friried applied
b sciences

Review

Gas Sensors Based on Localized Surface Plasmon Resonances:
Synthesis of Oxide Films with Embedded Metal Nanoparticles,
Theory and Simulation, and Sensitivity Enhancement Strategies

Marco S. Rodrigues 10, Joel Borges 1-*{%, Claudia Lopes 1, Rui M. S. Pereira {0, Mikhail I. Vasilevskiy />

and Filipe Vaz !

check for

updates
Citation: Rodrigues, M.S.; Borges, J.;
Lopes, C.; Pereira, RM.S.; Vasilevskiy,
M.L; Vaz, F. Gas Sensors Based on
Localized Surface Plasmon
Resonances: Synthesis of Oxide Films
with Embedded Metal Nanoparticles,
Theory and Simulation, and
Sensitivity Enhancement Strategies.
Appl. Sci. 2021, 11, 5388. https://
doi.org/10.3390/app11125388

Academic Editor:

Francisco Pérez-Ocon

Received: 5 May 2021
Accepted: 8 June 2021
Published: 10 June 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in
published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

1 Centre of Physics (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal;
mprodrigues@fisica.uminho.pt (M.S.R.); claudialopes@fisica.uminho.pt (C.L.);
rmp@math.uminho.pt (R.M.S.P.); mikhail@fisica.uminho.pt (M.I.V.); fvaz@fisica.uminho.pt (E.V.)
International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal

*  Correspondence: joelborges@fisica.uminho.pt

Abstract: This work presents a comprehensive review on gas sensors based on localized surface
plasmon resonance (LSPR) phenomenon, including the theory of LSPR, the synthesis of nanoparticle-
embedded oxide thin films, and strategies to enhance the sensitivity of these optical sensors, sup-
ported by simulations of the electromagnetic properties. The LSPR phenomenon is known to be
responsible for the unique colour effects observed in the ancient Roman Lycurgus Cup and at the
windows of the medieval cathedrals. In both cases, the optical effects result from the interaction
of the visible light (scattering and absorption) with the conduction band electrons of noble metal
nanoparticles (gold, silver, and gold—silver alloys). These nanoparticles are dispersed in a dielectric
matrix with a relatively high refractive index in order to push the resonance to the visible spectral
range. At the same time, they have to be located at the surface to make LSPR sensitive to changes in
the local dielectric environment, the property that is very attractive for sensing applications. Hence,
an overview of gas sensors is presented, including electronic-nose systems, followed by a description
of the surface plasmons that arise in noble metal thin films and nanoparticles. Afterwards, metal
oxides are explored as robust and sensitive materials to host nanoparticles, followed by preparation
methods of nanocomposite plasmonic thin films with sustainable techniques. Finally, several optical
properties simulation methods are described, and the optical LSPR sensitivity of gold nanoparticles
with different shapes, sensing volumes, and surroundings is calculated using the discrete dipole
approximation method.

Keywords: gas sensing; GLAD thin films; gold nanoparticles; LSPR; magnetron sputtering; low-
pressure plasma

1. Overview on Gas Sensors
1.1. The Human Olfactory System

The human olfactory system (Figure 1) is used to evaluate the quality of food, drinks,
perfumes, cosmetics, and chemical products. Unfortunately, the nose is capable of sensing
only a small part of the available chemical species in air. Furthermore, the sensation,
perception, and detection limit depend upon each person’s anatomy, experience, and
memory. For these reasons, and in order to find reliable alternatives to the nonportable
gas chromatography and mass spectrometry analytical techniques, portable gas sensors,
also known as electronic-nose (e-nose) systems, have been the focus of several research
projects [1]. These e-nose systems found their inspiration on the human olfactory system,
as compared in Table 1. It consists of (i) a system to feed the gas (to mimic the nose), (ii) a
sensor array (to mimic primary neurons in the cribriform plate), (iii) data preprocessing (to
mimic secondary neurons), and (iv) the analysis and pattern recognition system (mimicking

Appl. Sci. 2021, 11, 5388. https:/ /doi.org/10.3390/app11125388

https:/ /www.mdpi.com/journal/applsci


https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3291-0925
https://orcid.org/0000-0001-7421-6902
https://orcid.org/0000-0002-8266-0111
https://orcid.org/0000-0002-7056-0092
https://orcid.org/0000-0003-2930-9434
https://doi.org/10.3390/app11125388
https://doi.org/10.3390/app11125388
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11125388
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11125388?type=check_update&version=1

Appl. Sci. 2021, 11, 5388

2 0f 37

the brain). The e-nose is thus a collection of different individual gas sensors that work
together to give an overall signal that will allow for a pattern recognition, which is a
characteristic of the chemical species of interest.
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Figure 1. Simplified schematics of the human olfactory system (adapted from Lafreniere and
Mann [2], copyright 2009 Elsevier).

Table 1. Odour molecules’ ordered pathway comparison in the olfactory and electronic nose systems.

Olfactory System Electronic Nose System

i. Nostril i. Sampler

ii. Primary neurons ii. Sensor array

iii. Secondary neurons iii. Signal conditioning and processing
iv. Brain iv. Pattern recognition

1.2. Research Background on Gas Sensors

The first demonstration that a semiconductor (germanium, Ge) modifies its resistance
depending on the surrounding atmosphere was made by Brattain and Bardeen in 1953 [3].
Their experimental schematics and monitoring example with oxygen are represented in
Figure 2a-i,a-ii. In 1954, Heiland [4] described that metal oxides such as zinc oxide (ZnO)
modify their semiconducting properties with a change in the partial pressure of oxygen in
the surrounding atmosphere. The first gas sensing system was reported in 1964 by Wilkens
and Hartman [5], which electronically mimicked the olfactory process (e-nose) using
oxidation-reduction reactions of several odorants on distinct microelectrodes Figure 2b. In
1971, Taguchi patented the first gas sensing device, using tin dioxide (SnO,) as the sensitive
material [6].
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Figure 2. (a-i) Schematics of the experimental circuit used by Brattain and Bardeen in 1953 that used germanium and a
platinum reference electrode to demonstrate a resistance-dependence on the surrounding atmosphere, and (a-ii) contact

potential measured in a monitoring cycle when germanium is exposed to wet O, and dry O, (reused with permission of
Nokia Corporation and AT&T Archives, from Brattain and Bardeen [3]). (b) Effect of electrode metal on response amplitude
at polarization current of 6 x 1077 A (adapted with permission from Wilkens and Hartman [5], copyright 2006 John Wiley

and Sons).

In the 1980s, the field of semiconductor sensors underwent a significant expansion [7]
that led to the appearance of dedicated international peer reviewed journals such as
Sensor Review, in 1981 (Emerald Group Publishing Ltd.) and Sensors and Actuators, in 1989
(Elsevier). However, the study of portable gas sensing systems only made its rapid progress
since the publication in 1994 of a review on the e-nose, by Gardner and Bartlett [8].

Molecules interact with thin film sensors by adsorption (physisorption or chemisorp-
tion) or chemical reaction. These processes lead to a physical change in the film (sensor)
that can be detected by variations in conductivity [8,9], mass [10], work function [11], or an
optical property [12-21].

Most of the researched and established sensors use the conductivity change (Figure 3)
of a given material as a signal, but they have low specificity, are susceptible to electrical
noise, and the wiring needed complicates their implementation in some harsh environ-
ments. With the development of new technologies for the production of high quality
optoelectronic components, optical sensors have undergone a large development over the
past decades [22]. Optical sensors show excellent characteristics of sensitivity, selectivity,
long lifetime, and fast response [6]. Therefore, they have attracted a great deal of attention
for analytical applications, such as environment, industrial, and health monitoring. Further-
more, they have a straightforward working principle and simple hardware configuration,
consisting of the sensing platform, a light source, optical fibres, a light detector, a processing
unit, and pattern recognition software [22,23], following the same scheme of Figure 1b.
The sensing mechanism is based on detecting a change in the light beam (frequency or
wavelength, polarization, phase, or intensity) when the gas molecules interact with the
sensing platform.
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Figure 3. Response of a reduced graphene oxide-based gas sensor (adapted from Li et al. [8],
copyright 2016 Elsevier).

1.3. World Market

Nanomaterial-based sensors are a hot topic currently, especially for massive volume
applications in the industrial, healthcare, consumer, and motor vehicle sectors, since they
substantially reduce the size of the devices, with high-sensitivity, shorter response time,
and real-time monitoring capabilities [24]. The world market for chemical sensors is
projected to reach EUR 36,100 million by the year 2024 [25], with a growing demand that
will be fuelled by new applications for established sensor products, product innovation,
and falling cost of high-performance sensors. In particular, gas sensors are expected to
reach 1400 million by the year 2024 (of which EUR 360 million in Europe) [26], powered by
automotive, smart cities, building automation, medical, and other industrial applications
(summary in Table 2). The main objective of these sensors is the detection of species that
are “odourless” for humans, which can be harmful when their concentration is critical
(such as carbon monoxide, CO [27,28]); below a certain limit (such as oxygen, O, [29]);
or dangerous when they are both volatile and inflammable (such as ethanol, C;HgO, or
others [30]).

