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Abstract: The applicability of the typical pressure–sinkage models used to characterize the soil’s
bearing properties is limited to homogeneous soils (infinite thickness) that have no hard layer. At a
given depth, a hard layer can have a considerable impact on the soil’s load-bearing capacity. It is
thus necessary to alter the pressure–sinkage equation by taking this condition into account when
assessing the load-bearing capacity. The present paper aims to determine a simple, high-fidelity
model, in terms of soil characterization, that can account for the hard layer affection. To assess hard
layer affection in this paper, a plate sinkage test (bevameter) was conducted on sandy loam soil. To
this end, the soil was prepared by considering three bulk densities and two soil thickness levels at
7–9% moisture content levels. According to the results, this paper put forth a new perspective and
related equations for characterizing bearing performance. The sinkage modulus (k) is an intrinsic
soil parameter that has a determined unit of N/cm2 and is significant for managing the bearing
performance. The results showed that the new modulus sinkage model incorporates the main factor
of the rigid layer effect involving high fidelity that the conventional models have failed to account for.

Keywords: pressure–sinkage relationship; soil deformation; bevameter; sinkage modulus; load-
bearing capacity

1. Introduction

In an off-road environment, the key factor impacting vehicle mobility and wheels’ sink-
ing and slipping is soil deformation [1–4]. The mechanical properties of the soil can restrict
the traction of machine mobility [5,6]. The soil’s mechanical properties can be classified as
bearing properties in the normal direction and shearing in the tangential direction. Bearing
involves pressure–sinkage (load carrying capacity) relationship equations [7–9]. When
assessing a vehicles’ mobility and traction on unstructured terrains, the pressure–sinkage
relationship is crucial [10–13]. The pressure–sinkage model can indicate the soil strength
or stiffness and is thus necessary in soil mechanics to establish the soil’s stability and the
extent to which it can deform [14]. Generally, there are two aspects to the sinkage process
which are plastic deformation and elastic deformation. Plastic deformation tends to take
place only in the case of very small loads. Hence, using the same model for determining
the soil’s sinkage characteristics is not feasible. Research on terramechanics commonly uses
simplified models [15]. Several studies have tried developing empirical models through
which the pressure–sinkage relationship can be characterized. These models assume that
the soil from the surface to the required depth is homogeneous [16]. Typically, to verify
pressure–sinkage models, experiments involving flat, rigid plates are used, and the parame-
ters are established based on the results [7]. Bernstein and Goriatchkin were the first to put
forth the earliest empirical model that could characterize the pressure–sinkage relationship
for terrain [17]. Their model formed the basis for numerous improved models [7,18–21]. In
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1956, when Bekker observed that the plate’s width or radius impacts the parameters, he put
forth the Bekker model [22]. In this model, the dimensions of the parameters concerning
the soil modulus rely on a sinkage exponent. Bekker’s model was further improved upon
in 1965 by Reece, who used two dimensionless parameters [23]. In 1959, Saakyan suggested
a pressure–sinkage equation that was based on the Boussinesq theory regarding the elastic
half-space indicated in Equation (1) [24].

p = k
( z

D

)n
(1)

where p is the average pressure under an indenter, D is the diameter of the indenter, z
is the vertical soil deformation (sinkage), and k is the sinkage modulus (load-carrying
capacity factor).

It is noteworthy that Equation (1) applies to homogeneous soils that do not have
a hard layer; that is, there is a decrease in monotonic sinkage when ground pressure
increases. In reality, vehicles tend to work in soils that have a hard layer, or hardpan,
at a depth [25]. Because of the tillage operations and the resulting settling, varied local
load-carrying capacities are generated at diverse depths. While the upper, loose layer’s
load-carrying capacity is low, the deeper layer’s load-carrying capacity is based on the
tillage operation, although it increases with depth. Boussinesq’s theory states that there is a
gradual reduction in the exerted surface pressure as a function of depth. At a given depth,
if there is a rigid layer, it alters the pressure distribution as a function of relative depth [26].
An analytical pressure–sinkage model was presented by Ageikin that considered the soil
hardpan effect [27,28]. In this model, the equation for assessing the soil’s bearing capacities
in terms of infinite hardpan does not apply to some types of soil. To address the Ageikin
model’s limitations, in 2010, Lyasko developed an analytical model by considering invariant
soil parameters that are not impacted by other factors, including the plates’ dimensions [25].
These are two complicated models that are difficult to apply. Egorov’s model focused on
the homogenous soil’s stress and displacement of finite thickness foundation. This model
can be applied for evaluating the deformation of a soil layer that is underlain by a hard
layer with no compaction. According to this model, deformations under foundations, even
with no underlying hard layer, focused on the massif’s upper part and are not deeply
entrenched. This leads to an “active zone”, where the base can be considered deformed.
It is crucial to consider the core depth problem when calculating the finite thickness base.
This can only be experimentally addressed, as per the measurements of the building soil’s
layer-by-layer deformations [29].

