
applied  
sciences

Article

A Robot-Centered Path-Planning Algorithm for
Multidirectional Additive Manufacturing for WAAM Processes
and Pure Object Manipulation

Markus Schmitz 1,* , Jan Wiartalla 1 , Markus Gelfgren 1 , Samuel Mann 2 , Burkhard Corves 1

and Mathias Hüsing 1

����������
�������

Citation: Schmitz, M.; Wiartalla, J.;

Gelfgren, M.; Mann, S.; Corves, B.;

Hüsing, M. A Robot-Centered

Path-Planning Algorithm for

Multidirectional Additive

Manufacturing for WAAM Processes

and Pure Object Manipulation. Appl.

Sci. 2021, 11, 5759. https://doi.org/

10.3390/app11135759

Academic Editors: Namhun Kim,

Seung Ki Moon and Rohan

Shirwaiker

Received: 19 May 2021

Accepted: 16 June 2021

Published: 22 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Institute of Mechanism Theory, Machine Dynamics and Robotics (IGMR), RWTH Aachen University,
Eilfschornsteinstraße 18, 52064 Aachen, Germany; wiartalla@igmr.rwth-aachen.de (J.W.);
markus.gelfgren@rwth-aachen.de (M.G.); corves@igmr.rwth-aachen.de (B.C.);
huesing@igmr.rwth-aachen.de (M.H.)

2 Welding and Joining Institute (ISF), RWTH Aachen University, Pontstraße 49, 52062 Aachen, Germany;
mann@isf.rwth-aachen.de

* Correspondence: schmitzm@igmr.rwth-aachen.de; Tel.: +49-241-80-99801

Abstract: Previous algorithms for slicing, path planning or trajectory planning of additive manu-
facturing cannot be used consistently for multidirectional additive manufacturing with pure object
manipulation in wire-arc additive manufacturing. This work presents a novel path planning ap-
proach that directly takes robot kinematics into account and thus ensures the reachability of all critical
path poses. In an additional step, the planned path segments are smoothed so that joint velocity
limits are respected. It is shown that the implemented path planner generates executable robot paths
and at the same time maintains the process quality (in this case, sufficient coverage of the slice area).
While the introduced method enables the generation of reachable printing paths, the smoothing
algorithm allows for the execution of the path with respect to the robot’s velocity limits and at the
same time improves the slice coverage. Future experiments will show the realization of the real robot
setup presented.

Keywords: multidirectional additive manufacturing; WAAM; additive manufacturing; path planning

1. Introduction

Multidirectional additive manufacturing provides promising opportunities ranging
from the freedom of design of components to the targeted influencing of component
properties compared to traditional 2.5D additive manufacturing methods. For wire-arc
additive manufacturing, especially with eccentric wire feeding or parallel sensor technology,
there is great potential for process realization. The permanent fixation of the welding head
in the workspace of the robot and the pure manipulation of the component by the robot in
relation to the welding head is characteristic. The six-dimensional requirements for pre-
processing (slicer, path planner and trajectory planner) cannot be ensured by algorithms
and methods used for additive manufacturing or robotic coverage path planning so far.
Traditionally, the kinematics and limits of the machine or robot executing the print are only
considered during the last pre-processing step of trajectory generation before execution.
In multidirectinal additive manufacturing, this procedure usually results in paths that
are not executable due to unreachable path poses or high joint velocities. A major deficit
comes from the lack of consideration of the robot’s kinematics as well as its limits already
during path planning. This deficit is counteracted in this work by introducing a novel
robot-centered path planning method. The method is based on the decomposition of each
slice into multiple convex polygons, subsequent evaluation of possible infill strategies for
each polygon and selection of the most suitable infill combination by a modified Hamilton
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Graph search. It is shown that the methodology is capable of generating complex six-
dimensional paths, which are executable for a specified robot. This includes both the pure
reachability of path poses as well as the adherence of joint velocity limits through the
smoothing of directional changes in the path. Effects on the process can be taken into
account in each process step.

2. Multidirectional Additive Manufacturing
2.1. General Concept

Multidirectionality in the context of additive manufacturing (AM) refers to the degrees
of freedom of the process. However, the decisive factor is the possibility to build up layers
in all directions or even to detach from the flat layered structure (Figure 1). In contrast to
traditional AM processes, where a limited adjustment of the orientation between print bed
and print head is possible, multidirectionality explicitly requires a significant variation of
the build-up direction compared to the initial direction. It is generally not relevant whether
the print head or print bed is moved.

������� ���	
����


� ��

Figure 1. Illustration of multidirectionality with variable building direction of: (a) subvolumes; and
(b) curved surfaces.

The term object manipulation is used to create a clear distinction from related man-
ufacturing processes of multidirectional additive manufacturing. Object manipulation
thus describes the additive construction of a component by exclusively manipulating
the object relative to a fixed print head. This work focuses on multidirectional additive
manufacturing by means of object manipulation. Figure 2a illustrates the advantages of
pure object manipulation, which leads to the exclusive production in a downhand welding
position due to the fixed print head. For Wire-Arc Additive Manufacturing (WAAM),
multi-wire applications have the special potential to further increase productivity or enable
multi-material applications for tailor-made material properties that are difficult to realize
with common powder bed fusion processes [1].