Table 2. World market projection for sensors, 2024.

Sensor Type Projected Market (M EUR)
Chemical sensors—Worldwide 36,100 [25]
Gas sensors—Worldwide 1400 [26]
Gas sensors—Europe 360 [26]

Hence, the development of new generations of optical gas sensors, tailored at the
nanoscale to respond to various environments, has been increasing, thus imposing the
exploitation of new sustainable production techniques and simulation models to achieve
their best performance. This work contributes with the theory, simulation, and production
of nanocomposite thin films consisting of an oxide matrix with embedded noble metal
nanoparticles using reactive magnetron sputtering, along with strategies to enhance the
sensitivity of these thin films.
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2. Towards Optical Gas Sensing: Plasmonic Nanoparticles
2.1. Ancient Stained Glass

Noble metals such as gold (Au) and silver (Ag) have been used since antiquity for
decorative applications, and currently inspired several other practical uses in different
scientific and technological areas [31]. Among several examples where noble metal-based
colours can be found, the most ancient and fascinating one is the famous fourth century
AD Lycurgus Cup displayed in the British Museum, London (Figure 4a).
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Figure 4. (a) Lycurgus Cup, a Roman glass from the fourth century AD, depicting a mythological
scene, with King Lycurgus being entangled by Ambrosia, which was transformed into a vine-
shoot by Dionysus (the Greek god of wine), currently held at the British Museum, London; it
looks (a-i) “opaque pea-green” with reflected light, and (a-ii) “deep wine-red” with transmitted
light (copyright 2021 The Trustees of the British Museum), due to (a-iii) Ag-Au alloy nanoparticles
(adapted from Barber and Freestone [32], copyright 2007 John Wiley and Sons). (b) Glass cups coated
at CF-UM-UP, University of Minho, with different nanocomposite thin films (1-uncoated glass; 2—
Au-TiO, with low gold concentration; 3-Au-TiO, with higher gold concentration; and 4-Au-Al,O3)
showing different colours with (b-i) reflected light and (b-ii) transmitted light.

In the 1960s, several chemical analyses were conducted on pieces of this Roman cup
that revealed very small concentrations of gold (0.004 at.%) and silver (0.03 at.%) [32]. Later
in the 1990s, with the advances in transmission electron microscopy (TEM) and energy
dispersive X-ray spectroscopy (EDX), Barber and Freestone were able to explain the unusual
optical properties such as a dichroic effect, i.e., the ability to change colour when illuminated
from the outside or from within, looking as “opaque pea-green” in reflected light, and
“deep wine-red” in transmitted light [32]. They found that Ag—Au alloy nanoparticles
(Figure 4a-iii) with traces of copper (Cu) (Ag 66.2 at.%, Au 31.2 at.%, Cu 2.6 at.%) were
responsible for the red transmission colour, while larger Ag nanoparticles were generating
the green reflection colour [32]. Similar colours were demonstrated experimentally by
Dekker et al. using solutions of Au and Ag nanoparticles [33]. Regarding the manufacture
of the Lycurgus Cup, it is believed that it was made from a 15 mm-thick blown glass blank
(a thick piece of glass with the overall shape of the final piece that undergoes additional
decorations), and that the figures were cut, ground, and pressed to their actual shape [34].
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Although the Roman glass industry was mature since the first century AD, the production
method of the glass blank itself is still unclear. Modern methods of preparing colloidal
noble metals were only developed after the 12th century and reported in the 17th century,
so some theories speculate about successive grinding and melting of the glass, with several
metals and metallic oxides added, in several steps. However, the existence of only six other
broken pieces worldwide, from the same period, showing a similar but fainter dichroic
effect has led some researchers to believe that the achievement of such an optical effect was
most probably occasional, rather than the intentional work of a skilful craftsman [34,35].

With the advancements in nanotechnology, these optical effects can now be easily
reproduced using thin film coatings deposited (e.g., by sputtering) directly on common
glass, as exemplified in Figure 4b. In this case, the glasses were coated with a nanomate-
rial containing Au nanoparticles, embedded in an oxide matrix that protects them from
mechanical abrasion, allowing to mimic the dichroic effect seen in ancient stained-glass.
Cup number 1 is the uncoated reference, cup 2 and 3 were coated with Au nanoparticles
embedded in titanium dioxide, TiO,, (cup 3 has a higher gold amount than cup 2), and
cup 4 was coated with Au embedded in aluminium oxide (Al,O3). More details about the
preparation of these thin films can be found elsewhere [36].

Another remarkable ancient use of gold and silver for decorative purposes is the
stained-glass windows of medieval cathedrals. For example, in the “rose windows” of the
gothic Notre-Dame Cathedral (Figure 5a) from the 13th century, in Paris, the presence of
noble metal nanoparticles with different sizes and geometries embedded in the glass [31]
yields magnificent colours that can be observed from inside the cathedral (transmitted
light), Figure 5b-i,b-ii, while outside (reflected light) these colours appear very different,
Figure 5c-i,c-ii.

(a)

Figure 5. (a) Notre-Dame Cathedral, Paris showing the south facade, and the southern rose window,
photographed from (b-i) inside and (c-i) outside. A detail of the southern rose window photographed
from (b-ii) inside and (c-ii) outside (mirrored) (adapted with permission from Pascal Lemaitre
Photographe, copyright 2021).

2.2. Background of Surface Plasmons

Although the aforementioned colour effects have been used for several centuries, their
physical interpretation only started to gain relevance by the end of the 19th century and
beginning of the 20th [37]. Particularly interesting was the theory proposed by Gustav
Mie in 1908, who worked out a solution of Maxwell’s equations to calculate the extinction
spectrum of a spherical particle illuminated by a time-harmonic electromagnetic field.
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Electron cloud

The solution is an infinite series expansion with different terms corresponding to the n-th
order multipoles of the sphere. The coefficients of this expansion are expressed in terms
of the Riccatti-Bessel functions of the order n and the argument called the size parameter,
x = 2mnsa/Ag (ns = VEs and a are the refractive index and the radius of the sphere,
respectively, and A is the wavelength in vacuum). If x < 1, i.e., the particle is much
smaller than the wavelength of the incident electromagnetic wave, only dipolar response
may be considered, that is, the particle acts as an electrical dipole induced by the incident

N
field (Figure 6a), ? = e Ep, where €y, is the permittivity of the surrounding medium and
« is particle’s polarizability,
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Figure 6. (a) Schematics of localized surface plasmons of a metal sphere. (b) Schematics of a typical LSPR band, measured

in transmittance mode, and extinction spectrum.

If the sphere is metallic, the permittivity, s, is a complex function of the wavelength,
so is the polarizability, and the particle both scatters and absorbs light. The extinction
cross-section is a measure of both processes together, although the absorption dominates
for small particles (x < 1) and it is given by [38]:

The extinction depends on the dielectric functions of both the metal and host matrix,
and the particle volume, v = 47ta®/3.

This expression for the polarizability can be extended to the case of an ellipsoid, where
« is a tensor with the principal components given by similar formulae,

€s — €m

o i=1,2,3,
€m + 1i(€s — €m)

N, =

where 7; are geometrical factors known as the depolarization coefficients [38,39]. They
have the following property: }; 77; = 1. These formulae are commonly used to describe
elongated nanoparticles, for instance, metallic nanorods.

Even though the classical treatment of Mie and its extensions to ellipsoids continue to
be used to describe individual nanoparticles, it is not appropriate for more complex systems,
where it is necessary to consider electromagnetic interactions between different parts of the
system (e.g., different nanoparticles). Such systems, e.g., plasmonic nanostars [40] have
more complex absorption and scattering spectra, which, in principle, can be understood by
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considering a set of interacting dipoles that can support collective electromagnetic modes.
Such modes also can be excited by incident light.

