
applied  
sciences

Article

Recurrent Neural Networks and ARIMA Models for
Euro/Dollar Exchange Rate Forecasting

Pedro Escudero 1,* , Willian Alcocer 2 and Jenny Paredes 2

����������
�������

Citation: Escudero, P.; Alcocer, W.;

Paredes, J. Recurrent Neural

Networks and ARIMA Models for

Euro/Dollar Exchange Rate

Forecasting. Appl. Sci. 2021, 11, 5658.

https://doi.org/10.3390/app11125658

Academic Editors: Fco.

Javier Gimeno-Blanes,

Cristina Soguero-Ruiz,

Margarita Rodríguez-Ibáñez, José

Luis Rojo-Álvarez and

Giancarlo Mauri

Received: 13 March 2021

Accepted: 2 June 2021

Published: 18 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 SISAu Research Group, Facultad de Ingeniería y Tecnologías de la Información y la Comunicación,
Universidad Tecnológica Indoamérica, Ambato 180103, Ecuador

2 Escuela de Ingeniería en Estadística Informática, Facultad de Ciencias, Escuela Superior Politécnica de
Chimborazo, Riobamba 060155, Ecuador; willianalcocer@espoch.edu.ec (W.A.); jeparedes@espoch.edu.ec (J.P.)

* Correspondence: pescudero2@indoamerica.edu.ec

Abstract: Analyzing the future behaviors of currency pairs represents a priority for governments,
financial institutions, and investors, who use this type of analysis to understand the economic
situation of a country and determine when to sell and buy goods or services from a particular
location. Several models are used to forecast this type of time series with reasonable accuracy.
However, due to the random behavior of these time series, achieving good forecasting performance
represents a significant challenge. In this paper, we compare forecasting models to evaluate their
accuracy in the short term using data on the EUR/USD exchange rate. For this purpose, we used
three methods: Autoregressive Integrated Moving Average (ARIMA), Recurrent Neural Network
(RNN) of the Elman type, and Long Short-Term Memory (LSTM). The analyzed period spanned from
2 January 1998, to 31 December 2019, and was divided into training and validation datasets. We
performed forecasting calculations to predict windows with six different forecasting horizons. We
found that the window of one month with 22 observations better matched the validation dataset in
the short term compared to the other windows. Theil’s U coefficients calculated for this window were
0.04743, 0.002625, and 0.001808 for the ARIMA, Elman, and LSTM networks, respectively. LSTM
provided the best forecast in the short term, while Elman provided the best forecast in the long term.

Keywords: recurrent neuronal networks; ARIMA; random series modelling; EUR/USD exchange rate

1. Introduction

Different stock market forecasting techniques have been developed to predict val-
ues since the birth of the foreign exchange market (FOREX) in the 1970s [1–3]. Some of
these techniques are used to identify future movements and include fundamental analysis,
technical analysis, and mixed analysis, such as using statistical methods to model prices’
behaviors and generate future predictions [4,5]. Individual models, such as ARIMA, have
been employed to forecast time series due to their popularity as classic prediction meth-
ods [6]. Since the beginning of the 1990s, economic and financial data studies have been
carried out by applying artificial neural networks (ANN) as estimation and forecasting
methods in non-linear functions with great success [7,8]. For instance, a class of neural
networks was designed mainly based on the use of Liapunov’s stability theory for learning
laws. These networks are known as differential or dynamic neural networks (DNN) [8,9],
whose applications were shown to be successful for forecasting the DAX and S&P 500
stock indices [7]. Following the same logic of variable weight analysis, a neural network
(NN) system with twelve economic variables was used to analyze the significance of these
variables in peso–dollar forecasting [10]. In the last decade, RNNs of the LSTM type have
been widely used for forecasting sequential data [11–14]. The mechanism by which such
networks store long- and short-term information makes them powerful when performing
historical data forecasting. This type of RNN has been used for currency-pair forecasting,
action trading on the New York Stock Exchange, recognition, environmental predictions,

Appl. Sci. 2021, 11, 5658. https://doi.org/10.3390/app11125658 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-0534-2328
https://doi.org/10.3390/app11125658
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11125658
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11125658?type=check_update&version=1


Appl. Sci. 2021, 11, 5658 2 of 12

electricity demands, etc. [9]. The accuracy of the LSTM method was evaluated by compar-
ing this method with other types of NNs and classical prediction methods [15–18]. Many of
these comparisons and applications were used to formulate new hybrid models to improve
the results of the predictions [19–21]. In this context, the results of a combination of classical
prediction methods [19], neural networks [22], and recurrent neural networks [23] have
helped clarify the path to creating new approximations based on standard methods applied
to the currency exchange rate and stock market forecasting [24]. Most of these approaches
were proposed to find the model that can provide the best forecasting in the short term
according to the next-day predictions needed in currency exchange rate forecasting, which
is the most challenging objective due to the inherently noisy and non-stationary behavior
of the data.

In this work, we compare the modelling of ARIMA with RNN, Elman, and LSTM
networks to perform out-of-sample forecasting for a EUR/USD exchange-rate dataset. The
purpose of this work is to provide valuable tools not only to demonstrate the accuracy
of these models and use them for financial purposes but also to show how these three
methods can be used to create hybrid models to improve the forecasting of random time
series. We begin this study by providing a summary of the three methods (ARIMA, Elman,
and LSTM) to clarify how the algorithms work and how to optimize the models. Next,
we define the datasets used for training and validation purposes, followed by exploratory
analysis and data preprocessing. Then, we apply the ARIMA algorithm to determine the
model that best forecasts the time series. We then define the Elman and LSTM networks
by adjusting the optimal parameters. We performed training and validation of these three
methods by using prediction windows with different forecast horizons. Finally, we chose
the window that provides the best forecasting in the short term to evaluate, in detail, the
accuracy of the three prediction methods.

2. Materials and Methods
2.1. Overview of Regression Techniques

The classical statistical methods were historically used to analyze the behavior of
time series. ARIMA models are well-known parametric techniques trained through linear
regressions [6,25]. The ARIMA algorithm in Figure 1a uses graphs, basic statistics, the
Autocorrelation Function (ACF), the Partial Autocorrelation Function (PACF), and trans-
formations to identify patterns and model components. This model provides estimates
through least squares and maximum likelihood methods and uses the graphs, ACF, and
PACF of residuals to verify the validity of the model—i.e., if the model is valid, then use
that model; otherwise, go back to the first step. Lastly, the algorithm forecasts and tracks
the model’s performance using confidence intervals and simple statistics [26].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 2 of 13 
 

which such networks store long- and short-term information makes them powerful when 
performing historical data forecasting. This type of RNN has been used for currency-pair 
forecasting, action trading on the New York Stock Exchange, recognition, environmental 
predictions, electricity demands, etc. [9]. The accuracy of the LSTM method was evaluated 
by comparing this method with other types of NNs and classical prediction methods [15–
18]. Many of these comparisons and applications were used to formulate new hybrid mod-
els to improve the results of the predictions [19–21]. In this context, the results of a com-
bination of classical prediction methods [19], neural networks [22], and recurrent neural 
networks [23] have helped clarify the path to creating new approximations based on 
standard methods applied to the currency exchange rate and stock market forecasting 
[24]. Most of these approaches were proposed to find the model that can provide the best 
forecasting in the short term according to the next-day predictions needed in currency 
exchange rate forecasting, which is the most challenging objective due to the inherently 
noisy and non-stationary behavior of the data. 

