criterion for Lingo was the time period when it found the optimal solution; then,
it collected the best solution and computation time. The stopping criteria for all proposed
methods were set as 10% of the lowest computation time of Lingo. In this case, Lingo’s
lowest computation time to find the optimal solution was 651 s; thus, the stopping criteria
of all proposed methods were set to 65 s. The percentage difference of all proposed methods
with the obtained result from Lingo was found using Equation (26). Five replications were
executed for each proposed method, and the best solution among the five runs is shown in
Table 9. The statistical test is shown in Table 10.

%di f f =

(
Fopt − FH

)
FOpt

× 100% (26)

where Fopt is the solution obtained by Lingo during the predefined computation time,
and FH is the solution obtained by the proposed methods. The solutions are shown in
Tables 9–14.

Table 9. Computation results of small test instances.

No Job m NT

Lingo v.11 Traditional Method (THB) Proposed Methods

Obj.
(THB)

Com.
Time
(sec)

DE CU VaNSAS SDR TTM MF

Best
Sol.

Max.
Error

Best
Sol.

Max.
Error

Best
Sol.

Max.
Error

Best
Sol.

Max.
Error

Best
Sol.

Max.
Error

Best
Sol.

Max.
Error

S-1 5 3 2 5150 872 5180 155 6782 474 5150 0 6718 268 6212 186 6237 311

S-2 6 3 2 6820 651 6954 139 7428 371 6820 0 7119 355 7023 210 6988 209

S-3 10 4 2 10,230 2056 10,230 102 13,981 699 10,230 0 12,238 367 13,148 657 13,119 655

S-4 15 3 2 10,921 1843 11,589 115 13,879 555 10,921 0 12,239 611 12,181 487 12,033 481

S-5 15 3 4 10,831 4561 10,831 108 14,713 588 10,831 0 12,815 640 12,219 366 12,172 608

S-6 20 3 3 9020 85,625 9347 280 10,895 544 9020 0 10,229 511 11,296 564 10,687 534

S-7 20 4 3 8900 80,371 9492 284 11,374 568 8900 0 11,818 472 10,722 428 10,381 415

S-8 25 4 3 11,612 76,819 12,784 255 14,981 749 11,612 0 13,209 660 13,348 533 12,987 389

S-9 25 4 2 12,360 78,371 12,788 255 14,582 583 12,360 0 13,371 401 13,794 689 12,984 649

S-10 25 4 5 11,390 67,621 11,390 113 15,378 461 11,390 0 12,879 643 12,046 602 12,288 614

S-11 28 4 5 13,705 84,004 13,794 137 17,619 880 13,705 0 14,013 560 14,237 569 14,886 744

S-12 30 4 5 11,006 89,122 12,891 257 16,716 835 11,006 0 13,310 532 14,018 420 13,873 693

% different from Lingo 4.52 29.05 0.00 14.43 15.01 13.44

% found optimal solution 25% 0% 100% 0% 0% 0%
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Table 10. Statistical test of small test instances.

DE CU VaNSAS SDR TTM MF

Lingo 0.022 0.000 0.207 0.000 0.000 0.000

DE 0.000 0.007 0.001 0.000 0.001

CU 0.000 0.000 0.001 0.001

VaNSAS 0.000 0.000 0.000

SDR 0.907 0.591

TTM 0.247

Table 11. Computation results of medium-sized test instances.

No Job m NT

Exact
Method Traditional Method (THB) Proposed Methods

Lingo
DE CU VaNSAS SDR TTM MF

Best
Sol.

Max.
Error

Best
Sol.

Max.
Error

Best
Sol.

Max.
Error

Best
Sol.

Max.
Error

Best
Sol.

Max.
Error

Best
Sol.

