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Featured Application: A pseudorandom number generator (PRNG) emulates to a truly random
number generator in an interest interval and, its pseudorandomness depends on the size of the
initial conditions space and the sensitivity to these conditions. A PRNG can be implemented
through diverse strategies; but in cryptography applications, a PRNG must produce aperiodic
number sequences with high linear complexity and a statistical distribution close to the uni-
form distribution. An approach to implement PRNGs is based on chaotic maps because they
have inherent features, such as their highly sensitive dependence on initial conditions and the
control parameters, their topological transitivity, ergodicity, aperiodicity and pseudorandomness
properties. These features fully match with the practical implementation requirements of the
PRNGs. Therefore, we propose a function composition based on skew tent map (STM) and the
sine function that can be an effective alternative to implement PRNGs with high computational
complexity that overcome pseudorandomness test suites.

Abstract: In cryptography, the pseudorandom number sequences must have random appearance to
be used in secure information systems. The skew tent map (STM) is an attractive map to produce
pseudorandom sequences due to its easy implementation and the absence of stability islands when
it is in chaotic behavior. Using the STM and sine function, we propose and analyze a function
composition to propose a pseudorandom number generator (PRNG). In the analysis of the function
composition, we use the bifurcation diagram and the Lyapunov exponent to perform a behavioral
comparison against the STM. We show that the proposed function composition is more sensitive
to initial conditions than the STM, and then it is a better option than the STM for cryptography
applications. For the proposed function we determine and avoid the chaos annulling traps. The
proposed PRNG can be configured to generate pseudorandom numbers of 8, 16 or 32 bits and it can
be implemented on microcontrollers with different architectures. We evaluate the pseudorandomness
of the proposed PRNG using the NIST SP 800-22 and TestU01 suites. Additionally, to evaluate its
quality, we apply tests such as correlation coefficient, key sensitivity, statistical and entropy analysis,
key space, linear complexity, and speed. Finally, we performed a comparison with similar PRNGs
that produce pseudorandom sequences considering numbers of 8 and 32 bits. The results show that
the proposed PRNG maintains its security regardless of the selected configuration. The proposed
PRNG has five important features: easy implementation, configurable to produce number with 8,
16 or 32 bits, high processing speed, high linear complexity, and wide key space. These features are
necessary for cryptographic systems.

Keywords: pseudorandom number generator; function composition; nonlinear dynamics and chaos;
robust chaotic map
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1. Introduction

Several works related to the PRNG design have been proposed; for example, there
are strategies that implement PRNGs using linear feedback shift registers (LFSR) [1–5],
while other strategies are based on block cipher [6], stream cipher [7], quantum walks [8],
cellular automata [9,10], chaotic oscillators and artificial neural networks (ANN) [11], or
chaotic maps [12–15]. There are also PRNG design approaches that combine several of the
above strategies [16]. Considering this context, we focus our research on PRNGs based on
chaotic maps.

Chaotic maps are iterated functions that use an initial seed to produce non-linear
sequences of numbers; these sequences when translated into binary sequences can generate
random-looking and highly unpredictable numbers to be used in cryptography. Chaotic
maps have high sensitivity to initial conditions when operating with their parameters inside
specific domains, which can be determined. In these parameter domains the chaotic maps
can operate as pseudorandom or aperiodic systems, but outside those parameter domains
they can operate as periodic systems or their trajectories may also escape to infinity [17].
It may also happen that several chaotic repellers coexist in the chaotic system [18], and
the trajectories move chaotically for a while before escaping and reaching another chaotic
repeller [19,20]. Under these considerations, the behavior option can be selected from their
control parameters [14]. In addition, when the chaotic maps are used in cryptographic
applications, several drawbacks become evident, such as range discontinuity and non-
uniform statistical distribution of the generated number sequences, as well as the small seed
space [21]. Despite this, we cannot forget that there is a natural application relationship
between chaos and cryptography. The main features of the chaotic systems, such as the
sensitive dependence on initial conditions and control parameters, ergodicity, size of
the parameter space, and mixing property, can be related to the confusion and diffusion
conditions that must be applied to information to be protected by using cryptographic
systems [22]. Therefore, many cryptographic systems and modules have been proposed
based on chaotic systems [22–33]. In particular, chaotic maps have been successfully
applied in the implementation of PRNGs [14,15,31,34–42].