In the 1950s R. H. Ritchie, who studied the characteristic energy losses of accelerated
electron beams passing through thin films, triggered new developments on the subject
at the experimental level, culminating in the demonstration, by Powell and Swan, of the
existence of self-sustained collective excitations at metal surfaces, named thereafter as
surface plasmons by Stern and Ferrell [41]. Using a similar experiment Ritchie, Otto, and
Raether-Kretschmann demonstrated, independently, that propagating surface plasmons on
a metal surface can also be excited by light [37]. It should be remembered that the propagat-
ing surface plasmons are characterized by a well-defined wavevector component along the
surface, which is larger than any propagating photon of the same energy could have. The
problem of wavevector matching can be bypassed by using a prism (so called Kretschmann
and Otto configurations) or using surfaces with modulated conductivity [42]. It does not
exist for confined geometries (e.g., for a spherical particle) because the wavevector is not
well defined and its conservation in plasmon-light interaction is relaxed.

About two decades later, in 1974, Fleischmann, Hendra, and McQuillan reported, for
the first time, the phenomenon of surface-enhanced Raman scattering (SERS) occurring on
structured metallic surfaces and thus made a decisive contribution to the general interest in
surface plasmons [43]. Since then, there have been significant advances in both theoretical
and experimental research on surface plasmons, which led to the development of new sim-
ulation methods to calculate the optical properties of plasmonic systems [37,44—46] (more
details in Section 5), and has delivered a relevant number of important applications [47,48].

2.3. Localized Surface Plasmon Resonance (LSPR)

Noble metals (e.g., Au, Ag) are excellent electrical conductors due to the typically
long mean free path of the electrons in the s-type conduction band. A quantum of their
collective oscillations is called a plasmon. The term is also used to loosely refer to these
kinds of elementary excitation, which are oscillations of the electron density accompanied
by an electromagnetic field. Plasmons can arise in bulk materials (volume plasmons), or
at the interface between two materials (surface plasmons—SPs) [49]. The excitation of SPs
occurs when they interact with an incident electromagnetic field of frequency close to
their natural oscillation frequency. SPs are divided into two main fundamental excitations:
(i) surface plasmon polaritons (SPPs), which are evanescent electromagnetic waves coupled
to the electron plasma of a metal and propagating along its surface [41,49,50], as already
mentioned in the previous section; and (ii) localized surface plasmons (LSPs), Figure 6a,
which are nonpropagating excitations of the conduction band electrons in subwavelength
metallic nanostructures, coupled to a confined electromagnetic field [49,51-53].

To comply with energy and momentum conservation laws, SPPs cannot be excited
directly by a propagating photon in air, since their momenta do not match [54], while LSPs
have the advantage of coupling directly to photons. These frequency dependent coupling
processes are commonly known as surface plasmon resonance (SPR) and localized surface
plasmon resonance (LSPR), whether they occur, respectively, in a metal surface/dielectric
interface, or in a metal nanoparticle or nanostructure. The LSPR band can be detected in an
optical transmittance spectrum by a depression zone, and the LSPR resonance frequency
corresponds to the maximum of the extinction (absorption + scattering) (Figure 6b). Thus,
optical transmittance-LSPR (T-LSPR) is a simple technique by which the LSPs can be excited
by the traversing light.

Different-order LSPRs are predicted by the Mie theory for a metallic sphere. The dipole
resonance is determined by the pole of the particle polarizability, €; + 2¢,, = 0. Noteworthy
is the dependence of the LSPR frequencies on the dielectric constant of the surrounding
medium, which is the basis for the sensing applications of plasmonic nanoparticles. For
a spheroidal nanoparticle, LSPRs can be split into two frequencies, corresponding to the
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poles of two unequal components of the polarizability tensor, «; [55]. Taking the noble
metal permittivity within the simplest Drude model, the LSPR frequencies are given by:

Wy " Wp

(U; = , W p = ’
\/1+(,7—1—1)em \/14_(,711_1)6,,1
where wy, is the plasma frequency of the bulk metal and 77, and 77, are the corresponding
depolarization coefficients. The two resonances correspond to the electric field directed
along or perpendicular to the longer axis of the spheroid, respectively. The separation in
frequency between them can be very large for elongated nanoparticles (see Section 5.3).

2.4. Gold Nanoparticles: LSPR Band Curvature and Applications

The plasmonic resonances are broadened because of several natural reasons, which
include shape and size dispersion in nanoparticle ensembles, and the electron scattering
in each individual particle. Bulk plasmons are damped mostly because of the electron—
phonon interaction and in small particles there is an additional source of damping called
surface scattering, for which it has been shown that it increases linearly with the inverse
of the radius in the small size regime (less than 25 nm) [56]. All these factors result in a
broadened LSPR band. Thus, the curvature of the band depends basically on the nature of
the nanoparticles and their distribution, and on the surrounding dielectric function [51].

Although it may be counterintuitive, the awareness of the resonant properties of
plasmonic metal nanoparticles is readily apparent to the naked eye. Since the nanoparticles
absorb and scatter visible light, they can generate a wide palette of colours, depending
on their concentration, geometries, and dimensions, and on their surroundings [57-60].
As can be seen in Figure 7a, by increasing the size of the Au nanoparticles (observed
using scanning electron microscopy—SEM), the LSPR band shape changes smoothly, thus
altering the colour [61]. On the other hand, if the “same” nanoparticles are embedded in
different materials, the LSPR band resonance will be shifted to higher or lower wavelengths,
whether the surrounding refractive index is higher or lower, thus changing the colour
of the material. An example of this colour change is shown in Figure 7b when only
the material surrounding the Au nanoparticles is changed, from a refractive index of
1.33 (water) to 1.7 (poly(vinyl alcohol), PVA) [62]. Moreover, by changing the shape of gold
nanoparticles (Figure 7c) [58], from nanospheres to nanorods or nanostars (the shape is
observed in the transmission electron microscopy, TEM, images), the LSPR band on the
optical absorption spectra also changes, and hence the colour, from deep-red to sky-blue.
Furthermore, the adjustment of the aspect ratio (AR) of gold nanoparticles from 1.1 to
2.8 [59] (Figure 7d) redshifts appreciably the longitudinal LSPR band (w},), thus changing
considerably the colour.

Beyond the already mentioned decorative field, several other applications based on the
LSPR phenomenon have shown very promising impacts. As a matter of fact, due to their
high sensitivity to the surrounding dielectric environment, plasmonic metal nanoparticles
have received considerable attention over the past decade for sensing applications. Among
them are the detection of biomolecules by plasmonic sensing [63—70] using several meth-
ods, as depicted in Figure 8a,b. To analyse the LSPR band curvature changes in sensing
experiments, Rodrigues et al. [71] developed a software that calculates several parameters
of the LSPR band, such as the (i) wavelength and transmittance coordinates of the optical
transmittance spectrum minimum, (ii) several transmittance values at discrete wavelengths,
and (iii) the (statistic) first central moments of the normalized spectral distribution.
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Figure 7. Influence of Au nanoparticles size, shape, and surrounding dielectrics on the LSPR band curvature and colour.
(a) SEM images of colloidal Au nanoparticles with increasing size, corresponding colours, and LSPR band by UV-Vis
spectroscopy (adapted from Notarianni et al. [61], copyright 2014 Elsevier); (b) TEM images of 30 nm Au nanoparticles,
and photographs of the same Au nanoparticles immersed in water and poly(vinyl alcohol) (PVA) (adapted from Pluchery
et al. [62]. copyright 2013 Springer); (c¢) TEM images of Au nanospheres, nanorods, and nanostars, with the corresponding
LSPR observed by UV-Vis spectroscopy and colour (adapted from Adnan et al. [58], copyright 2016 The Royal Society
of Chemistry). (d) Colloidal gold nanorods solutions with six different colours and their corresponding UV-Vis extinc-
tion spectra, and TEM images showing the nanorods with different aspect ratios (AR) (adapted with permission from
Zhang et al. [59], copyright 2016 The Optical Society).

Other examples that are still related to biomolecular detection are plasmon-enhanced
fluorescence (PEF, Figure 8c) [72,73] and SERS [74-76]. Furthermore, plasmonic nanoparti-
cles are currently used in several other fields, from the enhancement of absorbed light in
solar cells [77-80] to biological imaging (Figure 8d) [81-84] and phototherapy of tumours
(Figure 8e) [82,85,86].
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Figure 8. (a) Illustration of strategies used to develop plasmonic nanosensors (adapted from Guo et al. [64], copyright
2015 Elsevier). (b) Schemes for LSPR biosensors through extinction measurement, total internal reflection measurement,
and darkfield measurement microscopy (adapted from Lopez et al. [70], copyright 2016 De Gruyter). (c) Schematic of an
ordered gold nanorod array chip for plasmon-enhanced fluorescence (PEF) DNA detection based on a molecular beacon
(adapted from Mei and Tang [72], copyright 2017 American Chemical Society). (d) Schematic of a localized surface plasmon
amplification by stimulated emission of radiation (spaser) as a multimodal cellular nanoprobe (adapted from Ekaterina
et al. [83], copyright 2017 Springer Nature). (e) PET/CT coregistered images of mice intravenously administrated with
either saline or Au nanocages, followed by laser treatment. A—saline-injected mouse prior to laser irradiation; B—nanocage-
injected mouse prior to laser irradiation; C—saline-injected mouse after laser irradiation; and D—nanocage-injected mouse
after laser irradiation. (adapted from Chen et al. [86], copyright 2010 John Wiley and Sons).