Salman et al. examined the hard layer’s affection on the sandy loam soil behavior
and noted that the hard layer increased the pressure and compaction, thus altering the soil
behavior. Moreover, it increased deformation and changed the pressure–sinkage equation
parameters [30].

The present study aims to characterize the pressure–sinkage relationship that can
indicate the soil’s hard layer simply and in a general manner with meaningful parameters.
The study also intends to specify the zone (breaking point) in which the rigid layer impacts
the compaction. Further, the study presents a new way to characterize the pressure–sinkage
relationship by altering the sinkage modulus (k) in Equation (1). However, there are certain
problems when determining the sinkage modulus k, and these problems can be caused
by extreme variability in the soil textures, the distribution of the moisture content and its
impact on the mechanical properties, and the hardness distribution in the hardpan at finite
depth. Hence, large circular plates were used to ensure that the loading conditions were
similar to those occurring in a real tire.

2. Materials and Methods

As shown in Figure 1a, a bevameter (plate sinkage test) was utilized to carry out the
experiments. The equipment’s design, construction, and function are explained in other
published research [31].
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Figure 1. (a) Plate sinkage test (bevameter device); (b) soil surface leveling.

A hydraulic cylinder was used to apply the necessary load. The experiment included
a soil bin that was 200 cm in length, 100 cm in width, and had a changeable thickness
of 70 cm. Three circular sinkage plates of 10 cm, 15 cm, and 20 cm are connected to the
hydraulic cylinder and are in contact with the soil. A known force is applied to this soil.
The applied vertical load is measured through using a stainless-steel S-beam load cell
(HBM, Germany) with a 30 kN capacity. To measure the vertical deformation (sinkage), an
analog displacement encoder (MLO-POT-0360-TLF, FESTO, Germany) with a 30 cm stroke
was used. This displacement sensor’s slider was connected to the hydraulic cylinder rod
end and was simultaneously moving. The hydraulic cylinder could move transversely as
well as longitudinally through the rail to test all points in the soil bin’s soil surface. The soil
bin’s bottom was a hard layer in a field. The tilling of agricultural soils is performed until
30–40 cm of depth, which is similar to the contact diameter of tires [24]. The soil thickness
can be assessed because the soil bin’s height can be changed.

To prepare the soil: first, the soil (from a field belonging to the Szent István Campus,
MATE University, Hungary) was transferred to the laboratory; then, a 5 mm mesh was
used to sieve this soil and remove any coarse parts and plant roots; and the soil was then
stored where it would not dry up. Previous studies have used this same soil [32,33], which
is a sandy loam with a composition of sand (2–0.05 mm), mud (0.05–0.002 mm), and clay
(<0.002 mm). The soil’s bulk density and moisture content can be established using the
sampling method, which involves taking different soil samples during and after the tests.
The soil samples were dried for 24 h in the oven at 110 ◦C. The weight of the samples was
noted before and after drying them to establish the moisture content and bulk density.
Table 1 presents the soil examination results, along with the angle of shearing resistance
and the cohesion that was determined based on the direct shear test results.

Table 1. Mechanical properties of sandy loam soil used in the experiments.