In this way, the chaotic maps have inherent features that fully match with the practical
implementation requirements of the PRNGs. The first proposal for a PRNG based on chaotic
maps was developed in 1982 by Oishi and Inoue [43]. Later, Gonzalez and Pino in 1999
generalized the logistic map and designed a random function [44]. Stojanovski et al. in 2001
analyzed the application of a piecewise-linear chaotic map as PRNG [45,46]; and in the same
year, Li et al. [47] performed an analysis suggesting that a couple, g( f (x)), of two piecewise-
linear chaotic maps f (x) and g(x) has perfect cryptographic properties if it satisfies four
requirements when used to build high-security stream ciphers. The requirements defined
by Li et al. [47] for one-dimensional chaotic maps are: (R1 ) Piecewise-linear chaotic maps
should be surjective maps on a same interval (a, b), (R2) Piecewise-linear chaotic maps
should be ergodic on (a, b) with unique invariant density functions, (R3) Invariant density
functions of the piecewise-linear chaotic maps should be equal to each other, and (R4)
Chaotic orbit produced by one the piecewise-linear chaotic maps should be asymptotically
independent to the chaotic orbit produced by the other map when the length of the chaotic
orbits tends to be infinite.

After the work developed by Li et al. [47], many other researchers proposed PRNGs
based on chaotic maps using different approaches [12–15,31,34–42,48]. In this extensive
variety of proffers, several implementations were identified with security disadvantages
attributed to one or more of the following features: non-uniform statistical distribution [49],
digital degradation [50] and predictability [51] of the produced number sequences, as well
as the small-sized seed space of the chaotic map [21]. In this context, other authors have
proposed alternative solutions to counteract the exposed disadvantages. For example, in
2016, Wang et al. [52] compared cryptographically useful properties of piecewise-linear
maps (ergodicity, Lyapunov exponent and bifurcation) to properties of logistic map and, in
order to overcome the disadvantages of the logistic map used in designs of chaos-based
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ciphers, they proposed a PRNG based on the piecewise-logistic map. In that proffer, Wang
et al. claim that their PRNG achieves a trade-off between efficiency and security. However,
in 2019, Lambić [53] analyzed the security of PRNG based on the piecewise-logistic map
showing that it can be violated by using brute-force and known output sequence attacks.
And then, also in 2019, Wang et al. [49] proposed a four-dimensional chaotic model based
on a piecewise-logistic map with coupled parameters, but they just tried to overcome the
fact that the statistical distribution of the piecewise-logistic map is non-uniform. Another
example showing a solution to overcome the security disadvantages revealed for PRNGs
based on chaotic maps is the work proposed by Zhou et al. [54] in 2016. Zhou et al.
proposed a secret key generation algorithm based in operations in the YUV color space that
combines two secret keys to produce the initial conditions required in the chaotic maps
used in the encryption processes. In the attempt to strengthen their encryption system
against differential attacks, Zhou et al. used a cubic map and a wavelet map to produce
pseudorandom number sequences. Although Zhou et al. considered these maps to be
highly sensitive to initial conditions, they did not perform a formal sensitivity analysis.
Also, in 2021, Shi and Deng [55] when studying the dynamical degradation of the two-
dimensional Barker map they found that this chaotic map can have valuable properties
when it is used in a PRNG. Another example showing the application of strategies to
overcome security disadvantages in PRNGs based on chaotic maps is the work proposed
by Murillo-Escobar et al. in 2017 [36]. Since under the premise that low-dimensional
chaotic systems may become more used than high-dimensional chaotic systems to produce
the pseudorandom key stream used for encryption purposes, Murillo-Escobar et al. [36]
proposed a PRNG based on the pseudorandomly enhanced logistic map, claiming that
the produced number sequences have excellent statistical properties to cryptography
applications. Although Murillo-Escobar et al. specified that the parameter domain for
pseudorandomly enhanced logistic map is limited to (3.999, 4.0), they scaled and discretized
the output of the chaotic map by applying mod 1 to it when 1× 106 is the scaling factor. With
this scaling factor, they intended a uniform statistical distribution of the generated number
sequences. Also, although Murillo-Escobar et al. [36] claim to avoid weak keys in their
PRNG, we emphasize that they did not identify which conditions cause the chaotic map to
produce weak keys in order to avoid them. A last example related to overcome the security
disadvantages of the PRNGs based on chaotic maps is the work proposed by Chen et al.
in 2019 [50]. Chen et al. [50] proposed a method to counteract the dynamical degradation
of the digital sequences produced by using a chaotic system when it is implemented on
low–precision devices; in that condition, all the produced sequences could be periodic
sequences. In this way, the method proposed by Chen et al. [50] was based on a dynamical
strategy to perturb a digital chaotic system by using pseudorandom sequences produced
by a two–dimensional sine chaotic map with control parameters a and b. They specify
a = 1 and b = 5 so that the map has a chaotic behavior, but they do not perform an analysis
of the opportunities that exist to generate chaos, nor of the chaos annulling conditions
in the chaotic system. Additionally, Chen et al. [50] showed two experiments in order
to test effectiveness of their method to counteract the dynamical degradation of digital
chaotic sequence. In the first experiment they selected the logistic map to represent the one–
dimensional chaotic maps. In the second experiment, they selected the two-dimensional
logistic cascade hyperchaotic map to represent the high-dimensional chaotic maps. In this
way, Chen et al. [50] demonstrated the effectiveness of their method considering the linear
complexity, correlation, and statistical distribution.