For the process with eccentric wire feeding (or alternatively stationary sensor technol-
ogy or other weld head periphery), Figure 2b illustrates that manipulating a weld head
along a path, the entire weld head periphery must always be rotated together with the weld
head. As a result, complex paths can often not be executed. For this application, pure object
manipulation is therefore advantageous. If multidirectional additive manufacturing by
means of object manipulation (MDAM) is to be extended to the application of WAAM with
eccentric wire feeding, this is accompanied by the loss of the degree of freedom around the
printing axis of the print or weld head in 5D printing [2]. This has the following reasons:

• A wire feed must mainly be fed from the front, or at least from a defined direction in
relation to the direction of movement, because the geometry of the deposited material
is highly dependent on the relative alignment of the wire.

• Sensors used for monitoring and controlling the process should continuously analyze
the weld seam and must therefore always be aligned with the welding process.
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Figure 2. Object-manipulation showing advantages through: (a) downhand welding position; and
(b) fixing of the periphery.

2.2. Process Chain

The process chain of MDAM is closely modeled on known AM process chains. In
contrast to the processes of conventional 3D printing, the manipulator used for MDAM
plays a central role (Figure 3). On the one hand, the early definition of a robot (before
starting the pre-processing) ensures the feasibility of the process for a specific robot and,
on the other hand, opens up scope for optimization along the process chain.
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Figure 3. Process chain of MDAM.

Starting from the workpiece data in STL format, the workpiece is divided into sub-
volumes and then slices. Ding et al. introduced the dividing algorithms used in this
work [3]. The slicing algorithm directly takes multidirectionality into account. Printing
paths can then be planned in each of the generated slices, which in turn are transferred
into an executable robot trajectory. After physical production, components of the WAAM
process often have to undergo post-processing. The availability of path and trajectory
planning can in turn be used for process control interventions. On the one hand, essential
information about the target geometry can be derived from path planning. On the other
hand, information about expected deviations can be passed on from path and trajectory
planning to the process control system to ultimately correct the workpiece quality via the
welding process parameterization.
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2.3. Major Challenges

The mentioned high demands on the manufacturing process caused by the use of
industrial robots motivate the parallel consideration of the applied robot (and periphery)
already from the beginning of the planning process [4]. Existing algorithms of slicing
and path planning from conventional AM are not executable for the robot [5]. The exe-
cutability can essentially be attributed to the pure reachability of the robot’s poses and
the manipulability of the robot at the required high printing velocities. Once the path has
been planned, it can only be influenced by deviations from the predefined path within the
scope of trajectory planning. This contribution shows that poses which can be reached in
this way can be brought below the speed limits by slight deviations from the path to be
printed. The remaining unreachable path segments can only be adjusted by modifying the
path planning. This motivates the development of a path planner that takes into account
both the reachability and the manipulability of the manipulator and at the same time has a
minimal negative impact on other process parameters and printing result quality [6].

3. Path Planning in Robotics and Additive Manufacturing
3.1. Path Planning in Additive Manufacturing

In the field of path planning, it is necessary to distinguish between the different
possibilities of degrees of freedom of movement. Paths can be planned either freely in
three-dimensional space or two-dimensionally within a plane. In AM, the printing process
must ensure the positioning and orientation of the print head in relation to the print bed.
In a conventional fused deposition modeling (FDM) process, it is sufficient to position the
print nozzle at the designated position and always keep it perpendicular to the print bed.
In contrast, the orientation of the print head in all three rotational degrees of freedom is of
great importance for the present work. Changing the direction of the external wire feed to
the path tangent would have a decisive influence on the quality of the welded path.

Despite the common designation of AM as ‘3D printing’, an actual execution of paths
in space is rarely found, as most processes can be strictly classified as 2.5D. The path
planning of AM processes has already been researched and developed in many ways. The
focus of path planning is on generating a component with the highest possible accuracy,
high surface quality and good mechanical properties. Various infill strategies have been
developed for this purpose. Typical strategies are raster, zigzag, contour, spiral, space-
filling, grid, honeycomb, hexagonal or Voronoi diagram-based infills (cf. Figure 4). The
different strategies are not always suitable for use in WAAM-based processes. In addition,
certain space-filling infills are not executable by a robot due to movement limits or require
many changes of direction. Therefore, in the context of this work, the simplest infills
(namely raster and zigzag) are considered first. Table 1 gives an overview of different path
planning algorithms. The summary describes the advantages and disadvantages in the
context of robotic MDAM using WAAM.

It can be summarized that none of the presented approaches, methods or algorithms
can be directly applied to MDAM, especially for pure object manipulation in WAAM. The
reason for this is the lack of integration of robotic parameters in the path planning of AM.

������ ���	��� 
����
� ������ �������

Figure 4. Common infill strategies in AM.
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Table 1. Summary of the state of the art of path planning algorithms. Advantages and disadvantages are summarized in the
context of robotic MDAM using WAAM.