Feature Value

Cohesion 58.07 kPa
Angle of shearing resistance 37.59◦

Water content 7–9% dry basis
Bulk density 1.3, 1.4, and 1.5 g/cm3

The tests were conducted in a laboratory under controlled conditions. For the tests,
two soil thicknesses of 30 cm and 40 cm were used with diverse bulk densities. The soil bin
was first filled with 30 cm thickness of soil in layers, with each layer being 5 cm thick. A
wood plate was used to compress all layers and obtain the initial bulk density of 1.3 g/cm3.
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To avoid the concentration of stress on conglomerated points at the soil surface under the
loading plate, the soil surface was specifically leveled, as shown in Figure 1b. To apply
the load, a sinkage plate with a 20 cm diameter was used, as this size offers more realistic
conditions that would be comparable to the soil’s behavior under a tire. Next, the sinkage
plate was connected to the force sensor and moved closer to the soil surface through the
bevameter. The S-beam load cell was used to measure the vertical force, and the analog
displacement encoder was used to measure the displacement. These steps were conducted
at the sinkage plate’s 3 cm/s penetration rate. The penetration points were obtained
where the soil bin walls would not impact the data. The force and displacement sensors
transferred the signals to a strain gauge measurement device, called Spider 8, which then
sent this measured data to a computer. The Catman software was then used to assess and
develop the force-time and displacement-time graphs. The displacement and force data
obtained from the computer helped indicate the relationship between the pressure and the
sinkage curves.

These steps were then repeated for 30 cm and 40 cm soil thickness levels, involving
two initial bulk densities of 1.4 and 1.5 g/cm3 and 1.3, 1.4, and 1.5 g/cm3, respectively.
Experiments were conducted to evaluate how the hard layer impacts the soil behavior and
determine the zone in which the compaction and the hard layer interact.

3. Deformation under Pressure Plate as a Function of Depth

Deformation refers to compaction. The deformation in the plate sinkage test involved
vertical and lateral compaction, along with soil movement under the plate [34]. There are
typically two deformation zones in the field. The first is the build-up zone that has an
increasing resistance, and the second is the stationary zone with constant resistance. To
identify the soil density distribution in the deeper layers of sandy loam soil, Pillinger [33]
used the cone penetrometer in a field. Pillinger also specified the two deformation zones
and explained them in another study’s results [24]. The pressure in the build-up zone
can elevate to severe relative depth (zo/d). In the stationary zone, the pressure remains
constant to an extent. The plat sinkage test can help observe this phenomenon. Figure 2
illustrates a plate sinkage test’s schematic diagram. Once loading begins in the build-up
zone, soil aggregates and particles rearrange while air becomes expelled, which increases
the density of the dry bulk. Thus, sinkage mainly results from compaction below the plate.
If the plate keeps sinking and the load is increased, then the soil immediately under the
plate can no longer compact at the critical relative depth. Because of this, a conical mass is
developed that moves by the plate and leads to lateral deformation and compaction; that
is, sinkage is largely caused by soil becoming laterally displaced [34]. According to Sitkei
et al. [24], however, if a hard layer is present at a certain depth under the footing (circular or
rectangular), it can have a substantial effect on the pressure distribution, as well as the load-
bearing capacity, of the soil. The hard layer mainly alters the soil’s pressure distribution
because the pressure is 60% greater compared to that in a homogeneous half-space. As
a result, the interaction of the compact zone with the effect of a rigid layer increases
compaction and pressure. Moreover, this pressure distribution can be altered as a function
of relative depth. Figure 3 presents the assessment of Pillinger’s measurements, where
the critical relative depth as the soil density function was plotted. Their zo/d measured
2–7 cm in depth. This value is based on the soil density and moisture content. As can be
seen from Figure 3, the critical relative depth (zo/d) strongly decreases at high moisture
content levels, as the soil tends to exhibit plastic flow behavior. Hence, the experiments
conducted in this study considered moisture content levels between 7% and 9%. This study
primarily aimed to determine the critical relative sinkage (zo/D), called the breaking point,
by assessing the plate sinkage test’s characteristics.
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Based on the experimental results, Equation (2) presents the breaking point, (zo/D).

zo

D
− H

D
= 1.05− 1.07 (2)

where zo is the vertical deformation, D is the sinkage plate diameter, and H is the
soil thickness.
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Table 2 presents the critical relative sinkage (zo/D) values of sinkage plates, gathered
from the experiments involving varied soil thickness.

Table 2. Values of critical relative sinkage (breaking points), according to Equation (2).