In this work, we compare the modelling of ARIMA with RNN, Elman, and LSTM 
networks to perform out-of-sample forecasting for a EUR/USD exchange-rate dataset. The 
purpose of this work is to provide valuable tools not only to demonstrate the accuracy of 
these models and use them for financial purposes but also to show how these three meth-
ods can be used to create hybrid models to improve the forecasting of random time series. 
We begin this study by providing a summary of the three methods (ARIMA, Elman, and 
LSTM) to clarify how the algorithms work and how to optimize the models. Next, we 
define the datasets used for training and validation purposes, followed by exploratory 
analysis and data preprocessing. Then, we apply the ARIMA algorithm to determine the 
model that best forecasts the time series. We then define the Elman and LSTM networks 
by adjusting the optimal parameters. We performed training and validation of these three 
methods by using prediction windows with different forecast horizons. Finally, we chose 
the window that provides the best forecasting in the short term to evaluate, in detail, the 
accuracy of the three prediction methods. 

2. Materials and Methods 
2.1. Overview of Regression Techniques 

The classical statistical methods were historically used to analyze the behavior of 
time series. ARIMA models are well-known parametric techniques trained through linear 
regressions [6,25]. The ARIMA algorithm in Figure 1a uses graphs, basic statistics, the 
Autocorrelation Function (ACF), the Partial Autocorrelation Function (PACF), and trans-
formations to identify patterns and model components. This model provides estimates 
through least squares and maximum likelihood methods and uses the graphs, ACF, and 
PACF of residuals to verify the validity of the model—i.e., if the model is valid, then use 
that model; otherwise, go back to the first step. Lastly, the algorithm forecasts and tracks 
the model’s performance using confidence intervals and simple statistics [26]. 

  
(a) (b) 

Figure 1. (a) ARIMA algorithm schematic; (b) ARIMA model assumptions where
Yt = f(Yt−k, et−k) + et and k > 0.



Appl. Sci. 2021, 11, 5658 3 of 12

For a non-parametric technique such as ANN, the model is trained through non-linear
algorithms. These self-adapting models do not require a priori assumptions of the series
due to their flexibility in building model topologies and ability to easily identify and predict
behavior patterns in the series [16,25]. In this case, the training is conducted point-to-point;
if the amount of atypical data is minimal, then the correct data fix the error generated by
the atypical data, thereby converging to the exact model [27].

The Elman Neural Network (ENN) is a subclass of RNN. The ENN algorithm (Figure 2)
starts with an input layer followed by a hidden layer and a context layer (delay layer) with
the same number of neurons. The feedback gives temporality to the network, providing
the system with short-term memory. This memory process occurs through delay units that
are fed by the neurons of the hidden layer. The weights of the connections between the
hidden layer and delay units are fixed and equal to 1, allowing one to obtain a copy of the
output values of the hidden layer from the previous step [28].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 13 
 

Figure 1. (a) ARIMA algorithm schematic; (b) ARIMA model assumptions where Y =f(Y , e ) e  and 𝑘 0. 

For a non-parametric technique such as ANN, the model is trained through non-lin-
ear algorithms. These self-adapting models do not require a priori assumptions of the se-
ries due to their flexibility in building model topologies and ability to easily identify and 
predict behavior patterns in the series [16,25]. In this case, the training is conducted point-
to-point; if the amount of atypical data is minimal, then the correct data fix the error gen-
erated by the atypical data, thereby converging to the exact model [27]. 

The Elman Neural Network (ENN) is a subclass of RNN. The ENN algorithm (Figure 
2) starts with an input layer followed by a hidden layer and a context layer (delay layer) 
with the same number of neurons. The feedback gives temporality to the network, provid-
ing the system with short-term memory. This memory process occurs through delay units 
that are fed by the neurons of the hidden layer. The weights of the connections between 
the hidden layer and delay units are fixed and equal to 1, allowing one to obtain a copy of 
the output values of the hidden layer from the previous step [28]. 

 
Figure 2. Elman network algorithms. 

In Figure 2, the input layer variables are represented by 𝑥 , and the hidden layer 
variables are represented by 𝑦 . The hidden layer vector is represented by the expression ℎ = 𝜎 (𝑊 𝑥 𝑈 ℎ 𝑏 ),  and the output weight matrix is represented by 𝑦 =𝜎 (𝑊 ℎ 𝑏 ), where 𝑊 = 𝑊  𝑊  and 𝑈  are weight matrices, and 𝑏 = 𝑏  𝑏   is 
the bias. Here, 𝜎  and 𝜎  are the activation functions for the hidden and output layers, 
respectively [28]. 

Similar to ENN, the LSTM network can remember a relevant sequence of data and 
preserve it for several time instances. In this way, an LSTM network can achieve short-
term memory similar to that of basic recurrent networks, as well as long-term memory. 
As shown in Figure 3a, each block of the LSTM network can contain several cells in a 
similar manner to an Elman network, only replacing the neurons and hidden units with a 
memory block (LSTM cell; Figure 3b). 

 
(a) 

Figure 2. Elman network algorithms.

In Figure 2, the input layer variables are represented by xt, and the hidden layer
variables are represented by yt. The hidden layer vector is represented by the
expression ht = σh(Whxt + Uhht−1 + bh), and the output weight matrix is represented by
yt = σy

(
Wyht + by

)
, where W =

[
Wx Wy

]T and Uh are weight matrices, and b =
[
bh by

]T

is the bias. Here, σh and σy are the activation functions for the hidden and output layers,
respectively [28].

Similar to ENN, the LSTM network can remember a relevant sequence of data and
preserve it for several time instances. In this way, an LSTM network can achieve short-term
memory similar to that of basic recurrent networks, as well as long-term memory. As
shown in Figure 3a, each block of the LSTM network can contain several cells in a similar
manner to an Elman network, only replacing the neurons and hidden units with a memory
block (LSTM cell; Figure 3b).

In Figure 3, the input and output are represented by xt and yt, respectively, while the
vector ht represents short-term memory, and ct represents long-term memory. For time
series predictions of xt, the LSTM system updates the memory cell ct and outputs a hidden
state ht for each step t. Equation (1) represents the mechanism of LSTM [14,29]:

it = σ
(
WT

xi·xt + WT
hi·ht−1 + bi

)
ft = σ

(
WT

x f ·xt + WT
h f ·ht−1 + b f

)
ot = σ

(
WT

xo·xt + WT
ho·ht−1 + bo

)
gt = tanh

(
WT

xg·xt + WT
hg·ht−1 + bg

)
ct = ft ⊗ ct−1 + it ⊗ gt
yt = ht = ot ⊗ tanh(ct)

(1)

The forget gate ( ft), input gate (it), and output gate (ot) are fed by the input xt and a pre-
vious short-term state, ht−1, that includes gate gt, where σ stands for the standard logistic sig-
moid function σ(x) = 1/(1 + e−x), and tanh is denoted by tanh(x) = (ex − e−x)/(ex + e−x).
The weight matrices Wxi, Wx f , Wxo, Wxg and Whi, Wh f , Who, Whg are connected to the
input vector xt and short-term ht−1; bi, b f , bo, bg are the bias terms for each of the four
layers, where b f is initialized in 1 s to avoid forgetting everything at the beginning of the
training [14,29].