Max.
Error

M-1 40 5 3 18,227 16,381 163 18,728 936 15,794 157 17,719 708 17,653 529 17,756 532

M-2 40 4 4 18,385 17,288 518 21,193 2119 15,992 159 17,578 703 17,233 861 17,481 874

M-3 40 4 2 19,371 16,872 337 22,371 1118 16,014 320 17,722 886 17,235 689 17,443 697

M -4 45 4 4 19,184 16,880 506 20,883 1670 16,598 497 16,957 847 17,182 687 17,084 512

M -5 45 3 2 21,827 17,998 179 21,059 1263 17,550 526 18,018 720 18,242 912 18,115 905

M -6 45 3 5 21,284 17,094 170 22,014 1761 16,881 506 17,225 689 17,188 687 17,269 518

M -7 45 5 4 21,189 16,995 339 20,913 2091 16,774 335 17,281 518 17,192 515 17,007 680

M -8 45 5 2 21,087 18,047 180 22,387 2238 17,559 351 18,817 564 19,110 764 18,349 733

M -9 50 5 4 24,871 20,122 402 25,881 2329 19,563 195 21,883 656 22,915 1145 23,120 924

M -10 50 5 3 24,483 23,287 232 24,879 2239 22,397 223 23,589 1179 23,117 924 22,996 689

M -11 50 3 5 25,598 24,448 733 26,712 2404 22,014 220 24,421 732 24,388 731 24,817 1240

M-12 52 4 6 26,515 24,481 734 26,818 1340 22,456 673 25,817 1032 25,985 1039 25,671 1026

% Improved from best objective
found by Lingo 14.59 4.37 19.55 11.19 11.04 11.24

Table 12. Statistical test of objective function for medium-sized problem.

DE CU VaNSAS SDR TTM MF

Lingo 0.000 0.006 0.000 0.001 0.000 0.001

DE 0.000 0.002 0.006 0.030 0.039

CU 0.000 0.000 0.000 0.000

VaNSAS 0.000 0.001 0.001

SDR 0.777 0.962

TTM 0.767
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Table 13. Computation results of large test instances.

No Job m NT

Exact
Method Traditional Method (THB) Proposed Methods

Lingo
DE CU VaNSAS SDR TTM MF

Best
Sol.

Max.
Error

Best
Sol.

Max.
Error

Best
Sol.

Max.
Error

Best
Sol.

Max.
Error

Best
Sol.

Max.
Error

Best
Sol.

Max.
Error

L-1 80 5 6 47,968 45,871 1376 52,297 5229 39,917 1197 46,617 1864 46,521 1960 45,598 1823

L-2 80 5 5 49,351 41,278 825 45,580 4102 40,015 1200 42,893 1715 42,886 1293 42,361 1270

L-3 80 4 5 37,599 33,192 998 38,817 2329 31,108 311 34,918 1396 34,118 1847 34,287 1028

L-4 80 3 5 41,625 38,185 381 41,491 2904 36,614 366 38,811 1164 38,927 1824 38,891 1555

L-5 100 4 6 52,604 47,467 474 53,158 3721 44,581 891 48,819 2440 48,984 2275 48,816 1464

L-6 100 5 6 56,497 49,981 1499 57,619 5185 48,819 1464 50,176 1505 51,197 484 52,348 1570

L-7 100 6 6 55,823 50,187 1003 58,281 4079 47,713 954 51,810 1554 52,184 2216 52,183 1565

L-8 100 7 6 54,891 49,571 1487 55,819 3349 47,289 1418 50,972 2548 50,013 2488 51,197 2047

L-9 120 6 7 67,905 62,995 1889 68,913 6891 59,982 599 63,395 3169 64,512 1418 53,891 2155

L-10 120 7 7 67,067 63,417 1268 68,919 4135 58,813 1764 64,992 1949 63,857 4384 64,387 3219

L-11 120 8 6 65,596 60,874 608 65,817 5265 58,716 1174 59,816 1794 60,128 2678 60,016 3000

L-12 134 8 7 72,168 67,617 676 73,215 5125 64,480 644 67,764 2710 67,366 3108 67,952 2718

C-1 201 11 7 128,704 118,917 2378 129,814 11,683 110,172 2203 119,859 5992 119,347 4107 119,846 5992

% Improved from best objective
found by Lingo 9.88 1.42 16.35 7.89 8.01 9.33

Table 14. Statistical test of objective function for large test instances.

DE CU VaNSAS SDR TTM MF

Lingo 0.000 0.090 0.000 0.000 0.000 0.000

DE 0.000 0.000 0.002 0.003 0.836

CU 0.000 0.000 0.000 0.000

VaNSAS 0.000 0.000 0.005

SDR 0.754 0.379

TTM 0.468

Computation results in Tables 9–11 show that VaNSAS performed much better than
the other proposed and traditional methods did, and its performance was not significantly
different from that of the exact method, while that of others significantly differed from
that of the exact method. While DE, CU, SDR, TTM, and MF were different from the exact
method by 4.52%, 29.05%, 14.43%, 15.01%, and 13.44%, respectively, VaNSAS was 0.00%
different, which means that it could find an optimal solution for small problems 100% of
the time. The maximum error is the difference between the best solution and the worst
solution of each proposed algorithm. As shown in Table 9, the maximum error of VaNSAS
was the lowest among others, indicating that VaNSAS had the highest solution stability.