Soil Thickness
H [cm]

Plate Diameter
D [cm] H/D zo/D =

H/D−1.05
zo/D =

H/D-1.06
zo/D =

H/D−1.07

30 20 1.5 0.45 0.44 0.43
40 20 2 0.95 0.94 0.93

Figures 4 and 5 present the results of pressure–sinkage on a logarithmic scale for 30 and
40 cm soil thickness levels, respectively, considering a 20 cm sinkage plate diameter. The
measurements were carried out at three initial bulk densities (ρ) of 1.3, 1.4, and 1.5 g/cm3.
The curves clearly exhibited the transition zone before and after the breaking point for
the plate sinkage test. As shown in the figures, the pressure–sinkage curves include two
parts. The first part is prior to the breaking point that conveys the build-up zone. In this
part of the curve, the plate acts upon a homogenous soil, where the effect of the hard layer
does not exist and the increasing soil strength is not yet significant. The soil deformation
increases constantly, and the soil under the plate behaves similarly to when it is in the
infinite thickness (without a hard layer or a specific depth). The pressure continuously
intensifies with the relative sinkage, and the relationship between them is almost linear.
The second part is following the breaking point that indicates the compaction zone or
the zone of the soil bin bottom (the hard layer in a field) effect. Here, the compaction,
as well as the deformation, increases rapidly. Further, above the rigid layer, the pressure
almost does not decrease, because this layer modifies the pressure distribution in the soil
body. This extended portion from the transition zone to the specific depth has a varied
load-bearing capacity.

Equation (1) can be used for the first part of the pressure–sinkage curve. A power
regression analysis was carried out to determine the relationship between the applied
pressure (p) and the relative sinkage (zo/D) for both soil thickness levels with diverse
densities, as per Equation (1). Table 3 presents the results. The data were fitted to the power
model with a high coefficient of determination (R2).

Table 3. Parameters of Equation (1).

Soil Thickness,
H [cm]

Initial Bulk
Density [g/cm3] n k

[N/cm2]
Coefficient of

Determination (R2)

30
1.3 0.7 30.28 0.99
1.4 0.7 13.56 0.99
1.5 0.7 17.96 0.98

40
1.3 0.9 10.43 0.97
1.4 0.8 29.80 0.98
1.5 0.8 12.94 0.92

The exponent (n) represents the soil’s deformation and compaction behavior, consider-
ing vertical loading. The soil’s moisture content and particle size distribution have a major
effect on this. The sinkage modulus (k) is primarily dependent on the soil type, moisture
content, and density. As per [24], the average value of exponent (n) at the optimum mois-
ture content level is 0.8, which reduces as moisture content increases. The typical value of
exponent (n) in the present study ranges from 0.7 to 0.9, as shown in Table 3.
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4. New Pressure–Sinkage Relationship Equation/Modified Sinkage Modulus (k)

The conventional pressure–sinkage models can be used for homogenous, infinite soil
thickness when an examination of the impact of the hard layer is not required. It was
intended that certain proposals would be made for models that would consider the effect
of the hard layer, but the models were too complicated and could not be applied. Hence,
the present study’s main aim is to improve a simple pressure–sinkage model (shown in
Equation (1)) to assess the affection of the rigid layer. Most proposed pressure–sinkage
models have tried to develop the sinkage modulus (k) as functions concerning the plate
dimensions or wheel dimensions. These models have also regarded the sinkage exponent
as a constant soil parameter that is not impacted by other factors. The exponent (n), as
well as the sinkage modulus (k), remain constant in the present study for the first part
of the pressure–sinkage curve. These soil parameters, however, do not remain constant
for the second part, because the bottom of the soil bin impacts the pressure distribution
while increasing compaction. The compaction following the breaking point becomes a
more exponential function, and hence, the exponent (n) is not constant. It is possible to
improve Equation (1) by altering the two parameters so that the second part of the pressure–
sinkage curve can be more accurately characterized. As modifying both parameters is not
effective, the sinkage modulus (k) can be modified using a simpler method. The exponent
(n) characterizes the soil’s deformation and compaction behavior under vertical loading.
On the other hand, k indicates the soil’s rigidity and is mainly influenced by the soil’s
properties. The experimental results concerning the two soil thickness levels at varied
initial bulk densities show that a pressure–sinkage model is developed by presenting a new
sinkage modulus concerning the affection of the soil’s hard layer (Equations (3) and (4)):

p = kapp

( z
D

)n
(3)

kapp = k + B
(

ec( z
D−

zo
D ) − 1

)
(4)

where kapp is the apparent sinkage modulus in unit N/cm2, and B and c are constant.
z/D > zo/D (for the second part of the pressure–sinkage curve). The apparent sinkage
modulus is equal to the sinkage modulus at z/D < zo/D (for the first part of the pressure–
sinkage curve), as seen in Equation (5).

kapp = k (5)

∆k = kapp − k and ∆z/D = z/D-zo/D for z/D > zo/D, by substituting these two terms
in Equation (4), the following equation becomes:

∆k = B
(

ec∆z − 1
)

(6)

Considering the logarithm on both sides of Equation (6) leads to the new equation
given below:

In
(

∆k
B

+ 1
)
= c·∆

( z
D

)
(7)

To determine the constants B and c, two measured points on the pressure–sinkage
curve can be used. The example given below presents the calculation involved. Table 4
presents the data of the example.