Appl. Sci. 2021, 11, 5658 4 of 12

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 13 
 

Figure 1. (a) ARIMA algorithm schematic; (b) ARIMA model assumptions where Y =f(Y , e ) e  and 𝑘 0. 

For a non-parametric technique such as ANN, the model is trained through non-lin-
ear algorithms. These self-adapting models do not require a priori assumptions of the se-
ries due to their flexibility in building model topologies and ability to easily identify and 
predict behavior patterns in the series [16,25]. In this case, the training is conducted point-
to-point; if the amount of atypical data is minimal, then the correct data fix the error gen-
erated by the atypical data, thereby converging to the exact model [27]. 

The Elman Neural Network (ENN) is a subclass of RNN. The ENN algorithm (Figure 
2) starts with an input layer followed by a hidden layer and a context layer (delay layer) 
with the same number of neurons. The feedback gives temporality to the network, provid-
ing the system with short-term memory. This memory process occurs through delay units 
that are fed by the neurons of the hidden layer. The weights of the connections between 
the hidden layer and delay units are fixed and equal to 1, allowing one to obtain a copy of 
the output values of the hidden layer from the previous step [28]. 

 
Figure 2. Elman network algorithms. 

In Figure 2, the input layer variables are represented by 𝑥 , and the hidden layer 
variables are represented by 𝑦 . The hidden layer vector is represented by the expression ℎ = 𝜎 (𝑊 𝑥 𝑈 ℎ 𝑏 ),  and the output weight matrix is represented by 𝑦 =𝜎 (𝑊 ℎ 𝑏 ), where 𝑊 = 𝑊  𝑊  and 𝑈  are weight matrices, and 𝑏 = 𝑏  𝑏   is 
the bias. Here, 𝜎  and 𝜎  are the activation functions for the hidden and output layers, 
respectively [28]. 

Similar to ENN, the LSTM network can remember a relevant sequence of data and 
preserve it for several time instances. In this way, an LSTM network can achieve short-
term memory similar to that of basic recurrent networks, as well as long-term memory. 
As shown in Figure 3a, each block of the LSTM network can contain several cells in a 
similar manner to an Elman network, only replacing the neurons and hidden units with a 
memory block (LSTM cell; Figure 3b). 

 
(a) 

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 13 
 

 
(b) 

Figure 3. (a) Algorithm for several LSTM network layers; (b) LSTM cell [29,30]. 

In Figure 3, the input and output are represented by 𝑥  and 𝑦 , respectively, while 
the vector ℎ  represents short-term memory, and 𝑐  represents long-term memory. For 
time series predictions of 𝑥 , the LSTM system updates the memory cell 𝑐  and outputs 
a hidden state ℎ  for each step 𝑡. Equation (1) represents the mechanism of LSTM [14,29]: 𝑖 = 𝜎(𝑊 ∙ 𝑥  𝑊 ∙ ℎ 𝑏 ) 

(1) 

𝑓 = 𝜎(𝑊 ∙ 𝑥  𝑊 ∙ ℎ 𝑏 ) 𝑜 = 𝜎(𝑊 ∙ 𝑥  𝑊 ∙ ℎ 𝑏 ) 𝑔 = 𝑡𝑎𝑛ℎ(𝑊 ∙ 𝑥  𝑊 ∙ ℎ 𝑏 ) 𝑐 = 𝑓 ⊗ 𝑐 𝑖 ⊗ 𝑔  𝑦 = ℎ = 𝑜 ⊗ 𝑡𝑎𝑛ℎ (𝑐 ) 

The forget gate (𝑓 ), input gate (𝑖 ), and output gate (𝑜 ) are fed by the input 𝑥  and 
a previous short-term state, ℎ , that includes gate 𝑔 , where 𝜎 stands for the standard 
logistic sigmoid function 𝜎(𝑥) = 1/(1 𝑒 ), and  𝑡𝑎𝑛ℎ is denoted by 𝑡𝑎𝑛ℎ(𝑥)  =  (𝑒 −𝑒 )/(𝑒 𝑒 ). The weight matrices  𝑊 , 𝑊 , 𝑊 , 𝑊  and 𝑊 , 𝑊 , 𝑊 , 𝑊  are con-
nected to the input vector 𝑥  and short-term ℎ ; 𝑏 , 𝑏 , 𝑏 , 𝑏  are the bias terms for each 
of the four layers, where 𝑏  is initialized in 1 𝑠 to avoid forgetting everything at the be-
ginning of the training [14,29]. 

2.2. Data and Sampling 
ARIMA, Elman, and LSTM were used to forecast the time series to analyze the accu-

racy of the model. For this proposal, the time series represents the EUR/USD exchange 
rate’s daily value. The data were obtained from the records on Investing.com from 2 Jan-
uary 1998, to 31 December 2019, with a total of 5737 observations. Each observation rep-
resents the daily price of the EUR/USD exchange rate from Monday to Friday. To apply 
the prediction techniques, the time series were divided into training and validation sets. 
For training, the dataset (𝑡𝑟𝑎𝑖𝑛) used the expression 𝑡𝑟𝑎𝑖𝑛 =  𝑛 –  𝑣𝑎𝑙𝑖𝑑, where 𝑛 repre-
sents the total observations, and 𝑣𝑎𝑙𝑖𝑑 stands for the validation dataset, which includes 
windows with different forecasting horizons of 5, 11, 22, 35, 44, and 55 observations. 

The window that provided the best forecasting in the short term was selected to eval-
uate the performance of the three forecasting methods. Theil’s U coefficient and the 
Diebold–Mariano test were used to evaluate the forecasting method’s accuracy. 

Figure 3. (a) Algorithm for several LSTM network layers; (b) LSTM cell [29,30].

2.2. Data and Sampling

ARIMA, Elman, and LSTM were used to forecast the time series to analyze the accuracy
of the model. For this proposal, the time series represents the EUR/USD exchange rate’s
daily value. The data were obtained from the records on Investing.com from 2 January
1998, to 31 December 2019, with a total of 5737 observations. Each observation represents
the daily price of the EUR/USD exchange rate from Monday to Friday. To apply the
prediction techniques, the time series were divided into training and validation sets. For
training, the dataset (train) used the expression train = n – valid, where n represents the
total observations, and valid stands for the validation dataset, which includes windows
with different forecasting horizons of 5, 11, 22, 35, 44, and 55 observations.

The window that provided the best forecasting in the short term was selected to
evaluate the performance of the three forecasting methods. Theil’s U coefficient and the
Diebold–Mariano test were used to evaluate the forecasting method’s accuracy.