Therefore, although efforts are being made to overcome the security disadvantages of
implementing PRNGs based on chaotic maps, there are still PRNGs based on chaotic maps
that have security shortcomings. For example, some chaotic maps have stability islands
within the parameter domains for chaotic behavior, adversely affecting the system security,
other chaotic maps produce number sequences with non-uniform statistical distribution,
and other chaotic maps only work by using a limited size of initial conditions space [15,53].
Therefore, to safely use a PRNG based on chaotic maps, we must carefully select the
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initial conditions ensuring that the map will always produce pseudorandom sequences
with uniform statistical distribution and it will operate into the parameter domains for
chaotic behavior avoiding the annulling chaos conditions; and when the chaotic system
is implemented electronically, the dynamic degradation of the digital sequences must
be considered.

Focusing specifically on PRNGs based on a single chaotic map, the most commonly
used systems to generate pseudorandom number sequences are one-dimensional (1-D)
chaotic maps, and although they have security disadvantages when used in cryptography,
they are commonly used due to their structural simplicity, discrete nature, reduced number
of arithmetic operations, high performance processing, and relatively easy implementation
in hardware and software. It is worth noting that the 1-D chaotic maps can be attacked
using the non-linear prediction method based on phase space reconstruction. In fact,
in 1994 Short [51] proposed a method that can attack almost all 1-D chaotic maps and,
therefore, many authors of works related to chaos–based PRNGs tend to conclude that
it is more appropriate to use high–dimensional (H-D) chaotic systems rather than low–
dimensional (L-D) chaotic systems to build PRNGs. It should be also noted that Short
indicated in [51] that the details of their nonlinear prediction method is in a work submitted
to the Int. J. Bifurcations and Chaos since 1993, but it was not published. Instead of that
work, there is another work published in 1997 by Short [56] that applies the non-linear
dynamic prediction to extract, in the time domain, faithful representations of hidden
message signals transmitted by chaotic communication systems. Short’s experiments are
based on two fundamental facts. The first fact is that two systems (transmitter and receiver)
implemented to reproduce the dynamic of a chaotic system can be synchronized without
transmitting information related to their initial state. The second fact was that the ability
of the receiver to synchronize with the transmitter is not affected by the addition of a
low-powered message on the chaotic carrier. This means that, once synchronization is
achieved, the chaotic carrier can be removed to reveal the message.

In this way, considering that H-D chaotic maps are difficult to implement, 1-D chaotic
maps have been the most used in different applications [14,15,57], but in order to avoid
their security weaknesses the following issues must be considered: (i) existence in the
chaotic map of chaos annulling conditions, which are not identified and therefore are not
avoided, (ii) a high degradation rate of the dynamic behavior when digital maps are used
as quantization functions to approximate the true chaotic maps, (iii) low complexity of
the chaotic map, (iv) strong correlation between the data set and the number sequences
produced by the chaotic map, and (v) non-uniform statistical distribution of the number
sequences produced by the chaotic map.