Reference Relevant Developments Advantages Disadvantages

Zhang et al. [7]
change of building direction and

curves surfaces/slices
(cf. Figure 5a)

necessary subvolumization
approach

restricted range for
building direction

Fang et al. [8] segmented consideration of paths
(cf. Figure 5b)

include process parameter into
optimization, optimize

robot motion

use of rotational degree of
freedom around the

welding head

Simplify3D [9]
(cf. Figure 5c)

subdivision of objects to be printed
into an outer shell and an

infill structure
- 2.5D Slicer without

any optimization

Dunlavey et al. [10] raster infill strategy easy process handling 2.5D Slicer

Park et al. [11] zigzag infill strategy
continuous path, reduced

number of sub-paths, fewer
transition movements

many changes in
printing direction

Huang [12]

dividing slices into many convex
polygons, optimization algorithm

generates optimal zigzag
infill orientation

minimal number of changes
in direction -

Farouki et al. [13] contour infill strategy (Figure 4) reduce mistakes near the contour orientation changes more then
180 deg

Wang et al. [14] spiral infill strategy
used in 5D numerically

controlled (NC) machining, solve
the limitations of zigzag infill

only suitable for special
geometric model, orientation
changes more then 180 deg

Zhang et al. [15] hybrid infill structure,
zigzag+contour

combine the advantages of
several strategies

orientation changes more then
180 deg

Jin et al. [16] hybrid infill structure,
zigzag+contour

combine the advantages of
several strategies

orientation changes more than
180 deg

Bertoldi et al. [17] Hilbert infill structure
cover complex polygons,

reducing shrinkage in AM
processes

large number of path
orientation changes, not suitable

for WAAM processes [18]

Wasser et al. [19]

fractal-like path planning using a
simulated annealing algorithm, area

to be deposited is broken down
into nodes

possible path optimization

for large areas and high
accuracy requirements, the
processing time required is

unacceptably long

Dwivedi and
Kovacevic [20]

hybrid infill structure, zigzag +
continuous path strategies,
decomposed into a set of

monotone polygons

reduces the number of
welding paths -

Ding et al. [21] hybrid infill structure, zigzag +
contour + continuous path patterns

continuous path pattern is
suitable for WAAM of

solid structures

orientation changes more than
180 deg

Lin et al. [22]

maze-like structure, decompose
slice and map volumes in weighted

graph, find optimal path by
backtracking algorithm

increase the isotropy of the
mechanical properties in

the component

many orientation changes, not
suitable for WAAM

processes [18]

Schmitz et al. [6]

Hamilton graph search, decompose
slice and map pixels in weighted
graph, find optimal path using a

backtracking algorithm

evaluate robot motion along
printing path

many orientation changes,
calculation effort not suitable,

hard to find a single
Hamilton path



Appl. Sci. 2021, 11, 5759 6 of 21

�� ����

Figure 5. Example applications of path planning in AM: (a) AM of a hollow wing structure [7];
(b) path optimization with regard to heat input during welding [8]; and (c) slicing software Sim-
plify3D with visible outer contour and filling structure [23].

3.2. Path Planning in Robotics

In general, trajectory planning can be understood as the determination of motion
profiles for the drive system of an automated machine and thus represents the link between
space and time. Knowledge of the specific kinematics (forward and inverse kinematics)
is indispensable for this purpose. In order to be able to describe a movement in three-
dimensional space unambiguously, seven parameters are necessary: three for the position,
three for the orientation and a seventh as a path parameter, which establishes the connection
between the pure geometric path and its temporal execution [24]. However, ignoring the
parameter ‘time’ and purely planning the path to be followed geometrically, one speaks
of path planning. In order to keep the definition of a path as general as possible and
initially independent of the robot and tool used, it is generally planned as a movement of
the so-called tool center point (TCP), i.e., the coordinate system relevant for the execution
of the specific task, in relation to the robot base [25]. According to Craig, the planning
of movements in joint space is not critical, since singularities are simply avoided [25]. In
contrast, Cartesian planning often has to deal with challenges such as the unreachability of
intermediate points, high joint velocities at singularities or the reachability of consecutive
poses in different configurations [25]. However, many robotic tasks are bound to fixed
Cartesian paths. These tasks include painting, cleaning, inspecting, welding or gluing.
The corresponding path planning tasks are closely linked to the challenges of AM. For
example, during painting or inspection, a path must be planned that covers the surface of
an object without gaps [26]. Consequently, requirements for a path planner can be derived
from robotics that complement the process requirements of AM. Specifically, it must be
ensured that a planned path can be continuously executed by the robot in velocity limits
and without configuration changes. Conventional geometric path planners of AM do
not take this into account. Especially for paths that have to be executed in MDAM using
WAAM and eccentric wire feeding generated by standard AM path planners, there are high
speeds in the joints of the robot to be expected. The planned path has a direct influence on
the velocity profile of the joints. Consequently, it should be taken into account already in
the path planning step.

3.3. Requirements on New Path Planning Algorithm

The path planning for AM processes and the algorithms used are characterized by
the material build-up process. This proves to be sensible, as optimal component quality
is the goal of AM. The extrusion process in the FDM process and the optimal setting of
the welding parameters in WAAM, in conjunction with suitable path planning, have the
greatest influence on component quality. Ding et al. [27] highlighted key challenges for path
planning when performing additive welding processes. The robustness of the planning
algorithm must be ensured in order to be able to automatically plan paths in complex
geometries. WAAM processes pose a particular challenge in this respect, since the width of
the material fed and thus the width of the path is large in comparison to the slice area to be
filled, unlike in comparable AM processes. Conventional path planners are therefore found
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to be unsuitable as they do not meet the subsequent requirements. A complete coverage
of the slice through path planning must be guaranteed. Non-uniform weld bed profiles
can occur over the entire path and lead to accumulated defects in the course of the process.
The greatest non-uniformities occur at the beginning and end of a weld path [28]. It can
therefore be deduced that a path planning algorithm should produce a continuous path
whenever possible. Ding et al. further highlighted path crossing as a challenge [27]. Since
crossovers in the manufacturing process lead to undesired material accumulation and
stress induction [29], a path planner should avoid them if possible. The analysis of whether
a crossover is preferable to setting down and restarting the weld path remains open. These
challenges do not lose their importance in the specific case of MDAM. However, the
implementation brings the kinematic and dynamic properties of the robot movement and
their effects on the welding result to the fore. MDAM opens up a multitude of freedoms
and possibilities that enable complex path planning for AM. However, the robot is subject
to natural limitations. For example, it must be taken into account that paths planned on
a geometric basis in the component coordinate system usually lead to robot movements
with high velocities and accelerations, or the robot must adopt configurations that are not
achievable from a design point of view or lead to collisions with itself and the environment.
Manipulator- and process-specific path planning should consider requirements from both
robotics and AM together in one path planning algorithm. The following requirements are
to be defined for the path planner:

• Process slices in any spatial orientation.
• Consideration of robot kinematics, joint limits and corresponding assurance of feasibility.
• Geometrical outward approximation of the cross-section.
• Search for the best possible overall path based on defined criteria (from robotics and

welding process).
• Minimize calculation time.
• Cover the entire slice without gaps.
• Include path elements that favor continuous and uniform trajectory execution by

the robot.
• Modular implementation (extensibility and interchangeability of components).

It can be stated that path planning algorithms essentially perform the optimization
within a single slice in order to improve, for example, mechanical properties. Position and
orientation of the slice or kinematic movements are not taken into account. The integration
of the kinematic system into the path planning as well as a targeted path smoothing are
only introduced in the preliminary work of this contribution. The planning of a completely
six-dimensional manufacturing process does not exist.

It must be noted that the purely geometric path planning algorithms of the currently
pure 2.5D processes are not excluded from an extension to 5D or 6D. The identified deficits
in the state of the art are therefore only the lack of consideration of the specific robot used
in the manufacturing process as well as the targeted path smoothing and thus are the
motivation for the presented development.

4. Concept of Manipulator-Specific Path Planning

The ‘divide and conquer’ approach was chosen for the concept of a manipulator-
specific path planner. The trade-offs of guaranteeing executability, optimality of robot
execution, print result and computational effort can be addressed in this way.

The newly developed path planner first fragments a slice into exclusively convex
polygons whose neighborhood relations are recorded in a graph. For each of the convex
polygons, multiple infill patterns with varying orientations can be feasible for covering
the respective polygon completely. This results in several possible infill options for each
convex area, extending the graph. Infills of a polygon are therefore clustered, which means
that graph edges can only be generated between infills of distinct clusters. An adapted
Hamiltonian search finds the most cost-effective path through all infill options while
making sure that every convex polygon is only visited once. In order to avoid calculating a
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multitude of exact paths that are not relevant to the final path as well as the corresponding
robot movement to generate the costs for all possible infill options, simplified evaluation
strategies were developed that allow an efficient and fast cost estimation to complete the
graph with edge weights. The resulting meta path can then be planned in detail by the
infill algorithms used. Furthermore, continuous connections between neighboring infill
options are added whenever possible so that the whole slice area is covered by a precisely
defined geometric path. The print path is then prepared for trajectory planning by means
of smoothing strategies as well as the completion of the path by the print head orientation
(Figure 6).
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Figure 6. Decomposition path planning algorithm for MDAM.

5. Methods and Algorithms

Before a path can be planned for any component, it must first be sliced, i.e., divided
into slices of defined thickness (Figure 7b). The possibility of MDAM and thus the change
of building direction can lead to the definition of different subvolumes, where each of them
is assigned a distinct building direction based on its shape and relation to the rest of the
object (Figure 8). The intersection points of the object’s STL representation with a plane
result in the polygonal cross-section of the component along this plane. These intersection
points (describing the slice polygons) and the corresponding normal vectors of all slices
are transferred to the path planner. Each slice is then represented by a collection of line
definitions, each connecting two of the intersection points. A slice can contain a single or
several closed line loops (polygons), depending on whether the slice consists of a simple
surface or contains holes. However, several independently existing islands are not allowed
and must be defined in distinct slices.
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Figure 7. Approximation and expansion of the slice contour: (a) top view; and (b) side view.

Before dividing a slice into purely convex partial polygons, the outer contours are
first simplified. This reduces the calculation complexity in the case of curved outlines and
is permissible with regard to the WAAM printing process [30]. Since subsequent post-
processing is common with metal parts, the approximated contours are then expanded to
ensure that the simplified contour includes the original one completely (Figure 7a).
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Figure 8. The result of the multidirectional slicing algorithm.

5.1. Slice Decomposition

After ensuring that the simplified representation contains the original slice completely,
it is divided into convex sub-polygons. Convex polygons offer the advantage of allowing
the continuous coverage of the polygon area with all infill strategies, especially raster-
and zigzag-type infills, independently of their orientation. There are various approaches
available for dividing a planar polygon into segments, where each leads to different
results [31]. For this work, the approach presented by Ding et al. [21] was chosen to achieve
an optimal decomposition of the slice into a minimum number of convex partial polygons.
The method can basically be divided into five steps which are executed in a loop until a
final set of convex polygons covering the approximated slice has been generated:

1. Identify external (outer contour) and internal (holes) polygons.
2. Sort the vertices of external polygons clockwise and the vertices of internal polygons

counter-clockwise.
3. Calculate the angles between the incoming and outgoing edges of each polygon vertex Pi.
4. Identify notches. A notch is defined as a vertex whose associated angle from the

previous step is greater than 0◦. A polygon with at least one notch is not convex.
5. Eliminate notches.

