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Abstract: Antihypertensive drugs are among the most prescribed drugs. Olmesartan acid, of the
sartan class, belongs to a relatively new generation of antihypertensive drugs called angiotensin II
receptor blockers. There are very few studies on the presence and fate of sartans in the environment,
despite them being marketed in huge quantities, metabolized in low percentages, and detected in
wastewater and water bodies. This paper presents a study on the less abundant and more polar
fractions that have been neglected in previous studies, which led to the isolation by chromatographic
methods of thirteen degradation byproducts (DPs), six of which are new, identified by nuclear
magnetic resonance and mass spectrometry. A mechanism of degradation from the parent drug was
proposed. The ecotoxicity of olmesartan acid and identified compounds was evaluated in Aliivibrio
fischeri bacteria and Raphidocelis subcapitata algae to assess acute and chronic toxicity. For 75% of
the DPs, acute and chronic exposure to the compounds, at concentrations of 5 mg/L, inhibited
population growth in the algae and decreased bioluminescence in the bacteria.

Keywords: olmesartan acid; chlorination; hypochlorite; degradation byproducts; water treatment;
Aliivibrio fischeri; Raphidocelis subcapitata

1. Introduction

Various analyses of wastewater show how the growth of the world’s population goes
hand in hand with an increase in the concentration of organic micropollutants, such as
perfluoroalkyl substances [1], cyanobacteria [2], mycotoxins [3], hormones [4], psychoac-
tive substances [5], pesticides [6], cosmetics, and industrial additives and drugs [7–9], and
demonstrate how this type of pollution reflects the increase in population growth [10,11].
Hence, there is a need to remove these pollutants present, especially in the most industri-
alized areas, from China to South Africa and from North and South America to Europe,
wherever human activity presents significant developments [12,13]. The concentration of
these pollutants, compared to traditional ones (conventional and unconventional), is much
lower (on the order of ppm or ppb), and this characteristic has led to their classification as
emerging contaminants (ECs) or persistent organic pollutants (POPs). There are no admin-
istrative regulations for environmental protection from this type of pollutant because its
danger to the environment is not yet well understood. Despite the low concentrations, these
are persistent and potentially toxic to microorganisms due to their complicated molecular
structures, creating problems for the environment and humans. They can also be present
in the water that is used to irrigate cultivation fields, even bringing the problem to the land
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and aquifers. Some have been identified in drinking water, consequently increasing the
risk of these pollutants coming into contact with the human population [14]. Most of the
pharmaceutical pollutants are introduced into the environment through people’s use of
them who, failing to metabolize them completely, expel them into wastewater treatment
processes that are not yet able to manage their removal. Other sources from which pharma-
ceutical pollutants come are hospitals, intensive livestock farming, and industrial waste [15].
The existing treatments used for the purification of wastewater do not currently guarantee
the removal of ECs, which are degraded into less harmful compounds and only partially
mineralized into inorganic substances. One of the ECs is olmesartan acid (OLM) [16], a
hypertensive that is estimated to have an average daily consumption of almost 12 DDD
per 1000 inhabitants (it was 3.7 in 2007), with a defined daily dose (DDD) value of 20 mg.
In Italy alone, an expenditure of about EUR 150 million per year is estimated, almost five
times more than the EUR 31 million in 2011 (it is among the top thirty active ingredients
agreed upon for expenditure agreed by the national health system). It is marketed as
olmesartan medoximil, the prodrug from which the active pharmaceutical is derived [17].
An excretion of 90% and a percentage of removal in wastewater treatment plants (WWTPs)
not exceeding 20% are estimated for this drug. The simulation of the chlorination process
in WWTP, which ensures the reduction of emerging pollutants, has allowed to study the
degradation of OLM [18–23], leading to the isolation of nine degradation byproducts (DPs),
eight of these are new (Figure 1) [24].
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The aim of this work was to analyze the less abundant and more polar fractions
that had been overlooked in previous studies, arriving at the determination of another
13 DPs, six of them isolated for the first time. All the DPs were identified by combining
nuclear magnetic resonance (NMR) and mass spectrometry (MS), using matrix-assisted-
laser desorption/ionization as a source and a time-of-flight analyzer (MALDI-TOF) for
mass analysis. For all 22 isolated products, a formation mechanism has been proposed that
integrates the one previously reported, having isolated and identified some products whose
existence had only been hypothesized as possible intermediates. Finally, we evaluated the



Appl. Sci. 2021, 11, 5393 3 of 11

acute and chronic toxicities of OLM and its twelve DPs on organisms from two levels of
the aquatic food chain, Aliivibrio fischeri bacteria and Raphidocelis subcapitata algae. Thus, it
is now possible to have an almost complete picture of the environmental fate of a EC found
in water bodies such as olmesartan, as a function of its intrinsic stability under the working
conditions of a WWTP, of the by-products obtained and their environmental impact.