3. Metal Oxides as Robust Platforms to Host Plasmonic Nanoparticles

To mechanically protect the Au nanoparticles and use environment-friendly deposition
processes to obtain it, transparent metal oxides, or even metal nitrides, are often used as
the “host” for the nanoparticles. The host matrix also allows for tuning the LSPR band
since, on the one hand, it changes the refractive index surrounding the nanoparticles and,
on the other hand, it may limit the size distribution [36]. Moreover, the host matrix micro-
and nanostructure is of paramount importance to tailor the sensitivity to gas molecules.
In fact, as mentioned in Section 1, oxide materials are recognized worldwide as being
convenient platforms for gas sensing using electrical signals as transduction mechanisms.
Two examples of metal oxides that could work as potentially suitable host matrices for
gold nanoparticles are titanium dioxide (TiO;) and copper oxide (CuO).

Pure TiO; is a transparent n-type semiconductor material, with a large bandgap
varying between 3.0 and 3.4 eV [87-91]_ENREF_4. TiO; is known for its biocompatibility,
nontoxicity, chemical stability, high hardness, and high optical transmittance combined
with a high refractive index that ranges between 2.4 and 2.9 [92-95]_ENREF_10. TiO; exists
in both amorphous and crystalline forms, with the most important phases anatase and
rutile, both showing a tetragonal lattice structure [96]. Among these phases, anatase is
known for its excellent photocatalytic activity [96-98], for antifogging and self-cleaning
coating material for glasses [99,100], and it is kinetically stable at low temperatures. In
the rutile form, TiO, has good structural stability at high temperatures, together with a
higher refractive index [101]. Conversely, in its amorphous form, TiO, has high blood
compatibility and thus it is often used in several types of biomedical applications [102]. In
addition, TiO, is widely used as a (chemical) gas sensor (Figure 9a) [103-109] and this is
also a major reason why it is being explored for plasmonic sensing.
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Figure 9. (a) Illustration of a TiO, thin film sensor along with AFM topography of the TiO, thin film surface. Plots showing,
at the top, the sensor resistance, as a function of the top electrode width, for 0 and 10,000 ppm of H; at room temperature,
50, and 100 °C and, at the bottom, the corresponding response of the sensors at room temperature (adapted from Plecenik
et al. [109], copyright 2015 Elsevier). (b) Optical microscopy image of a microheater coated in the centre with a sensing
p-type CuO semiconducting layer. Comparison of the response obtained under dynamic tests in the full temperature range
(20-500 °C, 0 to 55 mW heating) (adapted from Presmanes et al. [110], copyright 2017 MDPI).

Pure CuO is a p-type semiconductor material with a band gap in the range 1.2-2.1 eV
and a monoclinic crystal structure [87,111,112]. In recent years, it has attracted much
interest due to its potential applications in several technological fields, such as cataly-
sis [113-115], solar cells [116-118], electronics [119,120], and sensors [121-123]. In addition,
CuO films have several unique features, such as low cost, nontoxicity, and abundant
availability of constituents [124]. Due to these characteristics, CuO has been employed
in the production of bio/chemical sensing devices (Figure 9b), operating by measuring
conductivity changes induced by adsorption of molecules at its surface [110,121,125-127].

4. Preparation of Plasmonic Thin Film Sensors
4.1. Thin Film Deposition Methods

The huge diversity of thin film materials available, and still to discover, implies the
existence of several wet/dry, chemical/physical, and vacuum/atmospheric processing and
fabrication techniques [128,129]. Regarding the scope of this work, the wet chemical depo-
sition techniques are not discussed here; their overview can be found elsewhere, including
the sol-gel [130,131], chemical bath [131,132], spray pyrolysis [133,134], electrophoretic
deposition [135], and electroplating [136—138] techniques. Considering only dry vacuum
deposition methods, it is possible to classify these techniques into two groups, physical
and chemical processes [139].

In chemical methods, chemical reactions are needed to obtain the final thin film
(Figure 10a,b), while physical methods cover the deposition techniques that depend on the
ejection of the material from a source by evaporation or sputtering (Figure 10c—e).
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Figure 10. Examples of vacuum chemical vapour deposition (CVD) methods (a,b) and physical vapour deposition (PVD)
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schematic figure of (a) metal-organic chemical vapour deposition (MO-CVD), (b) plasma

enhanced chemical vapour deposition (PE-CVD), (c) reactive magnetron sputtering, (d) resistance heating, and (e) electron

beam evaporation.

Chemical vapour deposition (CVD) can be defined as a material synthesis method in
which particles in the vapour phase react together to form a solid film in an energy-activated
surface. The chemical reaction is a crucial characteristic of this method; therefore, besides
the control of the usual deposition process variables, the related reactions must be well
understood. Chemical reactions such as reduction, oxidation, and hydrolysis, among others,
may occur. The activation energy may come from different sources, for example, heat, in
conventional CVD (Figure 10a), or a plasma, in plasma enhanced CVD (PE-CVD) [140]
(Figure 10b). When plasmas are used in CVD reactors to activate and partially decompose
the reactants, the deposition will be possible at a temperature lower than conventional
CVD. These plasmas are generated by using radiofrequency (RF) generators, as can be
seen in Figure 10b. CVD processes are widely used in industry due to their versatility for
depositing a large variety of elements and compounds covering a wide range of materials.
Among these materials, metal oxides may be produced with a high degree of perfection
and purity.

The advantages of physical methods are mostly related to dry processing, high purity
and cleanliness, and compatibility with semiconductor integrated circuit processing, while
being considered as green processes. However, there are certain disadvantages such as
low deposition rates, difficult stoichiometry control, and high initial investments [140].
In physical vapour deposition (PVD) techniques, (i) the solid material to be deposited is
physically transformed to a vapour phase, (ii) this vapour phase is transported through a
low pressure volume from the source to the substrate, and (iii) the vapour condenses on
the substrate to form the thin film [141]. The first stage (solid to vapour) is carried out by
physical removal of surface atoms by particle-to-particle momentum transfer, in sputter
deposition (Figure 10c), or by heating in evaporation deposition systems (Figure 10d,e).
A large number of materials can be evaporated, and if the evaporation is undertaken in a
vacuum system, then the evaporation temperature will be considerably reduced, and the
impurities in the growing film will be minimized [140]. To evaporate materials in vacuum,
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the material holder must supply the vaporisation energy, while keeping its stability with
an insignificant vapour pressure and dissociation, and without reacting chemically with
the material of interest. The heating source may be a simple tungsten electrical resistive
filament (Figure 10d) or an electron beam (Figure 10e).

4.2. Reactive Magnetron Sputtering Deposition

Currently, sputtering is used in various fields of applications, for example, in the
deposition of thin films, for surface etching, cleaning or activation, and in chemical anal-
ysis [142]. The industrial importance of sputtering includes semiconductor processing,
surface finishing, jewellery, cutlery and optics, among others [143]. Since no chemical reac-
tants are used and no waste is produced, this PVD process is also considered environmental
friendly [144].

During the sputtering process, two main events occur after the introduction of a work-
ing gas and the application of an electric field: plasma generation and ion bombardment.
After applying a negative potential to the cathode or “target” and grounding the anode or

—

“sample holder”, an electric field (E) is generated (Figure 11a). Afterwards, the few existent
electrons/ions (generated by natural processes such as cosmic rays or radioactive decay)
are accelerated, leading to the creation of more charge carriers within the gas [145,146], i.e.,
the formation of a plasma (the concept of “plasma” was first described in 1928 by Irving
Langmuir as the fourth state of matter [147]).

(b) Photons Target
® 0600 00
i Reflected lon ©
Target | \.Q....
(cathode) Sputtered @ «—— .’ o0 000
5 particle /‘/,—. PP .Imglantedlon
, Incidentlcén/,x"/ A EERENY)
§ " o000 00
& —
= = Secondary
> . E
electron

Erosion zone or
“race track”

Target l

(cathode) ~ | Trajectories of electrons

Figure 11. Schematic figures of (a) basic sputtering configuration; (b) the target surface, showing the important species

and processes that take place during sputtering; (c¢) magnetron sputtering configuration; and (d) target and the preferential

erosion zone as a result of the magnetic field of the magnetron that causes a local electron confinement (adapted from
Brauer et al. [148], copyright 2010 Elsevier).
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During the sputtering process, the ionized species that are accelerated in the electric
field bombard the target. The bombardment causes the ejection of atoms and secondary
electrons from the target surface, among other processes schematized in Figure 11b, such
as photon emission, which makes the plasma visible. The secondary electrons that are
ejected from the target play a fundamental role in maintaining the plasma. The electric field
between the target and the sample holder induces an acceleration of the secondary electrons,
and as they collide with neutral particles inside the vacuum chamber new charged carriers
are created, and a steady-state plasma is developed [143]. The ejected target atoms are then
deposited onto a substrate placed in front of the target, giving rise to a thin film [141].