Finally, we obtained the mean absolute percentage error (MAPE) of the selected predic-
tion window to identify the observations where the method provided the greatest accuracy.

2.3. Application of Models

Based on the time series behavior graphically presented in Figure 4, the series does not
follow a specific pattern in time, and the peaks do not oscillate around the average. Instead,
the peaks are far from the average. Moreover, the series shows seasonality, indicating a
random time series.

In the period analysis, the time series achieved a minimum price of USD 0.8273 and a
maximum price of USD 1.5988. The average daily price was USD 1.1992. Forty percent of
the time series were below the average market rates, and 60% were equal to or exceeded
the average.

2.3.1. Application of ARIMA

The time series showed random behavior, as indicated in Figure 4. Therefore, a series
analysis was carried out to identify the ARIMA model that best fits the data according to
the ARIMA algorithm (Figure 1).



Appl. Sci. 2021, 11, 5658 5 of 12

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 13 
 

Finally, we obtained the mean absolute percentage error (MAPE) of the selected pre-
diction window to identify the observations where the method provided the greatest ac-
curacy. 

2.3. Application of Models 
Based on the time series behavior graphically presented in Figure 4, the series does 

not follow a specific pattern in time, and the peaks do not oscillate around the average. 
Instead, the peaks are far from the average. Moreover, the series shows seasonality, indi-
cating a random time series. 

In the period analysis, the time series achieved a minimum price of USD 0.8273 and 
a maximum price of USD 1.5988. The average daily price was USD 1.1992. Forty percent 
of the time series were below the average market rates, and 60% were equal to or exceeded 
the average. 

 
Figure 4. Daily prices of the EUR/USD exchange rate. 

2.3.1. Application of ARIMA 
The time series showed random behavior, as indicated in Figure 4. Therefore, a series 

analysis was carried out to identify the ARIMA model that best fits the data according to 
the ARIMA algorithm (Figure 1). 

First, we verify the stationarity of the series using a Dickey–Fuller test at a signifi-
cance level of α = 0.05. We used the R software (v. 3.5.3) to codify ARIMA. 

R output: Augmented Dickey–Fuller Test 
data: train 
Dickey–Fuller = −1.5839, Lag order = 0, p-value = 0.7546 
alternative hypothesis: stationary 

The p-value = 0.7546 > 𝛼 = 0.05; therefore, the time series is not stationary. To make 
the time series stationary, we performed first-order differentiation followed by another 
stationarity test. 

R output: Augmented Dickey–Fuller Test 
data: train_diff 
Dickey–Fuller = −76.845, Lag order = 0, p-value = 0.01 
alternative hypothesis: stationary 

Figure 4. Daily prices of the EUR/USD exchange rate.

First, we verify the stationarity of the series using a Dickey–Fuller test at a significance
level of α = 0.05. We used the R software (v. 3.5.3) to codify ARIMA.

R output: Augmented Dickey–Fuller Test

data: train
Dickey–Fuller = −1.5839, Lag order = 0, p-value = 0.7546
alternative hypothesis: stationary

The p-value = 0.7546 > α = 0.05; therefore, the time series is not stationary. To make
the time series stationary, we performed first-order differentiation followed by another
stationarity test.

R output: Augmented Dickey–Fuller Test

data: train_diff
Dickey–Fuller = −76.845, Lag order = 0, p-value = 0.01
alternative hypothesis: stationary

The p-value = 0.1 < α = 0.05; therefore, the series is stationary. The differentiated
series and the ACF were then analyzed. The former presented white-noise behavior, and
the ACF corroborated the independence of the data. Based on this analysis, the best
model to fit random walk was the ARIMA model (0, 1, 0), which corresponds to the
following expression:

(1− B)Yt = εt (2)

where B is the delay operator, BYt = Yt−1, and εt ∼ RB
(
0, σ2). By testing the assump-

tions, we can verify the stationarity, independence, normality, and homoscedasticity.

R output: ARIMA testing of assumptions

Box–Ljung test (Independence)
data: modelo$residuals
X-squared = 1.5593, df = 1, p-value = 0.2118
Lilliefors (Kolmogorov–Smirnov) (Normality test)
data: modelo$residuals
D = 0.046857, p-value < 2.2 × 10−16

Goldfeld–Quandt test (Homoscedasticity)
data: modelo$residuals ~ 1
GQ = 1.037, df1 = 2857, df2 = 2856, p-value = 0.1656



Appl. Sci. 2021, 11, 5658 6 of 12

For stationarity, the p-value = 0.1 < α = 0.05, so the residuals are stationary. For inde-
pendence, the p-value = 0.2118 > α = 0.05, so the residuals are independent. For normality,
the p-value = 2.2−16 < α = 0.5, so the residuals do not follow a normal distribution. For
homoscedasticity, the p-value = 0.1656 > α = 0.05, so the residuals present homogeneous
variance. Thus, the normality test was not fulfilled. Consequently, the ARIMA model
will not yield reliable results a priori; however, we applied this model to the data for
comparison purposes.

2.3.2. Application of Recurrent Neural Networks

A. Data preprocessing
The data scale influences the processing of deep neural networks, mainly when using

the sigmoidal or hyperbolic tangent activation functions. An alternative standardiza-
tion was used to scale the data to give an absolute minimum and maximum value for
each variable with intervals [−1, 1] and [0, 1]. To scale the random variable yi, we used
Equation (3):

zi =
yi −min(Y)

max(Y)−min(Y)
(3)

where min (Y) and max (Y) are the minimum and maximum values of the vector Y, and
zi is scaled between 0 and 1.

With the scaled data, we proceeded to build the RNN using Elman cells and LSTM.
Each network parameter was then adjusted (activation functions, loss functions to minimize,
number of layers, number of neurons in each layer, etc.) until better results were obtained.

The dropout technique was applied to the neural networks to avoid obtaining a smaller
network due to overtraining [31], a process where randomly selected sets of neurons during
the training phase are ignored with a probability of 1− p. If the parameter is closer to 0,
fewer neurons are deactivated, and if it is closer to 1, more variables are deactivated. The
optimal dropout value obtained for this study was 0.2. Poorer results were obtained when
not using the dropout technique.

B. Elman Cell
This network consisted of 110 time steps (inputs) to forecast the window steps (out-

puts) and featured two layers with 3 and 2 neurons in each. We used the R software v. 3.5.3
to code the Elman cell.

R code: Elman cell

fit_elman← elman(x = inputs, y = outputs,
size = c(3,2),
maxit = 7000,
learnFuncParams = c(0.2))

Here, maxit = 7000 (the number of iterations to train the model), and learnFuncParams = 0.2
(network training speed). Figure 5 shows the network error.



Appl. Sci. 2021, 11, 5658 7 of 12

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 13 
 

B. Elman Cell 
This network consisted of 110 time steps (inputs) to forecast the window steps (out-

puts) and featured two layers with 3 and 2 neurons in each. We used the R software v. 
3.5.3 to code the Elman cell. 