2. Materials and Methods
2.1. Drug and Reagents

The chemicals for toxicity assessment and olmesartan acid (99.5%) were of analytical
grade and purchased from Sigma Aldrich (Milan, Italy). All the other chemicals and
solvents were supplied by Fluka (Saint-Quentin Fallavier, France) and were of HPLC grade
and used as received. Double-distilled water (Microtech, Naples, Italy) was used to prepare
the dilution water and treatments.

2.2. Chlorination Reaction
2.2.1. Apparatus and Equipment

Column chromatography (CC) was accomplished on Kieselgel 60 (40–63 µm, Merck,
Darmstadt, Germany). HPLC was performed on Shimadzu LC-8A system (Shimadzu,
Milan, Italy). GC was achieved on a Shimadzu 2010 series GC FID (Shimadzu, Milano, Italy).
The 1H- and 13C-NMR spectra were recorded with a 400 MHz NMR spectrometer (Bruker
DRX, Bruker Avance) referenced in ppm to the residual solvent signals (CDCl3, at δH 7.27
and δC 77.0). Analysis of heteronuclear single-quantum coherence (HSQC), optimized
for 1JHC = 155 Hz, and heteronuclear multiple bond coherence (HMBC), optimized for
nJHC = 8 Hz, were used to measure the proton-detected heteronuclear correlations. The
MALDI TOF mass spectrometric analyses were performed on a Voyager-De Pro MALDI
mass-spectrometer (PerSeptive Biosystems, Framingham, MA, USA). The UV-Vis spectra
were run on a Perkin Elmer Lambda 7 spectrophotometer. The IR spectra were run on
a Jasco FT/IR-430 instrument equipped with a single reflection ATR accessory. pH was
recorded on a WTW pH 7110 pH-meter (Xylem Analytics, Weilheim, Germany) equipped
with a WTW SenTix41 electrode with temperature sensor.

2.2.2. Chlorination Experiments

The conditions used in a typical WWTP were simulated by treating a 10−5 M OLM
solution with 10% hypochlorite (1:1 molar ratio of OLM/HClO by concentration, spectro-
scopically determined at λmax 292 nm, ε 350 dm3/mol cm) and 10−3 M OLM solutions
with 10% hypochlorite (1:5 and 1:6 molar ratio of OLM/HClO by concentration, spectro-
scopically determined at λmax 292 nm, ε 350 dm3/mol cm) for 1 h at room temperature [25].
The presence of OLM was quantified using the UV-Vis spectrophotometer. The absorbance
peaks were evaluated at 230 nm. Using standard solutions with known OLM concentrations
it is possible to construct a calibration curve; then OLM concentrations were calculated
from absorbance peaks by interpolating the points on the corresponding calibration curve.
The pH of the solution is measured with the pH-meter; it passes from the initial value of
8.0 to the final value of 10.5. A small amount of the chlorinated solution was quenched by
an excess of sodium thiosulphate, filtered, dried by lyophilization; then the residue was sol-
ubilized in a saturated sodium bicarbonate solution and extracted with ethyl acetate (EA).
HPLC was used to monitor the course of the reaction. The main degradation byproducts
(DP10–DP17 for the EA fraction and DP18–DP22 for the aqueous fraction (W); Scheme 1
and Figure 2) were identified by comparing them with commercial reference compounds,
or isolated through preparative experiments with an OLM solution at concentration above
10−3 M, using 6% hypochlorite at room temperature for 2 h. The proposed mechanism of
their formation and all other DPs previously isolated from the OLM is shown in Figure 3.
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2.2.3. Chlorination Procedure and Product Isolation