Nevertheless, this basic sputtering process for thin film deposition initially only played
a minor role compared to, e.g., thermal evaporation. Major drawbacks given were the low
deposition rates of the process, the low ionization efficiency, inferior properties of the films,
and substrate heating [149]. These limitations were overcome with the development of the
magnetron [146].

The basic principle of magnetron sputtering is to impose a magnetic field (E) near
the target (Figure 11c). The magnetron is a system of permanent magnets, with a specific
orientation, placed behind the target. The introduction of a magnetic field confines the
electron motion to the vicinity of the target (Figure 11d), increasing the probability of
electron-ion/atom collisions [142]. Thus, the ionization efficiency increases, causing a
higher plasma density near the cathode, which enhances the process efficiency (higher
deposition rates) and hence the quality of the deposited films [143].

However, the plasma over the target surface is not uniform, so that the sputtering
phenomena are much localized to a “preferential” erosion zone (Figure 11d) [148], some-
times using only about 30% of the whole target material. As the target is sputtered, its
characteristics also change, so the deposition conditions such as the layer thickness and
the film morphology are expected to change during the lifetime of the target [142]. To
overcome this hurdle, moving targets/magnet systems have been developed, with almost
80% usage for flat targets [150], and more than 90% in cylindrical rotating targets [151].

Reactive magnetron sputtering is characterized by the addition of reactive gases, for
example, oxygen (O,) and nitrogen (N3), to the “working” gas (usually argon, Ar). Those
gases are mentioned as “reactive” since they are introduced to chemically bond to the
sputtered atoms. In this way it is possible to produce complex metallic oxides/nitrides thin
films with a specific stoichiometry, such as aluminium oxide (Al,O3), aluminium nitride
(AIN), titanium dioxide (TiO;), copper oxide (CuO), and many more [146,152].

The magnetron sputtering systems used most employ a primary vacuum pump (e.g.,
oil-sealed rotary vane, diaphragm, or piston) to produce a medium vacuum, i.e., lower
than 1 Pa in the deposition chamber. After this pressure is reached, a high/ultrahigh
vacuum pump (e.g., turbomolecular, ion, oil diffusion, or cryogenic pump), backed up by a
fore-vacuum pump (for example, the primary vacuum pump) produces a base pressure
lower than 10~* Pa in the deposition chamber.

When this pressure is reached, the working gas (e.g., Ar) and, if needed, the reactive
gases (e.g., Ny or O,), are introduced (Figure 12) using mass flow controllers. Then, after
configuring the desired parameters (e.g., current, potential, power, frequency, pulse width,
time on, etc.), the power source (e.g., DC, RF, or pulsed DC power source) is turned on to
generate and maintain the plasma, and the sputtering deposition process occurs.
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Figure 12. Schematics of a custom-made reactive DC magnetron sputtering vacuum chamber
showing the placement of noble metal “pellets” (adapted from Domingues et al. [153], copyright
2019 Elsevier).

In addition, to prepare nanocomposite thin films where Au nanoparticles are em-
bedded in the oxide matrix, the sputtering target is initially modified with small pieces
(disks/“pellets”) of the desired metal, as depicted in Figure 12.

4.3. Thermal Annealing to Promote Gold Nanoparticle Growth

Once the nanocomposite thin films have been deposited, a post-deposition thermal
treatment may be required to promote the growth of nanoparticles up to sizes that originate
a LSPR band, measurable and observable in the transmittance spectrum. The growth of
the nanoparticles from atoms initially dissolved in the matrix and distributed uniformly
occurs through three main stages: (i) nucleation, when some new nanoparticles, formed by
fluctuations, eventually reach a critical size and form stable nuclei; (ii) “normal growth” of
the nuclei at the expense of dissolved matter; and (iii) Ostwald ripening (when small
nanoparticles are dissolved and the atoms are transferred to larger nanoparticles) or
coalescence (when two NPs are in contact and merge to form one larger NP) [154,155].
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Magnetron sputtering deposition typically originates gold clusters/nanoparticles with
sizes below 10 nm dispersed throughout the matrix, meaning that kinetic conditions are
only favourable for the early stages of growth [156].

As an example, in Figure 13, one can visualize how the Au nanoparticles, in a nanocom-
posite Au-TiO; thin film, underwent a growing process when thermal treatment was
applied up to 400 °C. While the nanoparticles in I (yellow circles) and III (green circles)
seem to grow at the expense of dissolved Au atoms, the two nanoparticles in II (blue circles)
seem to be involved in a coalescence process (shown by the formation of a transient “neck”)
that resulted in a larger nanoparticle.

Thermal treatment 400 °C

500 nm

Figure 13. Sequence of SEM micrographs of nanocomposite Au-TiO; thin films during an in situ thermal treatment

experiment, from room temperature (thin film after deposition by reactive magnetron sputtering) up to 400 °C. The

labels I, II, and III show different nanoparticles at different moments that appeared due to the migration of dissolved Au
atoms. Micrographs were taken and processed by Marco S. Rodrigues et. al. using a FEI QUANTA 650 FEG scanning

electron microscope.

The thin film preparation methodology described, magnetron sputtering followed
by thermal annealing, was proposed about a decade ago as a versatile approach for the
development of a new generation of decorative coatings [157]. In the following years, the
optimization of these kinds of nanocomposite thin films led to the development of different
systems such as Au and/or Ag nanoparticles embedded in TiO, [158-160], Al,O3 [161],
CuO [162,163], ZnO [164], and AIN [153,165] matrices.

Envisaging their application in optical LSPR sensing [166], there must be a compro-
mise between the annealing temperature and size distribution of nanoparticles, taking into
account economic reasons and considering important parameters for LSPR sensing (e.g.,
signal-to-noise-ratios and surface area of Au nanoparticles). In fact, annealing temperatures
lower than 500 °C are preferable since transparent glass substrates are inexpensive. Yet,
since the size distribution that can be obtained are in the range up to 40 nm, and the
nanoparticles are mostly spherical, this might hinder the signal and sensitivity of the plas-
monic sensor. On the other hand, this effect can be mitigated, for example, (i) by partially
exposing the nanoparticles that are initially embedded in the matrix, using low vacuum
plasma etching [166-169], or (ii) by developing nanostructured thin films deposited by
glancing angle deposition (GLAD) [170,171], which may allow for increasing the avail-
ability of adsorption sites for analyte molecules and to produce nanoparticles with higher
aspect ratios, and thus to be more sensitive [172,173].

4.4. Low-Pressure Plasma Treatment for Surface Etching

To partially expose the nanoparticles embedded in the metal oxide thin film, a low-
pressure capacitively coupled plasma (CCP) treatment is a meaningful alternative to chem-
ical etching. Low-pressure plasma treatment is recognised as a versatile, environmental
friendly and effective technology for surface modification, cleaning and etching of surfaces
at the micro- and nanolevels [174,175].
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A low-pressure plasma system runs under (primary) vacuum in a controlled atmo-
sphere and by using an alternating voltage source (Figure 14a). The characteristics of this
low temperature, nonequilibrium plasma depend mainly on the gas species introduced, on
the electrode configuration, and on the voltage source [176]. After a vacuum below 50 Pa is
reached, the desired gas is introduced into the vacuum chamber up to a maximum pressure
of 100 Pa, followed by the excitation using radiofrequency (40 kHz or 13.56 MHz) or mi-
crowaves (2.45 GHz) voltage sources (see simplified schematics in Figure 14b). The energy
provided to the gas produces free electrons, ions, and free radicals. The species created in
the plasma interact with the sample, thus functionalizing its surface. After the alternating
voltage source is turned off, the particles recombine, and the plasma is extinguished.
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Figure 14. (a) Low-pressure plasma treatment simplified schematics. (b) Simplified schematics of a commercial cylindrical
low-pressure capacitively coupled plasma system with optimized electrode shape for uniform surface.