R code: Elman cell 
fit_elman ← elman(x = inputs,         y = outputs, 
size = c(3,2), 
maxit = 7000,  
learnFuncParams = c(0.2)) 

Here, maxit = 7000 (the number of iterations to train the model), and learn-
FuncParams = 0.2 (network training speed). Figure 5 shows the network error. 

 
Figure 5. Elman network error with random behavior for the first 5000 iterations. The error stabi-
lized after iteration 5000. 

C. LSTM Cell 
This network consisted of two hidden layers with 50 units in each, a 𝑟𝑒𝑙𝑢 activation 

function, and an output layer (Dense). In the first layer, the neurons have three-dimen-
sional outputs (return_sequences = True), input variables (input_shape), and independent 
term bias (use_bias = True). We used the software Python v. 2.7.13 to code the LSTM cell. 

Python code: LSTM 
model.add(LSTM(50, 
activation = "relu", 
return_sequences = True, 
input_shape = (n_steps_in, n_features), 
use_bias = True)) 
model.add(LSTM(50, activation = "relu")) 
model.add(Dropout(0.2)) 
model.add(Dense(n_steps_out)) 
model.compile(optimizer = ‘adam’, loss = ‘mae’) 

In this case, the mean absolute error (MAE) was used as the loss function for the 
network, and (adam) was used as an optimizer. Figure 6 shows the behavior of the error 

Figure 5. Elman network error with random behavior for the first 5000 iterations. The error stabilized
after iteration 5000.

C. LSTM Cell
This network consisted of two hidden layers with 50 units in each, a relu activation

function, and an output layer (Dense). In the first layer, the neurons have three-dimensional
outputs (return_sequences = True), input variables (input_shape), and independent term
bias (use_bias = True). We used the software Python v. 2.7.13 to code the LSTM cell.

Python code: LSTM

model.add(LSTM(50,
activation = "relu",
return_sequences = True,
input_shape = (n_steps_in, n_features),
use_bias = True))model.add(LSTM(50, activation = "relu"))model.add(Dropout(0.2))
model.add(Dense(n_steps_out))
model.compile(optimizer = ‘adam’, loss = ‘mae’)

In this case, the mean absolute error (MAE) was used as the loss function for the
network, and (adam) was used as an optimizer. Figure 6 shows the behavior of the error as
a function of the number of iterations. Here, the error is large for iterations one and two
and stabilizes starting from iteration three.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 13 
 

as a function of the number of iterations. Here, the error is large for iterations one and two 
and stabilizes starting from iteration three. 

 
Figure 6. LSTM network error. 

3. Results and Discussion 
3.1. Selection the Forecasting Window 

In this section, we compare the forecasting dataset calculated with the ARIMA (0, 1, 
0) model, Elman, and LSTM using the validation dataset for windows of 5, 11, 22, 35, 44, 
and 55 days. The purpose of this comparison is to select the window that best approxi-
mates the validation dataset in the short term. 

As shown in Figure 7, for the 5-day forecasting window, the Elman model provided 
predictions far from the validation dataset, while ARIMA and LSTM provided similar 
results to the validation dataset in observations 3 and 4. For the 11-day window, the fore-
casting dataset better approximated the validation dataset for the three models. LSTM 
matched in three observations, while ARIMA and ELMAN matched in only one observa-
tion. For the third prediction window of 22 days, the LSTM forecasting dataset closely 
approximated the validation dataset in ten observations, while Elman matched the vali-
dation dataset in just one observation. ARIMA remained constant, with predictions far 
from the validation dataset. The Elman network presented an upward trend in its fore-
casts, while for the LSTM network, the forecasting data showed random behavior. 

Figure 6. LSTM network error.

3. Results and Discussion
3.1. Selection the Forecasting Window

In this section, we compare the forecasting dataset calculated with the ARIMA (0, 1, 0)
model, Elman, and LSTM using the validation dataset for windows of 5, 11, 22, 35, 44, and



Appl. Sci. 2021, 11, 5658 8 of 12

55 days. The purpose of this comparison is to select the window that best approximates
the validation dataset in the short term.

As shown in Figure 7, for the 5-day forecasting window, the Elman model provided
predictions far from the validation dataset, while ARIMA and LSTM provided similar
results to the validation dataset in observations 3 and 4. For the 11-day window, the
forecasting dataset better approximated the validation dataset for the three models. LSTM
matched in three observations, while ARIMA and ELMAN matched in only one observa-
tion. For the third prediction window of 22 days, the LSTM forecasting dataset closely
approximated the validation dataset in ten observations, while Elman matched the vali-
dation dataset in just one observation. ARIMA remained constant, with predictions far
from the validation dataset. The Elman network presented an upward trend in its forecasts,
while for the LSTM network, the forecasting data showed random behavior.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 13 
 

 
Figure 7. Forecasting method comparison using six different prediction horizons. 

For the prediction windows of 35, 44, and 55 days, the forecasting dataset obtained 
with the Elman network best matched the validation dataset and improved further when 
considering long-term predictions. ARIMA and LSTM most poorly approximated the val-
idation dataset for long-term forecasts with these types of time series behavior and condi-
tions. 

In this analysis, the 22-day forecasting window best approximated the validation da-
taset in the short term. According to these results, we selected this window to evaluate 
and compare the prediction methods in detail. 

3.2. Prediction Evaluation Measures 
Performance metrics were used for the evaluation measures (scale-dependent errors 

and percentage errors; Table 1) [32]. These metrics included the Mean Square Error (MSE), 
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Median Absolute Error 
(MdAE), Mean Absolute Percentage Error (MAPE), Symmetric Mean Absolute Percentage 
Error (sMAPE), Root Mean Square Percentage Error (RMSPE), Root Median Square Per-
centage Error (RMdSPE), Median Absolute Percentage Error (MdAPE), and Symmetric 
Median Absolute Percentage Error (SMdAPE). As shown in Table 1, the errors obtained 
through the LSTM network were less significant than the errors obtained with the Elman 
network and the ARIMA model (0, 1, 0). These results corroborate the forecast accuracy 
obtained with these three methods (Figure 7; 22-day window). 

Table 1. Performance metrics for the three prediction models. 

 Scale-Dependent Errors Percentage Errors 
Model MSE RMSE MAE MdAE MAPE sMAPE RMSPE RMdSPE MdAPE SMdAPE 

ARIMA 0.0001102 0.010496 0.009673 0.0084 0.869% 0.2183% 0.9414% 0.7572% 0.7567% 0.1898% 
ELMAN 3.391 × 10−5 0.00582 0.00494 0.0053 0.444% 0.111% 0.5226% 0.483% 0.483% 0.121% 
LSTM 1.615 × 10−5 0.004 0.0031 0.0020 0.282% 0.0706% 0.3607% 0.181% 0.181% 0.0453% 

Figure 7. Forecasting method comparison using six different prediction horizons.

For the prediction windows of 35, 44, and 55 days, the forecasting dataset obtained
with the Elman network best matched the validation dataset and improved further when con-
sidering long-term predictions. ARIMA and LSTM most poorly approximated the validation
dataset for long-term forecasts with these types of time series behavior and conditions.