Thus, PRNGs based on a single chaotic system are potentially insecure systems since the
produced number sequences expose information related to the initial condition of the chaotic
system. In such case, an intruder can be able to decrease the computational complexity to
find that initial condition. However, in order to avoid this condition PRNGs based on a single
chaotic system, the following approaches should be used: higher finite precision [47,58],
methods reducing the dynamical degradation of digital sequences [50], cascading multiple
chaotic systems [47,59–61], combining chaotic maps by using modular operations [62,63],
and coupled chaotic systems [64–66]. In this way, it is more difficult to obtain information
about the initial condition of the system, since the number sequences it produces will be
determined by different conditions, configurations, and mixed chaotic orbits.

Under these considerations, we propose and analyze a function composition (FC)
that couple the sine function and skew tent map (STM) to include three FCs as core in a
PRNG. In this way, we also propose a PRNG that uses three modular operations to increase
the precision in the scaling and discretizing procedures used to translate the real number
sequences produced by FCs to binary number sequences, and it uses a modular operation
to combine the pseudorandom binary sequences. Through this strategy we overcome
the disadvantages of using a single chaotic system. To guarantee the effectiveness of
the FC during the operation of the proposed PRNG, we avoid in each FC the chaos
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annulling conditions; and in order to evaluate the proposed PRNG, the following tests
have been considered: correlation coefficient, key sensitivity, entropy analysis, statistical
analysis, linear complexity, key space analysis, pseudorandomness, and speed analysis. It
is important to emphasize that in this work, we use the word key of the PRNG to identify
what other authors call the seed or initial condition of the PRNG.

The rest of the paper is organized as follows. Section 2 shows the definition, the
sensitivity analysis, and a basic sensitivity test of the FC. Section 3 provides design details of
the proposed PRNG. Section 4 shows the results of performance tests applied to the number
sequences produced by the proposed PRNG. Finally, Section 6 is devoted to conclusions.

2. The Proposed Function Composition
2.1. Definition

Garasym et al. [66] proposed a PRNG based on coupled one–dimensional chaotic
maps. They claim that a robust PRNG can be designed by coupling the tent and logistic
maps, and the number sequences produced by that PRNG can achieve excellent pseu-
dorandom properties and uniform statistical distribution. So, they conclude that their
PRNG is suitable for chaos-based cryptography applications. Garasym et al. [66] based
their proposal on the idea of combining the characteristics of the tent and logistics maps to
achieve a new map with improved properties, through the combination of various network
topologies. They proposed it because both logistic and tent maps have never been used
in cryptography as they have weak security. Then, based on the review of the network
topologies of 1–D chaotic maps presented by Garasym et al. [66], we propose a function
composition (FC) from sine function and skew tent map (STM).

Thus, we define STM using the linear functions σ1(µ, α, y) = y
µ and σ2(µ, α, y) = α−y

α−µ

according to Equation (1).

σ(µ, α, y) =

{
α σ1(µ, α, y) 0 < y ≤ µ

α σ2(µ, α, y) µ < y < α
, (1)

The iterated version of the STM is given by Equation (2),

yn = σn(µ, α, y0) =

{
α σ1(µ, α, yn−1) 0 < yn−1 ≤ µ

α σ2(µ, α, yn−1) µ < yn−1 < α
, (2)

Then, when the function g(x) = sin(πx) is applied in a conjugate form to σ1(µ, α, y)
and σ2(µ, α, y), in such a way that τ1(·) = g ◦ σ1(·) = g[σ1(µ, α, y)] and τ2(·) = g ◦ σ2(·) =
g[σ2(µ, α, y)], we define the FC according to Equation (3).

τ(µ, α, x) =

α sin
[
π x

µ

]
0 < x ≤ µ

α sin
[
π α−x

α−µ

]
µ < x < α

, (3)

The iterated version of the FC is given by Equation (4),

xn = τn(µ, α, x0) =

α sin
[
π

xn−1
µ

]
0 < xn−1 ≤ µ

α sin
[
π

α−xn−1
α−µ

]
µ < xn−1 < α

, (4)

In both cases, n = 0, 1, 2, ... represents the iteration step, y0 and x0 ∈ (0, α) are the
initial conditions of the chaotic maps, yn and xn are the number produced by the iteration
n of each chaotic map, µ ∈ (0, α) and α ∈ R+ are the control parameters of the chaotic map,
and τn(µ, α, x0) represents Equation (3) applied n times on x0 using µ and α.