Olmesartan acid (1 g, 2.24 mmol) was solubilized in 1.0 L of phosphate buffer
(KH2PO4/K2HPO4 0.1 M) [26]. A sodium hypochlorite solution (about 6% active chlo-
rine, molar ratio OLM/HClO 1:20; concentration spectroscopically determined at λmax of
292 nm, ε = 350 dm3/mol cm) was added drop by drop to this solution under magnetic
stirring at room temperature. The phosphate buffer pH was adjusted to 6.50 by adding
a 10% H3PO4 solution, checking with a pH-meter. Reaction was stopped after 2 h with
an excess of sodium thiosulphate and concentrated by lyophilization. The residue was
dissolved in water, pH is adjusted to 7.00, and this solution was extracted with ethyl acetate.
The aqueous solution was subsequently extracted with n-butanol (B).

The crude EA fraction (579 mg) was chromatographed on silica gel CC, eluting with a
gradient of methylene chloride:methanol:acetic acid (100:0:0.5 to 70:30:0.5, v/v/v) to yield
sixteen fractions.

The fraction EA1 (26 mg), eluted with methylene chloride:methanol:acetic acid
(100:0:0.5, v/v/v), was separated by semipreparative HPLC using a reversed phase column
Kromasil 10 µm 100 Å C18 (250 × 10 mm) and eluting with a gradient of CH3COONH4 (A,
pH 4.0; 10 mM) and methanol (B), starting with 85% B for 1 min and using a gradient up
to 100% B in 25 min, at a solvent flow rate of 2 mL/min, to yield DP10 and DP11 (3.1 and
1.3 mg, respectively).

The fraction EA6 (76 mg), eluted with methylene chloride:methanol:acetic acid (95:5:0.5,
v/v/v), was analyzed via preparative HPLC using a reversed-phase Gemini column of 10 µm
C18 110 Å (250 × 21 mm), eluting with a gradient of CH3COONH4 (A, pH 4.0; 10 mM)
and methanol (B), starting with 60% B for 1 min and using a gradient up to 100% B in
30 min at a solvent flow rate of 7.5 mL/min to get five subfractions. The subfraction EA6.1
(33 mg) was re-chromatographed by HPLC using a reversed-phase Kinetex column of
2.6 µm 100 Å C18 (100 × 4.6 mm), eluting with a gradient of CH3COONH4 (A, pH 4.0;
10 mM) and acetonitrile (B), starting with 40% B for 1 min and using a gradient up to 100%
B in 30 min, at a solvent flow rate of 0.8 mL/min, to yield DP12, DP14, and DP17 (1.4,
1.1, and 13.4 mg, respectively). The subfraction EA6.2 (5 mg) was re-chromatographed by
HPLC using a reversed-phase Kinetex column of 2.6 µm 100 Å C18 (100 × 4.6 mm), eluting
with a gradient of CH3COONH4 (A, pH 4.0; 10 mM) and acetonitrile (B), starting with
50% B for 1 min and using a gradient up to 100% B in 30 min, at a solvent flow rate of 0.8
mL/min, to get DP15 (2.1 mg).

The fraction EA10 (51 mg), eluted with methylene chloride:methanol:acetic acid
(85:15:0.5, v/v/v), was analyzed by semipreparative HPLC using a reversed-phase Kromasil
column of 10 µm 100 Å C18 (250 × 10 mm) and eluting with a gradient of CH3COONH4
(A, pH 4.0; 10 mM) and methanol (B), starting with 35% B for 1 min and using a gradient
up to 100% B in 20 min, at a solvent flow rate of 4 mL/min, to yield four subfractions. The
subfractions EA10.1 (7 mg) was re-chromatographed by HPLC using a reversed-phase
Kinetex column of 2.6 µm 100 Å C18 (100 × 4.6 mm) and eluting with a gradient of acetic
acid:acetonitrile (A, 1:99, v/v) and acetic acid:water (B, 1:99, v/v), starting with 75% B for
3 min and installing a gradient to obtain 100% A over 35 min and returning to 75% B for
10 min, at a solvent flow rate of 0.8 mL/min. It contained DP13 (3.2 mg). The subfractions
EA10.4 (16 mg) was re-chromatographed by HPLC using a reversed-phase Kinetex column
of 2.6 µm 100 Å C18 (100 × 4.6 mm) and eluting with a gradient of acetic acid:acetonitrile
(A, 1:99, v/v) and acetic acid:water (B, 1:99, v/v), starting with 60% B for 5 min and using a
gradient up to 100% A in 20 min and returning to 60% B for 10 min, at a solvent flow rate
of 1.0 mL/min. It contained DP16 (12.2 mg).