In this analysis, the 22-day forecasting window best approximated the validation
dataset in the short term. According to these results, we selected this window to evaluate
and compare the prediction methods in detail.

3.2. Prediction Evaluation Measures

Performance metrics were used for the evaluation measures (scale-dependent errors
and percentage errors; Table 1) [32]. These metrics included the Mean Square Error (MSE),
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Median Absolute Error
(MdAE), Mean Absolute Percentage Error (MAPE), Symmetric Mean Absolute Percentage
Error (sMAPE), Root Mean Square Percentage Error (RMSPE), Root Median Square Per-
centage Error (RMdSPE), Median Absolute Percentage Error (MdAPE), and Symmetric
Median Absolute Percentage Error (SMdAPE). As shown in Table 1, the errors obtained
through the LSTM network were less significant than the errors obtained with the Elman



Appl. Sci. 2021, 11, 5658 9 of 12

network and the ARIMA model (0, 1, 0). These results corroborate the forecast accuracy
obtained with these three methods (Figure 7; 22-day window).

Table 1. Performance metrics for the three prediction models.

Scale-Dependent Errors Percentage Errors

Model MSE RMSE MAE MdAE MAPE sMAPE RMSPE RMdSPE MdAPE SMdAPE

ARIMA 0.0001102 0.010496 0.009673 0.0084 0.869% 0.2183% 0.9414% 0.7572% 0.7567% 0.1898%
ELMAN 3.391 × 10−5 0.00582 0.00494 0.0053 0.444% 0.111% 0.5226% 0.483% 0.483% 0.121%
LSTM 1.615 × 10−5 0.004 0.0031 0.0020 0.282% 0.0706% 0.3607% 0.181% 0.181% 0.0453%

3.3. Accuracy Analysis

By using the first expression for U1 given in [33], we obtained Theil’s U coefficients
from the forecasting set to evaluate the accuracy of the models. Theil’s coefficients are
bounded by 0 and 1, where the lower boundary indicates a perfect forecast, and the upper
boundary indicates unreliable forecasting. Coefficients close to 1 represent fully impractical
situations for exchange forecasting. The use of these values would involve repeatedly
performing the forecasting process to find negative forecasts or negative exchanges. Theil’s
U coefficients for the three forecasting methods are listed in Table 2.

Table 2. Theil’s U coefficient.

ARIMA ELMAN LSTM

0.004743 0.002625 0.001808

The three models give values close to 0. Therefore, the three techniques provide
reliable predictions where the coefficient for the LSTM network is lower than that of the
ELMAN and ARIMA models.

A Diebold–Mariano test was then performed to compare the prediction accuracy
of the three techniques. Table 3 presents the different p values for the two–sided and
greater hypotheses.

two–sided
H0: The two techniques offer the same prediction precision.
H1 : The two techniques do not offer the same prediction precision.
greater
H0: The two techniques offer the same prediction precision.
H1 : Technique 2 is more accurate than technique 1.
As shown in Table 3, by comparing the p-values obtained with a significance level of

α = 0.05, we can deduce the following results:
ARIMA vs. Elman: For two–sided, the value of p = 1.694 × 10−4 < α; therefore, H0 is

rejected, and it can be concluded that the two techniques did not have the same accuracy.
For greater, p = 8.468 × 10−5 < α, and H0 is rejected; thus, it can be concluded that the
predictions performed with Elman were more precise than those made with ARIMA.

ARIMA vs. LSTM: For two–sided, p = 4.287 × 10−5 < α, and H0 is rejected; thus, it
can be concluded that the two techniques did not have the same accuracy. For greater,
p = 2.144 × 10−5 < α; thus, H0 is rejected, and it can be concluded that the predictions
performed with LSTM were more accurate than those made with ARIMA.

Table 3. Diebold–Mariano test.

ARIMA vs. Elman ARIMA vs. LSTM Elman vs. LSTM

two–sided 1.694 × 10−4 4.287 × 10−5 1.54 × 10−2

greater 8.468 × 10−5 2.144 × 10−5 7.7 × 10−3



Appl. Sci. 2021, 11, 5658 10 of 12

Elman vs. LSTM: For two–sided, the value p = 0.0154 < α, and H0 is rejected; thus,
the two techniques did not have the same accuracy. For greater, p = 0.0077 < α, and H0 is
rejected; thus, it can be concluded that the forecasting performed with LSTM was more
accurate than that performed with Elman.

Based on these results, the predictions made with the LSTM network were more
accurate than the forecasts performed with the ARIMA (0, 1, 0) model and the Elman
network for short-term forecasting.

3.4. Accuracy Based on Observations

To identify the observations where the method provided the greatest accuracy, we
calculated the MAPE of the forecasting data obtained with LSTM for the 22-day window.
The prediction data corresponded to observations from 2 December to 31 December 2019.
As shown in Figure 8, the MAPE results presented randomness, with the last day of
predictions showing a significantly higher error percentage than the other days. The error
rates were high on 2, 3, 4, 6, 9, 16, 27, and 30 December and low on 5, 10, 12, 17, 20, 25, and
26 December. The lowest error rates were observed on 11, 13, 18, and 24 December. These
results may be due to the volatility of this type of time series.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 13 
 

As shown in Figure 8, the MAPE results presented randomness, with the last day of pre-
dictions showing a significantly higher error percentage than the other days. The error 
rates were high on 2, 3, 4, 6, 9, 16, 27, and 30 December and low on 5, 10, 12, 17, 20, 25, and 
26 December. The lowest error rates were observed on 11, 13, 18, and 24 December. These 
results may be due to the volatility of this type of time series. 

 
Figure 8. MAPE of the 22 predictions. 

LSTM network performance in out-of-sample forecasting using the EUR/USD ex-
change rate dataset. 

4. Conclusions 
In this paper, we compared three methods—ARIMA models, Elman, and LSTM net-

works—to perform out-of-sample forecasting of the EUR/USD exchange rate dataset. The 
time series did not present a trend, seasonality, or stationarity; therefore, the time series 
was determined to be a random walk. An ARIMA (0, 1, 0) model was selected to analyze 
a first-order differentiated series and its ACF. Elman and LSTM networks were modeled 
using systematic simulations by adjusting parameters until we obtained the best results. 
These three models were then used to forecast and compare six windows for the valida-
tion datasets. Through this comparison, we determined that ARIMA generated constant 
numbers, while LSTM provided the best forecasts up to a 22-day window in the short 
term. With Elman, we obtained better results in the long term. The selected window was 
then evaluated in detail to identify the observations with the lowest errors, finding only 
four observations among the 22 windows where LSTM best approximated the validation 
dataset. 

The average accuracy for the 22-day window was 71.76%. By comparing our results 
with the results of previous studies, we can conclude the following. First, it is difficult to 
make a direct comparison since there is no standardized method for selecting training and 
validation datasets. Second, previous studies reported an average accuracy lower than 
70% for different approaches [34–36] and achieved greater than 70% average accuracy 
when using NN, combining models, or introducing a hybrid model [37–40]. Based on the 
comparison of the three forecasting models in this work, LSTM fit better in the short term, 

Figure 8. MAPE of the 22 predictions.