Since the appearance of low-pressure plasma systems in the 1960s, the main usage
has been in the electronic industry, and given that it is a low-temperature process, in the
1980s this technique was also applied to metallic and polymeric materials [177]. Currently,
the variety of materials that are treated with this technology includes polymers, textiles,
resins, paper, metals, ceramics, and inorganic and biologic materials. The modified surface
properties include adhesion, wettability, protection, biocompatibility, and chemical affinity,
among others, depending on the materials treated [178].

When compared to wet chemistry techniques, plasma treatment has several advan-
tages, namely: (i) only the top surface layers are modified by the plasma treatment, hence
maintaining the bulk material characteristics; (ii) it allows for achieving higher quality
surface characteristics; (iii) several delicate materials can be processed, beyond those in
wet chemistry; (iv) plasma processing does not involve a vast water supply, heating, or
drying; and (v) only a very small amount of chemicals are needed to produce the required
functionalities [179]. Low-pressure plasma systems also have several benefits when com-
pared to other plasma techniques (e.g., atmospheric plasma): (i) low breakdown voltages;
(ii) stable operation; (iii) electron temperature capable of dissociating molecules (1-5 eV),
but a low ion temperature (0.03-0.05 eV); (iv) relatively high concentrations of ions and
radicals to drive etching; and (v) a uniform glow over a large gas volume [179,180].
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4.5. Glancing Angle Deposition (GLAD) to Tailor the Micro/Nano Structure

Nanostructured thin films can be achieved by glancing angle deposition (GLAD) in
reactive magnetron sputtering. The fundamentals of GLAD, also known as oblique angle
deposition (OAD), (Figure 15a) rely on the self-shadowing effect (Figure 15b) that appears
just after the deposition of the first atoms, as long as the atom mobility remains low [181].
In conventional sputtering, the direction of the atom flux is perpendicular to the substrate
(e = 0°), so the atoms condense on the nearest sites of nucleation or on the surrounding
area to form the typical vertical columnar growth [141]. On the other hand, when the flux
is not perpendicular to the surface (0° < & < 90°), the atoms in the vapour phase condense
on the substrate to form some nucleation sites, and, depending on several parameters
(e.g., substrate condition and temperature or energy and nature of the atoms in the vapour
phase), they may intercept the incoming atoms to produce a “shadow” on the substrate or
on the material already deposited (Figure 15b). Due to this self-shadowing and although
the atoms in the vapour phase reach the substrate at an angle «, the inclined columns grow
at a lower angle 3 (Figure 15b). The effective column tilt angle 3 depends on several factors,
namely material used, sputtered particle angle of incidence, substrate rotation speed, and
gas pressure [182], and it can be roughly estimated, as a guideline, using Tait’s rule [183].

(b)

; Self-
Self- . shadowing
sh_adowing

Figure 15. Simplified schematics of (a) sputtering and GLAD sample holder position and «/¢ motion, relative to the

sputtering target, for the production of, e.g., zigzag thin films, and (b) growth of inclined columns on a substrate when the

sputtered particles arrive at an angle « from the normal to the substrate. A growth competition occurs between columns

due to the shadowing effect created by the columns themselves (self-shadowing), thus creating spaced columns tilted at an

angle 3. (c) Example of a GLAD deposition process for the production of one zigzag cycle.

The self-shadowing process is also be responsible for producing more porous thin
films, which, depending on the angle of incidence and on the material, can lead to nanos-
tructured materials with only 10% of the bulk material’s density [184].

For an inclined columnar structure, only the angle of incidence (cx) must be set, but by
using another rotation axis @ (perpendicular to the substrate, Figure 15a). GLAD allows the
development of layers with a zigzag structure (Figure 15c), spirals, isolated columns, and
other configurations, only by combining different rotation speeds and protocols [185]. For
example, to prepare zigzag structures, after an incidence angle («) is selected, ¢ must be
shifted by 180° at each half zigzag cycle, as depicted in Figure 15c. For spirals, an incidence
angle () must be selected, and then ¢ must be changed slowly and continuously, and each
time ¢ rotates 360° one spiral is produced. By changing the speed of rotation for ¢ angle,
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the shape of the spiral is changed, and if the speed is sufficiently high, instead of spirals,
isolated columns may be produced. In this last configuration, the distance between each
column will depend on the selected « angle [184] (see examples in Figure 16).

100 nm

Figure 16. SEM micrographs of GLAD-sculptured TiO, thin films. Cross-sectional SEM im-
ages of (a) zigzag nanocolumns, (b) spiral nanocolumns, (c) zigzag plus spiral nanocolumns,
(d) nanocolumns with width modulation, and (e) vertical columns (adapted from Barranco et al. [171],
copyright 2016 Elsevier).

The discovery that the properties of thin films deposited by GLAD are different
from conventional thin films was made at the end of the 1950s [186—188], and soon sev-
eral theories developed for the explanation of the self-shadowing effect, the columnar
growth according to 3 angle, and to account the different deposition rates, some of them
already supported by computer simulations [181]. In the following decades, it was made
clear by several authors that the induced morphological changes in the thin films could
produce important anisotropy in the magnetic, electrical, mechanical, and optical proper-
ties [171,183,184,189].

Therefore, since the GLAD technique allows one to tailor even further the properties
of most thin film systems, it can be of major interest in the fields of photonics, mechanics,
catalysis, and biology. This involvement is mostly evident for metal and oxide coatings
sputter deposited with inclined architectures [190,191]. However, for nanocomposite
thin films containing noble metal nanoparticles, very few studies can be found about the
relations between the possible achieved structures by GLAD and the resulting properties
in terms of optical and other physical responses [170,192].
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5. Tailoring the Sensitivity of LSPR-Based Sensors Using Simulation Models
5.1. Important Parameters Influencing the LSPR-Based Sensor Performance

According to the literature, so far the work carried out about surface plasmon reso-
nance sensing has been mainly based on SPPs [16,49,193,194]. Yet, since surface plasmon
effects can be much more prominent in nanoparticles than in continuous thin film lay-
ers [154,158,160,195-197], the nanoparticles can be exploited as intrinsic refractive index
sensors [13], by monitoring shifts and curvature changes on the LSPR band (Figure 17a,b).
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Figure 17. Refractive index sensing using LSPR in gold nanoparticles with a water drop on top. A clear (a) colour change
and (b) LSPR band shift can be seen between the areas covered by air (s ~ 1.00) and water (15 ~ 1.33.

Optical sensors based on the LSPR phenomenon are recognized as advantageous
candidates in the design of lab-on-chip platforms, providing a valid approach to achieve
quantitative analysis while offering the possibility to be miniaturized [69,70,166,198-201].

For refractive index changes to produce a measurable shift in the resonance band,
they must occur in a region of appreciable field intensity, namely, in a sensing volume
contained within the plasmon’s electric field decay length (L;). Since the plasmon field
decays exponentially with the distance from the nanoparticle, the effective sensing volume
is typically limited to a length ranging from 10 to 30 nm, depending on the nanopar-
ticle shape and size [52]. To quantify the sensitivity of a LSPR sensor to a refractive
index change (RIS, refractive index sensitivity, or just S, sensitivity) caused by an infinite
surrounding environment (such as a gas), a simple phenomenological equation may be

used—AP = RIS X Ang X (1 — ¢~4/Li ) —where AP is the variation of the measured pa-

rameter (which can be the LSPR resonance wavelength shift, AA), Ans is the refractive
index difference between the two environments, 4 is the thickness of the layer, and L; the
plasmon decay length.

From experimental and theoretical results in the literature, several parameters have
been proposed as having an important influence in the sensitivity of plasmonic thin films.
The proposed parameters, namely, the existence of sharp vertices in nanoparticles of exotic
shapes (such as stars, pyramids, bipyramids, rings, crescents, and branches), the position
of the LSPR resonance, or the full width at half height of the LSPR band, failed to give a
complete explanation [173]. Meanwhile, it has been made clear that the aspect ratio (AR),
independently of the shape (Figure 18a), is the most probable candidate parameter to tailor
the sensitivity of plasmonic nanoparticles (Figure 18b) [202].
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Figure 18. (a) Shapes of nanoparticles synthesized and investigated by Khan et al. [173], including nanodisks, nanoprisms,

nanorods, and nanospheres, with different aspect ratio (AR = L/h). (b) Measured sensitivities (S, or RIS) of nanoparticles of

various sizes, shapes, and compositions. The sensitivity follows a linear relationship with the aspect ratio, regardless of

nanoparticle shape, size, and composition (adapted from Khan et al. [173], copyright 2016 American Chemical Society).

5.2. Optical Properties Modelling

The most widely used methods for modelling the optical properties of nanoparticles
with sizes above 5 nm (where quantum mechanical calculations are not required) rely on
solutions, numeric or via approximations, of the Maxwell equations, such as Mie theory-
based codes, finite-difference time-domain (FDTD) approach, finite element method (FEM),
and the discrete dipole approximation (DDA), among others [37,203-206].