While the solution of Steps 1–4 is trivial, the main part of the work takes place in Step
5 of the loop. First, the identified notches are sorted by their calculated angles. The vertices
P2, P10, P6 and P5 represent the identified and ordered notches for the first decomposition
loop of the polygon shown in Figure 9. The notch with the largest angle is then selected
as the so-called reference notch (here, P2). Next, the two polygon edges bordering the
reference notch are extended until they create the intersection points Ai and Bi (A2 and
B2) with another edge. Lastly, a distinction must be made among three different cases for
creating a dividing line:

• Notch-line (NL) decomposition, see P10C10;
• Notch-vertex (NV) decomposition, see P6P12; and
• Notch-notch (NN) decomposition, see P2P5.

The decomposition algorithm results in connected convex sub-polygons dividing the
approximated slice (cf. Figure 9). These convex polygons are then to be filled with standard
infill strategies, whereby the infill strategy orientations are free to choose. The strategy
itself and its orientation have an influence on the executability of the printing path by the
robot. This should be exploited accordingly [6,32].
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Figure 9. Slice decomposition algorithm.

5.2. Infill Strategies

Within the scope of this contribution, four different infill patterns are analyzed (see
Figure 10): standard-zigzag, raster, enclosed-zigzag and defined-end-zigzag. The raster is
composed of parallel lines with identical printing direction where the path is interrupted
between each straight segment. The standard-zigzag connects the parallel lines of the raster,
creating a zigzag pattern with alternating printing direction. The enclosed-zigzag initially
covers the contour of the polygon and subsequently fills the inside of the polygon with the
standard-zigzag pattern. The defined-end-zigzag pattern is based on the standard-zigzag
pattern including the possibility to select a defined start and end point in the polygon.

(a) Standard-zigzag. (b) Raster. (c) Enclosed-zigzag. (d) Defined-end.

Figure 10. Analyzed infill strategies.

From the point of view of the object to be printed, the impact of geometric deviations
to be expected varies and is to be weighted according to the application. Cavities can cause
internal weaknesses in the workpiece that can hardly be corrected afterwards. Volume
build up, on the other hand, can be corrected, within limits, by subtractive machining. In
any case, knowledge of the location of the expected deviation enables potential correction
via welding process parameters (see Figure 13).

For each pattern, a main orientation can be identified. It is defined through the start
point of the pattern as well as its parallel main lines. The main orientation is then defined
by the plane of the infill through being perpendicular to the main infill lines as well as
pointing away from the start vertex (cf. Figure 11).

Figure 11. Main orientation (red) of two zigzag infills.

To analyze the quality of each infill pattern within a given area, a coverage analysis is
conducted. This analyses the actual coverage of the desired polygon shape through the
material output along the calculated geometric path. A geometric approximation is made,
expanding each path line segment to a rectangular area of defined width dpath and length
lsegment. Points along the path where the welding process starts or ends are additionally
marked with an octagonal shape of radius dpath (see Figure 12). By mapping these shapes
onto a matrix grid with a defined resolution, it can be counted how many times a grid part
has been covered by the calculated path.
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This approach was already used by Reisgen et al. [33] for measuring the workpiece
height with subsequent height control. The actual measured robot path was superim-
posed on a grid to store the measured part heights. In the case of a 2.5D setup, the
workpiece height can be directly correlated with the path coverage. By comparing the
coverage analysis presented here with the measured coverage or part height of a real object,
weld seam modeling can be improved. Furthermore, a predictive control is conceivable,
which does not react to a varying workpiece geometry in the next layer, as described by
Reisgen et al. [33]. With this predictive control, the workpiece height could ultimately be
ensured in the first layer through dynamic process parameter adaption.

Comparing this matrix Mpath with the grid matrix Mslice of equal resolution and
size, which contains the mapped area that the original slice covers, areas with too much
material (coverage > 1), covered with material (coverage = 1) or not covered with material
(coverage = 0) can be identified. The analysis provides information about material placed
both inside and outside the slice contour. Coverage is captured using three different indices.
ktot is defined as the percentage of the intended slice area covered by the path. karea is
defined as the ratio of total covered area to total intended slice area. kvol is defined as the
added material volume divided by the designed material volume.

Figure 12. Two path segments (left); a path interruption (middle); and coverage calculation
grid (right).

All four infill strategies shown in Figure 10 were tested on three test slices: a rectangle,
a triangle and a U-shaped slice. The results are shown in Table 2. Exemplary results of the
analysis of the rectangle are presented in Figure 13.

(a) Standard-zigzag. (b) Raster. (c) Enclosed-zigzag. (d) Defined-end.

Figure 13. Coverage analysis of exemplary infill strategies of a 80 × 120 mm rectangle: path width,
10 mm; grid spacing, 0.2 mm; light blue, cavity; pink, material outside of the intended slice; green,
one material layer; yellow, two material layers; red, three material layers; purple, four or more
material layers.

Table 2. ktot, karea and kvol for all infill strategies and test slices for dpath = 10 mm.