LSTM network performance in out-of-sample forecasting using the EUR/USD ex-
change rate dataset.

4. Conclusions

In this paper, we compared three methods—ARIMA models, Elman, and LSTM
networks—to perform out-of-sample forecasting of the EUR/USD exchange rate dataset.
The time series did not present a trend, seasonality, or stationarity; therefore, the time
series was determined to be a random walk. An ARIMA (0, 1, 0) model was selected to
analyze a first-order differentiated series and its ACF. Elman and LSTM networks were
modeled using systematic simulations by adjusting parameters until we obtained the best
results. These three models were then used to forecast and compare six windows for the
validation datasets. Through this comparison, we determined that ARIMA generated
constant numbers, while LSTM provided the best forecasts up to a 22-day window in
the short term. With Elman, we obtained better results in the long term. The selected
window was then evaluated in detail to identify the observations with the lowest errors,



Appl. Sci. 2021, 11, 5658 11 of 12

finding only four observations among the 22 windows where LSTM best approximated the
validation dataset.

The average accuracy for the 22-day window was 71.76%. By comparing our results
with the results of previous studies, we can conclude the following. First, it is difficult
to make a direct comparison since there is no standardized method for selecting training
and validation datasets. Second, previous studies reported an average accuracy lower
than 70% for different approaches [34–36] and achieved greater than 70% average accuracy
when using NN, combining models, or introducing a hybrid model [37–40]. Based on
the comparison of the three forecasting models in this work, LSTM fit better in the short
term, although the results were not entirely desirable, as LSTM only coincided in four
observations with 95.99% average accuracy.

The advantage of using an RNN of the Elman or LSTM type is its efficiency when
working with a time series. Both techniques have similar characteristics in their networks;
the only difference lies in their memory capacity. The limitation of ARIMA is that it
represents a general univariate model in which the assumptions must be fulfilled to
succeed. A combination of these methods as a type of hybrid model could be an aim of
future studies, similar to the model reported in [41,42].

Author Contributions: Programming, figures formatting, and draft the process, W.A.; first draft
preparation; P.E.; supervision, conceptualization, P.E., J.P.; writing—review and editing, W.A., P.E., J.P.;
funding acquisition, P.E. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by the Indoamerican Technological University and Chimborazo’s
Superior Polytechnic School.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Goodman, S.H. Foreign Exchange Rate Forecasting Techniques: Implications for Business and Policy. J. Financ. 1979, 34, 415–427.

[CrossRef]
2. Pacelli, V. Forecasting Exchange Rates: A Comparative Analysis. Int. J. Bus. Soc. Sci. 2012, 3, 12.
3. Canova, F. Modelling and Forecasting Exchange Rates with a Bayesian Time-Varying Coefficient Model. J. Econ. Dyn. Control

1993, 17, 233–261. [CrossRef]
4. Jung, G.; Choi, S.-Y. Forecasting Foreign Exchange Volatility Using Deep Learning Autoencoder-LSTM Techniques. Complexity

2021, 2021, e6647534. [CrossRef]
5. Tripathi, M.; Kumar, S.; Inani, S.K. Exchange Rate Forecasting Using Ensemble Modeling for Better Policy Implications. J. Time

Ser. Econom. 2021, 13, 43–71. [CrossRef]
6. Nyoni, T. Modeling and Forecasting Naira / USD Exchange Rate In Nigeria: A Box—Jenkins ARIMA Approach. MPRRA 2018,

88622, 1–36.
7. Arango, F.O.; Cabrera Llanos, A.I.; Herrera, F.L. Pronóstico de los índices accionarios DAX y S&P 500 con redes neuronales

diferenciales. Contaduría Y Adm. 2013, 58, 203–225. [CrossRef]
8. Poznyak, A.S.; Sanchez, E.N.; Yu, W. Differential Neural Networks for Robust Nonlinear Control; World Scientific: Singapore, 2001;

pp. 12–50. [CrossRef]
9. Arango, F.O.; Aranda, F.C. Redes Neuronales Diferenciales: Una Alternativa Confiable Para Analizar Series Financieras. In

Proceedings of the XVI Congreso Internacional de Contaduría Administración e Informática; Mexico, D.F., Ed.; Medellín, U. D.: Ciudad
de México, Mexico, 2011; pp. 49–64.

10. Zapata, L.A.; Hugo, D. Predicción Del Tipo de Cambio Peso-Dólar Utilizando Redes Neuronales Artificiales (Rna). Pensam.
Gestión 2008, 24, 29–42.

11. Van Houdt, G.; Mosquera, C.; Nápoles, G. A Review on the Long Short-Term Memory Model. Artif. Intell. Rev. 2020, 53,
5929–5955. [CrossRef]

12. Yıldırım, D.C.; Toroslu, I.H.; Fiore, U. Forecasting Directional Movement of Forex Data Using LSTM with Technical and
Macroeconomic Indicators. Financ. Innov. 2021, 7, 1. [CrossRef]

13. Zhang, C.; Fang, J. Application Research of Several LSTM Variants in Power Quality Time Series Data Prediction. In Proceedings of
the 2nd International Conference on Artificial Intelligence and Pattern Recognition; Association for Computing Machinery: New York,
NY, USA, 2019; pp. 171–175.

http://doi.org/10.1111/j.1540-6261.1979.tb02104.x
http://doi.org/10.1016/S0165-1889(06)80011-4
http://doi.org/10.1155/2021/6647534
http://doi.org/10.1515/jtse-2020-0013
http://doi.org/10.1016/S0186-1042(13)71227-0
http://doi.org/10.1142/9789812811295
http://doi.org/10.1007/s10462-020-09838-1
http://doi.org/10.1186/s40854-020-00220-2


Appl. Sci. 2021, 11, 5658 12 of 12

14. Choi, J.Y.; Lee, B. Combining LSTM Network Ensemble via Adaptive Weighting for Improved Time Series Forecasting. Math.
Probl. Eng. 2018, 2018, 1–8. [CrossRef]

15. Babu, A.S.; Reddy, S.K. Exchange Rate Forecasting Using ARIMA, Neural Network and Fuzzy Neuron. J. Stock Trad. 2015, 4.
[CrossRef]

16. Adebiyi, A.A.; Adewumi, A.O.; Ayo, C.K. Comparison of ARIMA and Artificial Neural Networks Models for Stock Price
Prediction. J. Appl. Math. 2014, 2014, 1–7. [CrossRef]

17. Li, M.; Ji, S.; Liu, G. Forecasting of Chinese E-Commerce Sales: An Empirical Comparison of ARIMA, Nonlinear Autoregressive
Neural Network, and a Combined ARIMA-NARNN Model. Math. Probl. Eng. 2018, 2018, 1–12. [CrossRef]

18. Son, H.; Kim, C. A Deep Learning Approach to Forecasting Monthly Demand for Residential–Sector Electricity. Sustainability
2020, 12, 3103. [CrossRef]