Table 4. The data of the example.

zo/D Measured
z/D ∆z/D = z/D-zo/D k

[N/cm2]
Measured k

or kapp
∆k = kapp − k

0.2
0.3 0.1

9
11 2

0.6 0.4 24.5 15.5



Appl. Sci. 2021, 11, 5499 10 of 18

By substituting Table 4′s data in Equation (7), the following two equations are provided:

In
(

2
B
+ 1

)
= 0.1·c

In
(

15.5
B

+ 1
)
= 0.4·c

To determine the values of B and c, the two equations form an implicit equation that
can be solved using an implicit equation solver program. This program identified the
constants as B = 4.306 and c = 3.815.

Figure 6 presents a model of the relationship between ∆k and ∆(z/D) that was sug-
gested after several calculations of Equation (6) were completed to remove the calculation
errors. It is seen that Equation (6) is flexible at different values of B and c, but converging
values were noticed at ∆(z/D) = 0.5, where ∆k = 30 [N/cm2]. The range of B is 2–50,
while the range of c is 1–5; hence, ∆(z/D) = 0.5 is regarded as a fixed point to identify the
optimum range for B and c. Figure 7 shows the relationship between B and c that can help
determine their range. Hence, Equation (6) was used to calculate the constant B with a ∆k
range between 10 and 50 and a c range between 1 and 5. The B and c values are coherent
for ∆k (0.5) of 50, 30, and 20 (N/cm2). In the present study, the optimum range for the
constant B is between 10 and 20, and between 1 and 3 for constant c.
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Experimental verification of the proposed sinkage modulus (kapp) was conducted
to determine the affection of a hard layer in the soil. Figures 8 and 9 show the pressure–
sinkage curve, load-bearing capacity factor (k), and kapp curve results for the sinkage
plate diameter of 20 cm at 30 cm and 40 cm soil thickness levels, respectively, with varied
densities. The first part of the pressure–sinkage curve involved subjecting the build-up
zone to Equation (1). To identify the equation’s parameters, a regression analysis (Table 3)
was used. In the first part of the curve (prior to the breaking point), where kapp = k at z/D <
zo/D, no changes were seen in the sinkage exponent (n) or the sinkage modulus (k). There
is an increase in pressure as a function of the relative sinkage as the logarithmic scale for
showing the relation, and hence, the pressure and relative sinkage have a linear relationship.
The load-carrying capacity factor (k) depends on density. Accordingly, its value increases
with the rise in the soil density, with some abnormalities. These abnormalities occur
because of the soil filling up in the bin in layers, as it is not easy to control all of the layers
and ensure they have the same compaction and pressure distribution. The curve’s second
part shows the compact zone’s interaction with the rigid layer. With increased deformation,
the pressure also increases with relative sinkage. For this portion, the proposed Equation (4)
was used, where z/D > zo/D. Moreover, the figures show that the values of kapp and the
applied pressure are coherent. Hence, with increasing pressure, there is an increase in the
sinkage modulus (kapp), which leads to an increase in the soil’s load-bearing capacity.
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Table 5 presents the values of B, c, ∆k, and kapp at ∆(z/D) = 0.5, in terms of two
soil thickness levels at diverse densities. The table shows that there are anomalies in the
outcomes of two of the tested conditions. First, in the case of the 30 cm soil thickness
and the 1.3 g/cm3 density, ∆k and kapp should be below 17.2 N/cm2 and 30.76 N/cm2,
respectively, which are the corresponding values of the 1.4 g/cm3 density for the same
thickness. However, the obtained results are 46.1 N/cm2 and 76.4 N/cm2, consecutively.
Second, with the 40 cm soil thickness and the 1.4 g/cm3 density, ∆k and kapp should
be below 37.9 and 50.82 N/cm2, respectively, which are the corresponding values of the
1.5 g/cm3 density for the same thickness. Nevertheless, the acquired values are 40.6 N/cm2

and 70.38 N/cm2, consecutively. This irregularity occurred because the soil filled up as
layers in the soil bin. Therefore, it was difficult to ensure that all layers were in the same
compressed level and soil distribution.