Rectangle Triangle U

Infill Strategy ktot karea kvol ktot karea kvol ktot karea kvol

Standard-zigzag 0.96 0.98 1.05 0.86 0.95 1.14 0.80 0.81 0.93

Raster 0.99 1.08 1.37 0.56 0.64 0.86 0.73 0.79 1.06

Enclosed-zigzag 0.96 0.97 1.06 0.93 0.97 1.41 0.91 0.94 1.72

Defined-end-zigzag 0.95 0.97 1.15 0.82 0.90 1.17 0.85 0.88 1.23
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The standard-zigzag pattern provides good coverage abilities as long as the width of
the polygon is significantly larger than the path width. For such polygons, the enclosed-
zigzag is better suited, although it causes a significant increase in volume surplus. The
defined-end-zigzag covers slices worse than the standard-zigzag does. However, the raster
shows the worst coverage abilities of all analyzed infill strategies.

5.3. Infill Strategy Weighting

The infill strategies presented can be used in convex polygons (see Figure 14a) in a
simple and standardized way. Moreover, in addition to their effect on coverage, they also
have an impact on the robot’s motion. The graph-based approach analyzes and plans the
sub-polygons separately and then, if possible, links them into a continuous path. Each of the
polygons can therefore be defined with different infill strategies, different infill orientations
and different start and end points. Each individual variation for a single polygon is called
an infill object. For each of the identified convex polygons of a decomposed slice, a defined
number of infill objects can be created, depending on the infill strategy used. Using a
defined-end-zigzag pattern as an example, the number of infill options depends on the
number of directly adjacent sub-polygons λ and can be calculated according to Formula(1):

#Infill-Objects(λ)= 4 · λ + 8 · λ · (λ− 1)
2

= 4 · λ2 (1)

The first section 4 · λ refers to the four possible start- and end-infills. Two adjacent
polygons have exactly two common vertices, so each of them can be used as the start (end)
of an arbitrary path of which the end (start) point is not important at all. The second section
8 · λ·(λ−1)

2 represents the amount of all possible connection-infills which connect any two
common vertices of the given polygon with a different neighbor polygon. The weight that
is individually assigned to each infill object is theoretically composed of any number of
independent components. At first, the reachability by the robot is evaluated as well as
geometric properties of the polygon. In addition to these two aspects, other properties
such as the amount of process heat generated along the path and the orientation of the
ground cable fixed to the workpiece can be included for each infill object. However, the
presented work initially concentrates on the first two components mentioned, since the
main objective is to generate a reachable and thus executable path for the robot. All weight
components are combined in g f inal (Formula (2)).

g f inal = greachability + ggeometry (+gheat + gcable + ...) (2)

Reachability is ensured by checking the reachability of a set of characteristic poses for
each sub-polygon and infill object, respectively. First, a reference pose is determined. The
position of this pose corresponds to the centroid of the polygon analyzed. The orientation
of the corresponding pose is determined by a transformation of the printing plate reference
frame according to the following rules:

• The x-axis corresponds to the main infill direction to be analyzed.
• The z-axis corresponds to the layer normal vector.
• The y-axis completes the right-handed coordinate system.

With the help of an already existing package for solving inverse kinematics in the
software framework ROS (Robot Operating System [34]), a solution close to a predefined
robot configuration is searched for the reference pose. Only if a valid set of joint angles ϕi
exists, the full set of characteristic poses is checked. It consists of poses that are composed
of all polygon vertices as well as the centroid of the surface. However, three different poses
are generated from each polygon vertex by varying the reference frame orientation. In
addition to the orientation described for the reference pose (x-axis in infill main direction),
two more poses are generated for each vertex, in which the x-axis is rotated around the
z-axis by +90◦ and −90◦, respectively, to check both extreme orientations for a standard
zigzag type infill (see Figure 15).
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Figure 14. (a) Coverage graph with 4 nodes connected by 3 edges and (b) weighted infill graph of
the example slice with 82 nodes and 544 edges.

From the up to eight unique solutions of a standard industrial robot possible for
each pose, the one with the smallest Euclidean distance to the reference pose within the
joint space is selected. This is done under the assumption that two TCP poses adjacent
in Cartesian space belong to the same robot configuration exactly when a direct move
from one TCP pose to another causes a minimal movement in joint space. This procedure
covers the maximum movement of the robot required for a zigzag infill pattern and ensures
that the individual poses are as close to each other as possible and result in as minimal
movement of the robot as possible.

x
y

z
0°

x

y

z

+90°
x

y

z
-90°

Figure 15. Inverse kinematics test-poses for a convex sub-polygon.

The set of different robot poses is next analyzed to calculate the reachability compo-
nent greachability (see Formula (2)), if all tested characteristic poses have at least one valid
solution. For each robot joint i, the maximum motion range ∆ϕi in order to reach all charac-
teristic poses is determined first. A linear function is then used to interpolate proportionally
between the minimum (∆ϕi = 0) and maximum (∆ϕi = ∆ϕlim) motion (see Figure 16a).
To get the complete reachability weight of a polygon, all joint specific weights greach,i are
summed up. For the second part of the infill weight the geometric properties ggeometry of
the polygon relative to the infill main orientation are analyzed. The maximum length of
the polygon along the main direction δlength, as well as the maximum width perpendicular
to the infill main direction δwidth can be calculated. The ratio rgeometry = δwidth/δlength deter-
mines whether many small zigzag movements are necessary to fill the area (rgeometry < 1),
or the path consists of fewer long segments (rgeometry > 1). A quadratic function depending
on a specified critical ratio rcrit is used to determine a scalar geometry weight between the
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minimum and maximum weight limits (see Figure 16b). In addition, it is also checked at
this point whether the analyzed slice allows the planning of a valid path at all. If, for exam-
ple, the calculated width δwidth of the polygon perpendicular to the main infill direction
is smaller than twice the expected path width of the welding process, no zigzag-shaped
path can be generated at all. By adjusting the limit intervals of the reachability or geometry
weight and modifying the interpolation functions, it is possible–after extensive software
tests and welding process analysis which are still to be done—to adjust the individual
magnitude of the components.
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Figure 16. Weights calculation of: (a) greachability; and (b) ggeometry.