The fraction obtained by extraction with n-butanol (B, 635 mg) was again fractioned
by silica gel CC, using a gradient of ethyl acetate:methanol, to give six fractions. The B5
fraction (12 mg), eluted with ethyl acetate:methanol (50:50, v/v), was dried, solubilized in
water:ethanol (50:50, v/v), and analyzed using a Shimadzu 2010 series GC FID (Shimadzu,
Milano, Italy). The gas chromatograph was equipped with Zebron ZB-5 column (30 m ×
0.32 mm I. D., 1.00 µm; Phenomenex, Bologna, Italy). The following parameters were set
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during the experiments: helium as a carrier gas with constant flow of 1.2 mL/min, 1.0 µL
injected into samples with a 20:1 split, and introduced into the injector at 250 ◦C using an
AOC-20i auto sampler (Shimadzu, Milano, Italy). The initial temperature was 60 ◦C, then
rose with a 4 ◦C/min ramp to 200 ◦C with a 5 min hold. The identification of DP18 and
DP19 was fulfilled by comparison with available standard compound.
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The aqueous fraction (W, 711 mg) was dried by lyophilization, re-dissolved in methanol
and separated with CC silica gel by running an ethyl acetate:methanol gradient (100:0 to
0:100, v/v) to get eight fractions.

The fraction W2 (155 mg), eluted with ethyl acetate:methanol (60:40, v/v), was filtered
on reversed phase silica gel CC with water, methanol, and acetonitrile. The fraction eluted
with acetonitrile (6 mg) was analyzed by NMR and contained DP20.

The fraction W7 (187 mg), eluted with ethyl acetate:methanol (50:50, v/v), was chro-
matographed on a reversed phase Sep-Pak RP-18 with a gradient of acetic acid 1%:ace-
tonitrile (100:0 to 0:100 v/v). The fraction eluted with acetic acid 1% was concentrated by
lyophilization (31 mg), analyzed by HPLC using a reversed-phase Luna column of 5 µm
C8(2) 100 Å (150 × 4.6 mm), and eluted with an isocratic solution of KH2PO4 (pH 2.6,
20 mM):acetonitrile (75:25 v/v) at a solvent flow rate of 1 mL/min. It contained DP21, as ev-
idenced by the RT comparison with a standard compound and NMR spectra. The fraction
eluted with acetonitrile was analyzed by HPLC using a reversed-phase Luna column of
5 µm Phenyl-Hexyl 100 Å (150 × 4.6 mm) and eluting with water (A) and acetonitrile (B),
starting with 40% B for 10 min and later obtaining 55% B over 10 min, at a solvent flow rate
of 1.2 mL/min. It contained DP22, as evidenced by the RT comparison with a standard
compound and NMR spectra.
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2.3. Spectral Data