Table 5. Values of B, c, ∆k, and kapp at ∆(z/D) = 0.5.

Soil Thickness
[cm]

Density
[g/cm3]

∆k (0.5)
[N/cm2]

kapp (0.5)
[N/cm2]

c B

30
1.3 46.1 76.4 2.5 18.53
1.4 17.2 30.76 2 10.33
1.5 31.1 49.1 2.5 12.5

40
1.3 19.27 29.70 1.5 12.2
1.4 40.6 70.38 2.5 16.3
1.5 37.9 50.82 2.5 14.5

To present the relationship between ∆k and ∆(z/D), Equation (6) used the values of B
and c shown in Table 5. Figures 10 and 11 illustrate this relationship, along with the value
of ∆k at ∆(z/D) = 0.5.

Most of the pressure–sinkage models in the literature have been applied to specify
the behavior of homogeneous soils (without a hard layer). However, in the field, a vehicle
usually operates in soils with a hard layer located at a certain depth. There have been some
attempts to study the behavior of soils with a hard layer. Salman et al. [30] tested the hard
layer’s effect on sandy loam soil and noted that the hard layer raised the pressure and
compaction, thus altering the soil behavior; however, this study did not improve a new
pressure–sinkage model for studying the affection of a hard layer. Lyasko [25] developed
an analytical pressure–sinkage model by examining invariant soil parameters that are not
impacted by other factors, including the plates’ dimensions. Nevertheless, this model is
difficult to apply while studying the hard layer. Cerato and Lutenegger [35] modified the
well-known Terzaghi bearing capacity equation by adjusting the shape factors first. Then,
they improved the bearing capacity factor to account for the differences in the bearing
capacity of the finite layer. However, this model is applicable for the foundation, not for the
vehicle operating in a field. In contrast, the present study proposed a new pressure–sinkage
relationship that can describe the soil’s hard layer in a simple and general manner with
meaningful parameters.
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5. Conclusions

This study examined the conventional pressure–sinkage models’ limitations when
assessing the effect of the rigid layer in soil. To accomplish this, an empirical investigation
was conducted to determine the hard layer’s impact on the pressure–sinkage relationship
for plate sinkage that has a diameter similar to the vehicle tier. The study also explored
the interaction zone between the rigid and compacted layers, and determined the critical
relative sinkage (zo/D), which is also called the breaking point. The soil deformation under
the plate was also identified. Two zones were outlined by the pressure–sinkage curves,
which are the build-up zone with constant deformation and the other zone following
the breaking point, which has exponential and non-constant deformation. The study
further discussed modifying a simple conventional pressure–sinkage model to examine
the hard layer. To accomplish this, a model parameter was improved upon, which is the
sinkage modulus (k; the load-bearing capacity factor), resulting in a new parameter, kapp
(the apparent sinkage modulus). According to the results, the rigid layer increased the
compaction, thereby increasing the pressure and kapp. In the kapp equation, constants B
and c were measured from two points on the experimental pressure–sinkage curve. The
equation was further simplified both to make it implicit and to ensure that it could be
solved numerically. To avoid calculation errors, the ∆k model with ∆(z/D) was put forth.
In this model, different B and c values were used to determine coherent values of ∆k at
∆(z/D) = 0.5. Hence, this point was selected as a fixed point for determining the best
range of B and c constants. A model used to determine the relationship between B and
c was also presented, which showed coherent values regarding the constants at ∆k = 20,
30, and 50 N/cm2. The optimum range for B was thus determined to be between 10 and
20, and between 1 and 3 for c. The present model of the pressure–sinkage equation was
thus found to reflect the rigid layer effect in soil with high fidelity through the new sinkage
modulus equation.

In the current study, the new modification of the load-bearing capacity factor (k) and
the new pressure–sinkage model have been proposed and have been used to represent
the affection of a hard layer in the soil. In future work, the authors plan to generalize the
pressure–sinkage model and transform it into a full dimensionless form while considering
the effect of the soil density and the finite depth.
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