19. Wang, J.-J.; Wang, J.-Z.; Zhang, Z.-G.; Guo, S.-P. Stock Index Forecasting Based on a Hybrid Model. Omega 2012, 40, 758–766.
[CrossRef]

20. Islam, M.S.; Hossain, E. Foreign Exchange Currency Rate Prediction Using a GRU-LSTM Hybrid Network. Soft Comput. Lett.
2020, 100009. [CrossRef]

21. Musa, Y.; Joshua, S. Analysis of ARIMA-Artificial Neural Network Hybrid Model in Forecasting of Stock Market Returns. Asian J.
Probab. Stat. 2020, 42–53. [CrossRef]

22. Wang, J.-N.; Du, J.; Jiang, C.; Lai, K.-K. Chinese Currency Exchange Rates Forecasting with EMD-Based Neural Network.
Complexity 2019, 2019, e7458961. [CrossRef]

23. Qiu, Y.; Yang, H.-Y.; Lu, S.; Chen, W. A Novel Hybrid Model Based on Recurrent Neural Networks for Stock Market Timing. Soft
Comput. 2020, 24, 15273–15290. [CrossRef]

24. Hu, Z.; Zhao, Y.; Khushi, M. A Survey of Forex and Stock Price Prediction Using Deep Learning. Appl. Syst. Innov. 2021, 4, 9.
[CrossRef]

25. Menacho, C. Comparación de Los Métodos de Series de Tiempo y Redes Neuronales. An. Científicos 2014, 75, 245–252. [CrossRef]
26. Box, G.E.P.; Jenkins, G.M.; Reinsel, G.C.; Ljung, G.M. Time Series Analysis: Forecasting and Control, 5th ed.; Wiley: Hoboken, NJ,

USA, 2015; ISBN 978-1-118-67502-1.
27. Deb, C.; Zhang, F.; Yang, J.; Lee, S.E.; Shah, K.W. A Review on Time Series Forecasting Techniques for Building Energy

Consumption. Renew. Sustain. Energy Rev. 2017, 74, 902–924. [CrossRef]
28. Lewis, N.D.C. Deep Time Series Forecasting with Python: An Intuitive Introduction to Deep Learning for Applied Time Series Modeling;

CreateSpace Independent Publishing Platform: Scotts Valley, CA, USA, 2016; ISBN 978-1-5408-0908-7.
29. Géron, A. Hands-On Machine Learning with Scikit-Learn and TensorFlow; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2017; ISBN

978-1-4919-6229-9.
30. Dautel, A.J.; Härdle, W.K.; Lessmann, S.; Seow, H.-V. Forex Exchange Rate Forecasting Using Deep Recurrent Neural Networks.

Digit Financ. 2020, 2, 69–96. [CrossRef]
31. Gal, Y.; Ghahramani, Z. A Theoretically Grounded Application of Dropout in Recurrent Neural Networks. arXiv 2016,

arXiv:1512.05287.
32. Botchkarev, A. Performance Metrics (Error Measures) in Machine Learning Regression, Forecasting and Prognostics: Properties

and Typology. arXiv 2018, arXiv:10.28945/418414, 45–79.
33. Bliemel, F. Theil’s Forecast Accuracy Coefficient: A Clarification. J. Mark. Res. 1973, 10, 444–446. [CrossRef]
34. Yao, J.; Tan, C.L. A Case Study on Using Neural Networks to Perform Technical Forecasting of Forex. Neurocomputing 2000, 34,

79–98. [CrossRef]
35. Zhang, L.; Aggarwal, C.; Qi, G.-J. Stock Price Prediction via Discovering Multi-Frequency Trading Patterns. In Proceedings of the

23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining; Association for Computing Machinery: New
York, NY, USA, 2017; pp. 2141–2149.

36. Shen, F.; Chao, J.; Zhao, J. Forecasting Exchange Rate Using Deep Belief Networks and Conjugate Gradient Method. Neurocomput-
ing 2015, 167, 243–253. [CrossRef]

37. Huang, W.; Nakamori, Y.; Wang, S.-Y. Forecasting Stock Market Movement Direction with Support Vector Machine. Comput. Oper.
Res. 2005, 32, 2513–2522. [CrossRef]

38. Galeshchuk, S.; Mukherjee, S. Deep Networks for Predicting Direction of Change in Foreign Exchange Rates. Intell. Syst. Account.
Financ. Manag. 2017, 24, 100–110. [CrossRef]

39. Özorhan, M.O.; Toroslu, İ.H.; Şehitoğlu, O.T. A Strength-Biased Prediction Model for Forecasting Exchange Rates Using Support
Vector Machines and Genetic Algorithms. Soft Comput. 2017, 21, 6653–6671. [CrossRef]

40. Bao, W.; Yue, J.; Rao, Y. A Deep Learning Framework for Financial Time Series Using Stacked Autoencoders and Long-Short
Term Memory. PLoS ONE 2017, 12, e0180944. [CrossRef] [PubMed]

41. Lin, H.; Sun, Q.; Chen, S.-Q. Reducing Exchange Rate Risks in International Trade: A Hybrid Forecasting Approach of CEEMDAN
and Multilayer LSTM. Sustainability 2020, 12, 2451. [CrossRef]

42. Sreeram, L.; Sayed, S.A. Short-Term Forecasting Ability of Hybrid Models for BRIC Currencies. Glob. Bus. Rev. 2020,
0972150920954615. [CrossRef]

http://doi.org/10.1155/2018/2470171
http://doi.org/10.4172/2168-9458.1000155
http://doi.org/10.1155/2014/614342
http://doi.org/10.1155/2018/6924960
http://doi.org/10.3390/su12083103
http://doi.org/10.1016/j.omega.2011.07.008
http://doi.org/10.1016/j.socl.2020.100009
http://doi.org/10.9734/ajpas/2020/v6i230157
http://doi.org/10.1155/2019/7458961
http://doi.org/10.1007/s00500-020-04862-3
http://doi.org/10.3390/asi4010009
http://doi.org/10.21704/ac.v75i2.960
http://doi.org/10.1016/j.rser.2017.02.085
http://doi.org/10.1007/s42521-020-00019-x
http://doi.org/10.1177/002224377301000413
http://doi.org/10.1016/S0925-2312(00)00300-3
http://doi.org/10.1016/j.neucom.2015.04.071
http://doi.org/10.1016/j.cor.2004.03.016
http://doi.org/10.1002/isaf.1404
http://doi.org/10.1007/s00500-016-2216-9
http://doi.org/10.1371/journal.pone.0180944
http://www.ncbi.nlm.nih.gov/pubmed/28708865
http://doi.org/10.3390/su12062451
http://doi.org/10.1177/0972150920954615

	Introduction 
	Materials and Methods 
	Overview of Regression Techniques 
	Data and Sampling 
	Application of Models 
	Application of ARIMA 
	Application of Recurrent Neural Networks 


	Results and Discussion 
	Selection the Forecasting Window 
	Prediction Evaluation Measures 
	Accuracy Analysis 
	Accuracy Based on Observations 

	Conclusions 
	References