DP10: 2-(1-((2′-(2H-Tetrazol-5-yl)-[1,1′-biphenyl]-4-yl)methyl)-5-chloro-2-propyl-1H-imi
dazol-4-yl) propan-2-ol. White powder. 1H- and 13C-NMR: see Table S1. MS-TOF (positive
ions): m/z calculated for C23H25ClN6O2 m/z 436.18 [M] +; found 439.22 [M + 2 + H]+ (30%),
438.19 [M + 1 + H]+ (23%), 437.19 [M + H]+ (90%).
DP11: N-((2′-(2H-Tetrazol-5-yl)-[1,1′-biphenyl]-4-yl)methyl)butyramide. 1H- and 13C-
NMR: see Table S2. MS-TOF (positive ions): m/z calculated for C18H19N5O m/z 321.16 [M]
+; found 322.18 [M + H]+ (58%), 252.17 [M–COCH2CH2CH3 + H]+ (30%).
DP12: N-((2′-(2H-Tetrazol-5-yl)-[1,1′-biphenyl]-4-yl)methyl)-2-hydroxybutanamide. 1H-
and 13C- NMR: see Table S3. MS-TOF (positive ions): m/z calculated for C18H19N5O2 m/z
337.15 [M] +; found 338.17 [M + H]+ (51%), 319.16 [M–H2O]+ (15%).
DP13: ((2′-(2H-Tetrazol-5-yl)-[1,1′-biphenyl]-4-yl)methyl)(acetyl)carbamic acid. 1H- and
13C-NMR: see Table S4. MS-TOF (positive ions): m/z calculated for C17H15N5O3 m/z 337.15
[M] +; found 338.16 [M + H]+ (29%), 294.17 [M–CO2 + H]+ (11%).
DP14: N-((2′-(2H-Tetrazol-5-yl)-[1,1′-biphenyl]-4-yl)methyl)acetamide. 1H- and 13C-NMR:
see Table S5. MS-TOF (positive ions): m/z calculated for C16H15N5O m/z 293.13 [M] +; found
m/z 294.14 [M + H]+ (55%); 250 [M–CO2 + H]+ (22%).
DP15: N-((2′-(2H-Tetrazol-5-yl)-[1,1′-biphenyl]-4-yl)methyl)hydroxylamine. 1H- and 13C-
NMR: see Table S6. MS-TOF (positive ions): m/z calculated for C14H13N5O m/z 267.11 [M]
+; found m/z 268.12 [M + H]+ (29%).
DP16: 2′-(2H-Tetrazol-5-yl)-[1,1′-biphenyl]-4-carboxylic acid. NMR spectra were in agree-
ment with data reported in the literature [27].
DP17: (2′-(2H-Tetrazol-5-yl)-[1,1′-biphenyl]-4-yl)methanamine. NMR spectra were in
agreement with data reported in the literature [28].
DP18: Butyric acid. White powder. NMR spectra conform to data recorded for the available
standard.
DP19: Butyramide. White liquid. Chemical-physical properties conforming to data
recorded for the available standard.
DP20: Butyronitrile. White liquid. Chemical-physical properties conforming to data
recorded for the available standard.
DP21: Chlorobenzene. White liquid. Chemical-physical properties conforming to data
recorded for the available standard.
DP22: Benzoic acid. White solid. Chemical-physical properties conforming to data recorded
for the available standard.

2.4. Toxicity Tests

Toxicity tests were performed on OLM and its DPs were isolated from chlorination
experiments at initial concentrations of 5 mg/L. Acute toxicity was carried out on A. fischeri
(NRRLB-11177) bacterium supplied by MicroBioTest, Belgium, according to ISO 11348-
3:2007. The biolumiscence inhibition test was performed as previously described [24].
OLM and its DPs were tested in three replicates, and the inhibitory effect was measured
after 30 min of exposure. Chronic toxicity tests were carried out on R. subcapitata and were
performed in 24-well microplates according to Gallo et al. [29]. The algal inoculum was
taken from an exponentially growing culture according to ISO 8692 [30], and it was added
to OLM and its DPs to reach a final algal concentration of 104 cells/mL. Compounds were
tested in three replicates. The algal growth was measured after 72 h at 670 nm (HachLange
DR 5000). The acute and chronic results were processed using Prism 8 (GraphPad Inc.,
Version 8.4.2, San Diego, CA, USA) and analyzed statistically using ANOVA and the Tukey
post hoc test, with p < 0.05 considered to be significantly different.

3. Results and Discussion
3.1. Chlorination Experiments

The OLM chlorination experiments were performed by mimicking the conditions of a
typical WWTP. A 10−5 M solution of the drug was treated for 1 h with 10% hypochlorite
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(OLM:hypochlorite molar ratio of 1:1; concn.) at room temperature [31,32]. Then, the OLM
chlorination experiments were repeated by treating 10−3 M with a much lower ratio of
OLM:oxidizing agent (1:5 or 1:6) so as to ensure the degradation of the studied contaminant
and the possibility of isolating sufficient quantities of degradation byproducts for their
subsequent structural identification. The course of the reaction was monitored by HPLC,
and the DPs obtained were isolated by column chromatography, HPLC, and GC (Scheme 1)
and completely characterized using NMR (see Supplementary Materials) and MS analyses.
DP10-DP17 were isolated in relative percentages of 0.31, 0.13, 0.14, 0.32, 0.11, 0.21, 1.22,
and 1.34, respectively. The proposed mechanism of their formation from OLM is displayed
in Figure 3. DP10–DP15 were isolated for the first time. The quantity of OLM recovered
after chromatography of the initial extract of the chlorinated solution and its identification
by comparison with an authentic commercial sample allowed to evaluate a percentage of
mineralization around 59% under the specified conditions, while the formation of DPs is
around 20%.