The second experiment’s medium-sized random dataset was composed of 12 test
instances. The number of jobs was randomly selected to be from 40 to 52 jobs, and the
number of machines was set to be from 3 to 5. In this experiment, Lingo was executed for
48 h, and the computation time of all proposed methods was 30 min as the termination
condition. After the simulation had been executed five times, the best solutions and the
maximum error of medium-sized test instances were recorded in Table 11 and the statistical
results are shown in Table 12.
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The computation results in Tables 11 and 12 illustrate that VaNSAS performed better
than other proposed and traditional methods did. VaNSAS performed as well as the exact
method did, and also showed the highest performance of solution stability over other
algorithms as shown in Table 11. While others were significantly different from the exact
method as seen in the statistical test result (Table 12), DE, CU, SDR, TTM, and MF were
an improvement from the exact method by 14.59%, 4.37%, 11.19%, 11.04%, and 11.24%,
respectively. However, VaNSAS was at 19.55%, which means that VaNSAS obtained the
solution at 19.55% lower cost than that of the solution from Lingo. Lingo consumed 2880
min computation time, and VaNSAS used only 30 min.

The next experiment was tested with a large random dataset. This group of test
instances was composed of 12 test instances, the number of jobs was randomly selected
to be from 80 to 134, and the number of machines was set from 5 to 8 (L-1 to L-12). In
this set of test instances, we included the case study, which had 201 jobs and 11 machines
(C-1). In this case, Lingo was executed for 72 h to find the lower-bound solution; then,
the termination condition as the computation time of all proposed heuristics was 45 min.
The simulation was executed five times; the best solution and the maximum error of large
instances are shown in Table 13 and the statistical results are shown in Table 14.

The computation results in Tables 13 and 14 show that VaNSAS performed better than
other proposed and traditional methods did. The performance of VaNSAS is similar to
the exact method, while others were significantly different from the exact methods. DE,
CU, SDR, TTM, and MF were 9.88%, 1.42%, 7.89%, 8.01%, and 9.33%, respectively, different
from the exact method. In addition, VaNSAS was 16.35% different from the exact method,
which means it could find 16.35% lower cost than how much Lingo could. The maximum
error of each method indicates that VaNSAS outperformed other methods in terms of
solution stability. In addition, Lingo required 2880 min of computation time while VaNSAS
only required 45 min.

6. Conclusions and Outlook

Green machine-scheduling problems, such as optimization problem related to energy
concerns, are paid more attention by a wide array of industries, since environmental
awareness is part of industrial manufacturing sustainability. This paper presents a novel
method called variable neighborhood strategy adaptive search (VaNSAS) to solve the
parallel-machine-scheduling problem in order to minimize energy consumption while
considering job priority and makespan control. Although VaNSAS successfully improved
solution-search performance in previous studies [17,22,36–38], none had accounted for
energy consumption, late delivery charge, and production overhead. The advantage of
applying VaNSAS in this study was that its algorithms search for the best possible solution
in many different areas by using several searching approaches, thereby moving to find
more diversification and intensification at all times depending on the designed black-
box methods. In addition, we improved the solution-search performance of VaNSAS by
presenting new neighborhood search strategies: (1) solution destroy and repair (SDR); (2)
track-transition method (TTM); and (3) multiplier factor (MF). The proposed methods were
performed in three sets of test instances and one case study, and compared with the exact
method.

Computation results show that the proposed VaNSAS outperformed all traditional
and other proposed methods. It performed as well as the exact method did, illustrated in
the small problem, while the traditional DE could find only 25%; CU, SDR, TTM, and MF
could not find the optimal solution at all, while VaNSAS could find 100% of the optimal
solution. Even by increasing the problem size, VaNSAS still gave promising results, as it
could improve the solution quality by 16.35–19.55% of the solution obtained from the exact
method with 30–45 min of computation time, while the exact method required 48–72 h.
In the medium-sized and large samples, DE, SDR, TTM, and MF could also improve the
solution quality by 7.89–14.59% more than the exact method. In addition, the current
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practice gave a worse solution than that of the exact method, including all proposed
methods, by 1.42–4.37%.

The excellent solution-search efficiency of VaNSAS in this study and its advantage of
a flexible neighborhood search scheme allow researchers to further develop and design
new mechanisms for improving solution quality. Additionally, it would be interesting to
implement the proposed VaNSAS in various problem areas, such as production planning in
a real manufacturing environment, while considering other additional factors or constraints,
e.g., the study of the capability of each type of machine, job restriction, and customer-order
scheduling.
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