5.4. Meta Path Search

The different weights for each infill option are combined in the infill graph and a
least-cost Hamiltonian path is searched for in the graph using a clustered Hamiltonian
path search. The starting point of the search is a virtual node that is linked to all infills.
This ensures that all infills are represented as start nodes in the edge-weighted graph.
Figure 14b shows the infill graph of an example slice. In this three-dimensional way, the
different infills per polygon can be visualized. Only those infills that are executable by the
robot (gtotal > 0) are shown.

The clustered Hamiltonian path search is tailored to a graph whose nodes can be as-
signed to smaller clusters. In the context of the path planner, each node maps to individual
infill options. These infills can be directly assigned to a geometric sub-polygon of the slice.
Connections exist only between infills that do not belong to the same sub-polygon (cluster)
and are assigned with weights. The Hamiltonian search is basically NP-hard [35]. In the
graphs presented, the computation of a Hamiltonian path would take a significant amount
of time. For the special case that each of the polygons can only be represented by a single
infill in the final path, the length of the final path and thus the computational effort is
reduced considerably. In the algorithm presented, a modified backtracking algorithm and a
modified genetic algorithm are used, depending on the number of polygons present within
the infill graph. The result of the calculations represents the meta path, which is a sequence
of polygons to be traversed with explicitly defined infills (type and orientation).

5.5. Path Planning and Trajectory-Pre-Processing

Having ensured that the necessary joint angles of the path are reachable by the robot,
the question appears if a sequence of joint angles can be executed at a given printing speed.
This question is referred to manipulability and is treated within this section. The corners
in a perfect zigzag pattern require the robot’s joint angles to change in an infinitesimally
short period of time. Since that is physically impossible, the quasi unsmoothed zigzag
path is defined as a zigzag path with a 0.1 mm corner radius and is hereinafter used for
benchmarking. Furthermore, the index kω,i is defined as the maximum occurring angular
velocity of a joint divided by the critical angular velocity limit of said joint. A reasonable
printing speed for WAAM processes is 14 mm s−1. Using this speed, the kω,i values for the
quasi unsmoothed path are indicated in Table 3 when filling a 120 mm by 80 mm rectangle
with a 10 mm path width. This path is not manipulable because several kω,i > 1. To ensure
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manipulability, the corners need to be smoothed although the slice coverage should not
suffer as a result. Therefore, a smoothing algorithm (cf. Figure 17) is introduced which is
based on Bézier curves [36] and includes two parameters: a bump factor Φ and a smoothing
factor Ψ.

Figure 17. Smoothing algorithm steps.

Table 3. kω,i values for the quasi unsmoothed path and the smoothing limit cases.

(Φ, Ψ) kω,1 kω,2 kω,3 kω,4 kω,5 kω,6

QU 18.5 31.5 8.15 0.05 11.0 21.8

(0, 0.1) 1.85 3.13 0.82 0.01 1.09 2.17

(0, 1) 0.38 0.56 0.14 0.00 0.19 0.38

(1, 0.1) 11.4 10.1 2.58 0.03 4.03 9.82

(1, 1) 0.70 1.09 0.33 0.00 0.34 0.70

Before creating the actual curve, the Bézier supporting points (green in Figure 17)
need to be determined. For each set of three consecutive path points (blue in Figure 17),
three supporting points are calculated: do this, an isosceles triangle is created first. The
first Bézier supporting point is determined by extending the center line of this triangle by
Φ · dpath. The second and third supporting points lie on the path lines, Ψ · dpath from the
second path point, although they can never be further away than half of the path segment
length. With these supporting points, a Bézier curve is created. Using this algorithm, the
limit cases shown in Figure 18 appear.

(a) (Φ, Ψ) = (0, 0.1). (b) (Φ, Ψ) = (0, 1). (c) (Φ, Ψ) = (1, 0.1). (d) (Φ, Ψ) = (1, 1).

Figure 18. Smoothing parameter limit cases. The path starting point is indicated as a green square
while the path end point as a red circle.

6. Results

In order to analyze the impact on path planning and to evaluate the target executability,
this section first analyzes the functionality of the decomposition path planner in terms of
reachability, before analyzing the smoothing algorithm and its impact on manipulability
and slice coverage.
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6.1. Analysis of Manipulability Weighted Graph Search

Figure 19 shows an example of the validation of the weight calculation in the path
planner. For this purpose, the weights greachability and ggeometry were analyzed for infill
orientations in polygons with different edge length ratios and orientations on the print
platform. The calculated weights were compared with the exact sum of discrete robot
movements. It is evident that the simplified weighting tends to be a correct representation
of the expected robot movement. Even though the real minimum of the robot movement
is not always correctly represented, the proposed weight calculation functions still leads
to the selection of an infill with a significantly reduced robot movement compared to the
average robot movement of all twelve infill options calculated.
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Figure 19. Exemplary infill weights compared with the real robot motion after trajectory planning (cf.
Formula (2)).