Some of these methods use computationally intensive algorithms that are currently
available to everyone thanks to the processing power of modern computers and clusters that
run parallel computations in open access. NanoHUB [207] is an example of a user-friendly
and web-based system, controlled by the Purdue University’s Network for Computational
Nanotechnology and funded by the American National Science Foundation. It hosts a
collection of simulation tools, which allow one to study light-matter interactions in different
contexts. In particular, there are (i) “Nanosphere Optics Lab” [208] for an exact solution of
Maxwell equations using the Mie theory for single spheres; (ii) “Extinction, Scattering and
Absorption Efficiencies of Single and Multilayer Nanoparticles” [209] (Figure 19a), also using the
Mie theory for single spheres, core-shell, and “nanomatryoshka” structures; (iii) “Molecular
Foundry Photonics Toolkit” [210] (Figure 19b) for FDTD simulations; (iv) “MOOSE” [211,212]
(Figure 19c), for advanced FEM simulations; and (v) “nanoDDSCAT+" [213] (Figure 19d)
for DDA simulations with nanoparticles of arbitrary shapes.

Commercially available simulation tools include MATLAB (with incorporated Mie the-
ory codes), Lumerical software (FDTD), and COMSOL Multiphysics (FEM), among others.
Detailed comparisons of these and other methods may be found elsewhere [37,214-218],
but the main decisions that one has to make in order to choose the best method are related
to the following factors:

(i)  Nanoparticle shape (for instance, Mie codes and their extensions work only with high-
symmetry shapes and the DDA uses a large amount of memory if the simulations use
both large and very small shapes at the same time);

(i) Number of simulations to run (for instance, spectral calculations are time consuming
for FDTD, FEM, and DDA);

(iii) Type of output one is interested in, namely, only the local field intensity in the vicinity
of a plasmonic structure, to find the most intense hot spots, or angular distribution
of the scattered light intensity and polarization in the far field zone (for instance,
COMSOL is ideal for the former but not so well-suited for the latter).
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Toolkit [210], (¢) MOOSE [211,212]; and (d) nanoDDSCAT+ [213].

It is also necessary to consider that none of these tools can be used to directly calculate
the response of a statistical ensemble of interacting nanoparticles, considering each of
them explicitly (for instance, a composite layer containing arbitrarily shaped particles).
For such a task one needs to apply either approximate methods known in the theory of
disordered systems, which use either a self-consistent approach or a kind of perturbation
theory [219-222] or solve numerically a system of equations that describes a relatively small,
yet representative, set of interacting polarizable particles distributed in space according to
some rules mimicking the real system, such as the coupled dipole equations (CDE), where
each particle is approximated by a dipole [223].

Let us focus on the DDA approach, which is suitable for describing nanoparticles
of arbitrary shape, both in the near-and far-field zone, and calculate the absorption and
extinction cross sections. This is attractive in the context of modelling a sensing system
because the plasmonic effect slightly perturbed by the presence of an analyte may be
detected via a change in the position and shape of the LSPR band, but also through an
altered polarization state of the resonantly scattered light. The DDA has been demonstrated
to be one of the most powerful and flexible electrodynamic methods for computing the
optical spectra of nanoparticles with an arbitrary geometry [37].
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The idea was introduced by DeVoe, 1964 [224] who applied it to study the optical
properties of molecular aggregates. DDA with retardation effects was presented in 1973 by
Purcell and Pennypacker [225] to study the scattering and absorption of light of interstellar
dust grains. They presented it as a method in which the continuum target is approximated
by a finite array of polarizable points. These points acquire dipole moments due to the
electric field of an incident wave. The dipoles interact with the neighbouring dipoles via
their electric fields. These dipoles can be thought of as polarizable particles of simple
geometries, such as spheres or spheroids (actually, it is very similar to the CDE approach
for composite materials, mentioned above). The polarizability of the dipoles is related to
properties of the material via its refractive index ns. The domain discretization is a very
important first step. The method is expected to produce an acceptable response (almost
a continuum target) on length scales much larger than the lattice spacing, d < Ay (more
rigorously, this criterion is 27tnsd/Ap < 1). Roughness of a target can be mimicked by
randomly removing some elements from the surface using a Monte Carlo sampling.

An obvious problem that appears for a target with a large size is that the number
of small spheres necessary to describe the target is huge. Therefore, the memory/CPU
requirements may be a problem (computational effort scales with the number of small
spheres as N® and with memory needs scale as N?). LU decomposition, as stated by Draine
and Flatau (1994) [226], is a solution for relatively small problems. However, for larger
problems, iterative methods such as complex conjugate gradient-type methods might be
used. This is the case of the method presented by Draine (1988) [227], where the iterative
conjugate gradient algorithm (CGA) to find the dipole polarizations is described. When the
number of particles N is large, this algorithm converges rapidly due to symmetries of the
matrix. Since P has 3N unknowns, this method converges in 3N iterations, which is much
faster than a direct method that must solve a linear system of equations [A]P = E, where
[A] is a 3N x 3N dense matrix. Using fast-Fourier-transform (FFT) methods, as suggested
by Goodman et al. (1991) [228], accelerates computations of scattering and absorption by
particles of arbitrary shape using DDA and diminishes the CPU price that comes from a
CGA method (multiplications matrix—vector, which are mostly convolutions).

As an illustration, we used the DDA method to estimate the sensitivity (RIS) of gold
spheroids, with different AR, embedded in a TiO, dielectric matrix. The spheroids were
exposed to environments with different refractive indices and two sets of simulations of
the optical properties were undertaken. The simulations presented in the next section were
carried out using the already mentioned nanoDDSCAT+ tool [213] (Figure 19d), which is
powered by Draine and Flatau’s DDSCAT (v7.3) code [226], and uses DDA for calculating
scattering and absorption (hence extinction) of light by particles with arbitrary shapes.

5.3. Sensitivity of a Spheroid Au Nanoparticle Embedded in TiO,

In the first set of simulations (Figure 20), the RIS of nanoparticles with different aspect
ratios was estimated. In the DDA simulations, the nanoparticles had an effective radius
of 8 nm, which represents the radius of a sphere having a volume equal to that of the
nanoparticle [229]. The principal settings used in the simulations follow:

(i)  Unpolarized light;

(ii) Four dipoles per nm;

(iii) Au dielectric function from Johnson and Christy [230];

(iv) TiO, dielectric constant (¢ = 6.8121, or ng = 2.61);

(v)  Surrounding external refractive index set either to 1.0, 1.3, or 1.5, as a “semi-infinite” layer;
(vi) A wavelength range from 450 to 900 nm with a 5 nm step.



Appl. Sci. 2021, 11, 5388 25 of 37
(a) AR=1 (b)  AR=2
1 T T T T T T T T 25 T T T T T T T T
n, = 1.5
E"-g’s a=b=c=8nm ’ - a=b=65nm;c=12nm
2 o8t @ 2F
3} o
g 07f Surrounding R g ng =15
(&) (8]
6. 06 3,1 5F
5 E 5
D o5t = K}
2 \ par L ns = 1.3
© 04F ‘ T 1
Sosf M=13 S
© ©
= [
= 02 T = 05F
S g = 1.0 Light 83 =
01F ns = 1.0
0 : ‘ — = 0 s : — — . :
450 500 550 600 650 700 750 800 850 900 450 500 550 600 650 700 750 800 850 900
Wavelength (nm) Wavelength (nm)
() AR=3 (d) AR=4
6 T 7 T
- a=b=5.5nm;c=17nm\ | a=b=5nm;c=20nm
3° s I a
& / S
g | 'Ln5=1.5 "uo':& ng = 1.5]
o Q /\
> > | |
2 ‘ o4r [ — 1)
5 3r Ng = 13 1 5 (‘ \'\ ns,_ e
o ‘ ‘ 9 AR ‘
& £ 3 [
@ = 7] \ \
S ng =10 | | s ng/= 1,0 /
9 /\ S, I\
B N ) B2 [
= v \ £ / \
5 1 /a 5 1 b "
Light N Light T —»
———— = T~ o B —_— . — <l
0 L Il 1 1 B ——— — 0 I 1 1 1 L I e pe— —
450 500 550 600 650 700 750 800 850 900 450 500 550 600 650 700 750 800 850 900

Wavelength (nm)

Wavelength (nm)

@

AM - LSPR peak position shift (nm)

0.0

0.1 0.2

Ang (RIU)

Figure 20. Optical extinction efficiency coefficient of spheroidal Au nanoparticles with similar volumes and different aspect
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estimate the RIS using the slope. Simulated using nanoDDSCAT+ tool [213].
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Considering the size of the nanoparticles used for the simulations, the scattering
efficiency coefficient is negligible when compared to the absorption efficiency coefficient
(up to three orders of magnitude) [229,231]. Thus, the extinction efficiency coefficient (the
sum of the two previous) presented in the results is roughly the same as the absorption
efficiency coefficient.