3.2. Structure Elucidation of Degradation Byproducts DP1–DP22

In the OLM treatment at the buffered pH, the concentration of DP10–DP17 was at
a maximum after 1 h, in the range of 1.34 to 0.11%, while that of DP18–DP22 was at a
maximum after 2.5 h. The possible mechanisms underlying the formation of OLM by
products is shown in Figure 3. OLM can undergo the imidazole ring opening reaction with
the cleavage of the N19-C23 and C20-N21 bonds, obtaining the DP11 product. This could
undergo an oxidation to the carbon of the side chain (which, in the starting product, was
indicated as carbon C-24), producing the DP12 product. Luongo et al. [24] hypothesized
that DP11 and DP12 could be two intermediates, which, through a third intermediate
I15, would lead to the degradation of DP8 byproducts. From this, then, by reductive
decarboxylation, the obtaining of the DP15 product is justified, which would then provide
DP16 by deamination of the side chain and oxidation of the C-18 carbon to a carboxyl group.
From DP12, it is easy to justify the formation of DP17 by hydrolysis of the N19-C20 bond.
The degradation of the DP17 byproduct by oxidation would give DP15 by acetylation of
DP14 and by subsequent oxidation of this, the DP13 product. Finally, the DP18–DP22
products are degradation products that can be justified in different ways and that constitute
the step preceding the complete mineralization of the starting product.

3.3. Ecotoxicity Data

The inhibition effects on the bioluminescence of A. fischeri and on the growth of R.
subcapitata were measured in this section for characterizing the acute and chronic toxicity
of DPs at concentrations of 5 mg/L. Figure 4 shows the comparison of the effects of DPs.

Only in three DPs (DP14, DP20, and DP22) in R. subcapitata and two DPs in A. fischeri
(DP14 and DP20) the stimulation was observed, showing no toxic effects. However, in 75%
of the DPs investigated, the negative effects increased compared to the parent compound
(OLM). In particular, the bioluminescence inhibition of the A. fischeri in DP16 exceeded
70%. The acute toxicity in each DPs followed the order of DP14 > DP20 > DP21 > DP15 >
DP22 > DP11 > DP10 > DP12 > DP18 > DP19 > DP13 > DP16, while the chronic toxicity
in each DPs followed the order of DP22 > DP20 > DP14 > DP13 > DP18 > DP15 > DP19
> DP12 > DP21 > DP11 > DP10 > DP16. Considering the overall toxicity, these results
demonstrate that higher inhibitory values, especially for A. fischeri, were achieved for DP16,
while lower inhibitory values were achieved for DP20. Thus, as a strong oxidant, sodium
hypochlorite could decompose non-toxic OLM into small molecules, increasing the toxicity
of the compound. Although the concentrations investigated and capable of exerting toxic
effects may be higher than the environmental concentrations, the possible problems due to
continued exposure, which can occur through contact with water and through the food
chain, should not be underestimated.
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4. Conclusions

This paper investigated the less abundant and more polar fractions of OLM following
degradation treatment by chlorination that had been neglected in a previous study and
were purified by column chromatography, HPLC, and GC. This made it possible to identify
thirteen products, of which six were new, in addition to the nine already reported in the
literature. OLM underwent complete mineralization in about 59% of cases, and in 21% of
cases was recovered as is. OLM transformed into the corresponding byproducts in 20% of
cases, and about 14% of these were identified. A possible pathway for OLM degradation
and byproducts formation has been hypothesized. A total of 75% of the investigated DPs
possessed anywhere from weak to high toxicity; the remaining DPs presented no such
effects. Furthermore, the order of chronic and acute toxicity showed that the products
disinfected with sodium hypochlorite showed the highest inhibition rates for algae.

Supplementary Materials: 1H and 13CNMR data of DP10–DP15 are available online at https://
www.mdpi.com/article/10.3390/app11125393/s1 in Tables S1–S6.
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