If all weights are added up, they can be used as edge weights in the graph. The 82
infill weights for the decomposed slice shown in Figure 14 are presented in Figure 20.
Using the tailored clustered Hamiltonian search algorithm, a meta path can be planned.
As dead ends in the coverage graph are also connected to all other polygons in the infill
graph, there are possible meta path solutions leading to multiple sub-paths in one slice. A
fixed weight for those node (infill) connections is used to control the possibility of multiple
sub-paths (see Figure 21).

��
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��
��
�
	

�

�������

Figure 20. Infill weight combination of the example slices in Figure 7. Pre-processing was done
only with standard zigzag. The results in heat input weights are equal to zero for the current
implementation.

The influence of the individual weights can be varied. For the example in Figure 20,
the influence of the reachability weight in particular was chosen to be higher. The average of
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the greachability is 24.71. As can be seen in Figure 20, infill objects with rather low weights in
the range of 15–20 or high weights of approximately 60 can be found. Consequently, many
infill objects are easily reachable. However, no significant differences can be discerned
among them. For this purpose, the polygon-shape weight is added. The weights lie within
a range of 1–20. In this way, infill objects of similar reachability can be distinguished once
again. All other weights used were initially given less influence. It can be stated that the
weighting generates executable paths. The exact tuning of the weight influences is still
pending to be systematically carried out and validated with real experiments.

�����

� ���

Figure 21. Executable path planned by the decomposition path planner and the smoothing algorithm.

6.2. Analysis of Path Smoothing

The influence of the smoothing parameters on the slice coverage is analyzed in this
section. The indices introduced in Section 5.2 are used. As Figure 22 shows, ktot rises
asymptotically with rising Φ and falls with rising Ψ. kVol rises approximately linearly
with rising Φ and falls with rising Ψ, especially for Ψ ∈ [0.6, 1]. In addition, the coverage
influence of Φ and Ψ is greater with rising path width. Subsequently, the influence of Φ
and Ψ on the joint angular velocity is analyzed. Table 3 shows the kω,i values for the limit
cases (ktot ≈ 1) in comparison with the quasi unsmoothed path (QU). It is evident that
smoothing offers a promising option to reduce the maximum angular joint velocities of
the robot.

Figure 22. Influence of Φ and Ψ on ktot (left) and kVol (right).

However, the table also shows that only the case (Φ = 0, Ψ = 1) is manipulable (all
kω,i < 1). Thus, it can be deduced that the manipulability of the path depends on Φ and
Ψ. To further analyze the influence of Φ and Ψ on the manipulability, kω,i is plotted for all
joints of a Kuka KR 6 as a function of Φ and Ψ (cf. Figure 23).
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Figure 23. Influence of Φ and Ψ on kω,i for all robot joints. The light blue plane shows kω,i = kω,i,crit = 1 under which the
path is manipulable.

Figure 23 shows that kω,i rises asymptotically with rising Φ and falls asymptotically
with rising Ψ, for all joints. Furthermore, it is evident that the relationship between Φ and Ψ
decides if the path is manipulable. When viewing the graphs in Figure 23, the manipulable
combinations can be separated from the non-manipulable ones by approximately linear
inequalities between Φ and Ψ (cf. Figure 24a for kω,1). These inequalities define the solution
set of smoothing parameters which allow a manipulable path. They can be shown as planes
in the ktot 3D plot (cf. Figure 24b), defining what combinations are manipulable and
allowing for the choice of the combination which generates the greatest slice coverage.

(a)
(b)

Figure 24. (a) kω,1 graph shown from above with a green separation line between manipulable (blue
points) and non-manipulable (red crosses) combinations of Φ and Ψ. (b) Separation lines for each
joint as a plane for determining the manipulable combinations of Φ and Ψ.

Based on this analysis, the optimal smoothing combination for the Kuka KR 6 and the
welding path velocity of 14 mm s−1 is selected as (Φ, Ψ)T ≈ (0.6, 1)T . Figure 21 shows the
example slice after planning including a path smoothing with Φ = 0.6 and Ψ = 1. It can
further be seen that the path is divided into two sub-paths. While the red path only covers
one of the four convex partial polygons, the blue one allows for the continuous covering of
the remaining three polygons.
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7. Discussion

The inclusion of robot kinematics in the path planning algorithm ensures the reacha-
bility of the necessary robot poses for the complex 6D printing in the case of MDAM. The
selected influences (see Table 4) of the different weightings already provide executable
results. The reachability is supplemented by smoothing the generated path, which thus
improves the manipulability. It was shown that the smoothing can reduce the peak ve-
locities of the joints to levels below the respective velocity limits (see Table 3). In order
to reduce the negative effects of this smoothing algorithm on the material-coverage of
the slice, parameters were identified that combine manipulability with good coverage.
Those results need to be further investigated during real welding tests. Overall, it can
be stated that the ensured reachability in combination with the optimized manipulability
can ensure the desired executability. The results published in this work will be combined
with a tailored trajectory planner in future research and in addition tested on a real robotic
system. In particular, the trajectory planner can have a great influence on the actual robot
movements. Consequently, an evaluation of the robot’s trajectory is not meaningful within
the scope of this contribution. The test setup available at the IGMR (cf. Figure 25) is to be
used for this purpose.

Table 4. Weights mean and standard deviation of the example in Figure 20.

Mean SD

Reachability 24.71 18.01

Polygon-Shape 3.93 5.76

Cable 5.29 1.31

Figure 25. Prototype of MDAM process at IGMR using the FDM Process and a Laser Line Scanner
for further investigation.
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