Indeed, it is obvious from Figure 20a—d, that for spheroids with higher AR when the
surrounding refractive index increases (from 1.0 to 1.5), the shift of the extinction efficiency
coefficient is also increasing from 26 nm for AR =1 and up to 207 nm for AR = 4. Then, by
plotting AA against An; (Figure 20e), the RIS can be estimated: 52 nm/RIU, 158 nm/RIU,
305 nm/RIU, and 414 nm/RIU, for AR of 1, 2, 3, and 4, respectively, thus giving an overall
eight-fold improvement. These results are in line with the literature data collection depicted
in Figure 18b.

From these simulations it looks obvious that the enhanced sensitivity comes from the
longitudinal vibration modes of the LSPs, since their intensity seems to be much higher
than that of the transverse modes [232]. Therefore, it is advantageous to have nanoparticles
with higher aspect ratio since their sensitivity is much higher than spherical shapes. This
property might be fine-tuned with the GLAD technique [97].

In the second set of simulations (Figure 21), the effect of a TiO, cap layer covering
an Au sphere (AR = 1, Figure 21a), an oblate spheroid (AR = 2, Figure 21b), and a prolate
spheroid (AR = 2, Figure 21c) were studied. From Figure 21d-f, it can be concluded that by
adding a 4 nm and then an 8 nm TiO; layer, the intensity of the extinction efficiency coeffi-
cient is gradually diminished. Similarly, the sensitivity (RIS) estimated with the against
Ang plots in Figure 21g—i, also decreases with increasing thickness of the surrounding
TiO, layer.

It means that when the Au nanoparticles are grown within an oxide matrix, the
sensitivity of the optical LSPR response of the Au nanoparticles is impaired. This effect is
due to the plasmon decay length that follows an exponential decrease from the surface of
the nanoparticle, as mentioned before. To overcome this hurdle, the surface of the films can
be etched to eliminate superficial oxide layers, thus diminishing the distance between the
nanoparticles and the molecules to detect, thereby improving the sensitivity. Furthermore,
in agreement with the previous set of simulations, the aspect ratio of the nanoparticles
also plays an important role when the nanoparticles are covered by the dielectric matrix.
As seen in Figure 21g—i, the sensitivity is improved with the AR increase even if the TiO,
capping layer is surrounding the nanoparticle. For instance, prolate or oblate spheroids
with an AR of 2 and a 4 nm TiO, capping layer (Figure 21h,i) have a higher sensitivity
(57 nm/RIU and 74 nm/RIU) than a gold sphere without a TiO, capping layer (52 nm/RIU,
Figure 21g).

These sensitivity simulation results, summarized in Table 3, are the consequence of an
interaction of light with single nanoparticles with a well-described shape and size. Under
these circumstances, the extinction spectrum redshifts when the surrounding refractive
index increases, thus giving the foundation of optical LSPR sensing for refractive index
changes. Unfortunately, even with well-defined arrays of Ag or Au nanoparticles, a
continuous distribution of their size and aspect ratio is obtained [233]. Furthermore, since
the nanoparticles must be supported by a substrate, the sensing volume also changes.
This must be kept in mind when analysing LSPR sensitivity results from an ensemble of
nanoparticles, since the expected redshift of the LSPR band can result in an overall blueshift.
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Figure 21. Au nanoparticles with similar volumes, without or with a layer of 4 or 8 nm TiO,, with different surrounding
refractive indices (15 = 1.0, 1.3, and 1.5) and different shapes: (a) sphere, AR = 1, (b) oblate spheroid with AR =2, and
(c) prolate spheroid with AR = 2. Optical extinction efficiency coefficient of the (d) Au spheres, (e) oblate spheroid, and
(f) prolate spheroid. Plots of AA against An (g-i) using data taken from (d—f), respectively, to estimate the sensitivity (RIS).
Simulated using nanoDDSCAT+ tool, available at nanoHuB.org [213].

Table 3. Estimated RIS results for all the Au nanoparticle shapes and the TiO, overlayer thicknesses.

Au Nanoparticle Aspect
Ratio and Shape

TiO; Layer Thickness on Au
Nanoparticle (nm)

RIS (nm.RIU-1)

1 (sphere) - 52
1 (sphere) 4 33
1 (sphere) 8 21
2 (prolate) - 158
2 (prolate) 4 74
2 (prolate) 8 46
2 (oblate) 106
2 (oblate) 4 57
2 (oblate) 8 39
3 (prolate) - 305
4 (prolate) - 414
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6. Technoeconomic Challenges

The technologies behind the development of this new generation of nanoplasmonic
thin film sensors are vacuum deposition techniques, which are recognized as clean and en-
vironmentally sound technologies, since no dangerous byproducts or waste are produced.

Although the initial cost of vacuum deposition techniques may be somewhat high
when it comes to industrial upscaling, the production of these thin film sensors by mag-
netron sputtering, an efficient physical vapour deposition (PVD) technique, reveals it
to be an economically viable process. To produce one thin film sensor (8 x 8 mm?) in
a R&D vacuum deposition chamber (where approximately 300 thin film sensors can be
deposited simultaneously), the estimated production cost is around EUR 0.20. This value
also includes the thermal treatment required to promote the growth of nanoparticles (see
Section 4.3) and plasma treatments to enhance the sensitivity (see Section 4.4).

If the thermal treatment and the working temperature do not exceed 450 °C [168], one
may consider an inexpensive substrate, such as glass. This type of substrate may increase
the final cost by 3% to 5%, which is a marginal difference. Nevertheless, if a temperature
above 450 °C is needed [169,234], more expensive substrates are required. For example,
if a fused silica substrate is used, the final cost of the thin film sensor can increase up to
EUR 0.75.

Regarding the use of the GLAD technique, the substrate space limitation inside the
vacuum system makes it an expensive technique, since only around 30 thin film sensors
can be deposited in a similar R&D system, increasing their production cost by a factor of 10.
Moreover, upscaling the production to an industrial system is not revealed to be a simple
task [235], and further research is needed.

7. Conclusions and Outlook

In this article, a review is presented on gas sensors based on the localized surface
plasmon resonance (LSPR) phenomenon, focused on earliest and modern applications of
plasmonic nanoparticles. Furthermore, the synthesis of nanoparticle-embedded nanostruc-
tured oxide/nitride thin films and experimental strategies to enhance their sensitivity are
discussed, complemented by simulation and modelling results.

According to the historical and technological overview on conductometric and op-
tical gas sensors (electronic-nose systems), it is foreseen that in the forthcoming years
nanomaterial-based sensors will play an important role in several industrial sectors, lead-
ing to growth in a worldwide market. Among several applications that plasmonic nanopar-
ticles can offer, LSPR sensing platforms have been the focus of much research due to the
straightforward detection mechanism and experimental setups needed.

We show that metal oxides can be robust materials to host nanoparticles and boost
their sensing capabilities. The preparation method of nanocomposite plasmonic thin films
highlighted in this paper consists of reactive magnetron sputtering deposition, followed
by thermal annealing, while glancing angle deposition (GLAD) and low-pressure plasma
treatment are presented as important techniques to tailor the film nanostructures and hence
to improve their optical sensing responses. Of course, it does not mean that chemically
synthesized nanoparticles are not promising for sensing applications [82,103].

Finally, several simulation methods are described, and the optical LSPR sensitivity
of gold nanoparticles with different shapes and sensing volumes estimated using dis-
crete dipole approximation (DDA) models. The simulations confirmed that the enhanced
sensitivity in spheroidal nanoparticles comes from the longitudinal vibration modes of
the localized surface plasmons that arise when their aspect ratio increases. When Au
nanoparticles are embedded in an oxide matrix, their sensitivity is reduced. From these
simulations, it becomes clear that an oxide matrix can be used to mechanically protect the
nanoparticles, and still allowing them to maintain their sensing capabilities. Furthermore,
the sensing capabilities of these embedded nanoparticles can be optimized by adjusting
their aspect ratios, and physically erode the excess oxide layer around them. To further
investigate the sensitivity of nanoparticles in real systems, simulation models using the
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theory of disordered systems, with a self-consistent approach or a kind of perturbation
theory must be used, since even the most powerful modern computers do not allow for
modelling large systems that include many nanoparticles by direct solution of discretized
Maxwell equations or even with approximations such as DDA.
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