Figure 1 shows the behavior of the STM and the FC according to Equations (1) and (3),
respectively. It worth noting that when µ = 0.5α the STM is symmetric. In this case, each
chaotic system is applied to the interval (0, α), α = 3.0, and µ = 0.0, 0.25α, 0.50α, 0.75α, α.
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Figure 1. Chaotic maps are applied to x ∈ (0, α) with α = 3.0. (a) STM and (b) FC with µ = 0 (black), µ = 0.25α (blue),
µ = 0.50α (red), µ = 0.75α (green), and µ = α (magenta). (c) STM and (d) FC with µ = 0.5α and α = 0.375 (black), α = 0.75
(blue), α = 1.5 (red), and α = 3.0 (green).

2.2. Behavior Analysis

This section is aimed at showing the behavior analysis for the proposed chaotic maps.
To such purpose, we identify the conditions for which the chaotic maps can generate
periodic sequences, as well as those conditions for which they can generate aperiodic
sequences. In order to offer this analysis of behavior (periodic or aperiodic), in a similar
way to Palacios-Luengas et al. [14] and Pichardo-Méndez et al. [67], we identify the chaos
annulling conditions in the proposed chaotic maps, and we calculate their bifurcation
diagrams and Lyapunov exponents.

Firstly, to identify the chaos annulling conditions in the proposed chaotic maps, we
must find their fixed points and their periodic orbit of order m > 2. For this intention,
we assume that x(1) is a fixed point of the chaotic system ξ(·) when ξ

(
µ, α, x(1)

)
= x(1),

x∗ is a preimage point when x(1) = ξ(µ, α, x∗), and x(m) is a condition that produces an
periodic orbit of order m > 2 when ξm

(
µ, α, x(m)

)
= x(m), considering that ξm(µ, α, x̂) is

mth iteration of ξ(·) when x̂ is its initial condition. As an example for the proposed chaotic
maps, Table 1 shows the fixed points and some periodic orbits of order m = 2, 3, and 4.
Note in Table 1 that the examples of conditions producing periodic orbit of order m = 2, 3
and 4 have be included by using only ten digits after the dot, but they are number with
more significant digits. Additionally, note that Table 2 shows the preimage points.
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Table 1. Fixed points and conditions that produce periodic orbits for the two chaotic maps.

STM Conditions FC Conditions

x(1) = 0 α 6= µ x(1) = 0 0 < µ < α

x(1) = α2

2α−µ
α > µ x(1) = µ 0 < µ < α; α < 2π

x(1) = α 0 < µ < α; α < 2π

x(2) = α2µ
α2+µα−µ2

0 < µ < α; α < 2π x(2) = 0.0265743377... µ = 0.5 ; α = 3.0

x(2) = α3

α2+µα−µ2 0 < µ < α; α < 2π x(2) = 0.5071716543... µ = 0.5; α = 3.0

x(3) = 2α2

8α3+2α−1
0 < α < 2π, µ = 0.5 x(3) = 0.0396498406... µ = 0.5; α = 3.0

x(3) = 2α2

8α3−4α2+4α−1
0 < α < 2π, µ = 0.5 x(3) = 0.0400220305... µ = 0.5; α = 3.0

x(3) = 4α3

8α3+2α−1
0 < α < 2π, µ = 0.5 x(3) = 0.1121005595... µ = 0.5; α = 3.0

x(3) = 4α3

8α3−4α2+4α−1
0 < α < 2π, µ = 0.5 x(3) = 0.1298899309... µ = 0.5; α = 3.0

x(3) = 2α2

4α−1 0 < α < 2π, µ = 0.5 x(3) = 0.2041531102... µ = 0.5; α = 3.0

x(3) = 8α4−4α3+2α2

8α3−4α2+4α−1
0 < α < 2π, µ = 0.5 x(3) = 0.2041531102... µ = 0.5; α = 3.0

x(3) = 8α4

8α3+2α−1
0 < α < 2π, µ = 0.5 x(3) = 0.4303378921... µ = 0.5; α = 3.0

x(4) = 2α2

16α4+2α−1
0 < α < 2π, µ = 0.5 x(4) = 0.0000750067... µ = 0.5; α = 3.0

x(4) = 2α2

16α4−4α2+4α−1
0 < α < 2π, µ = 0.5 x(4) = 0.1151873680... µ = 0.5; α = 3.0

x(4) = 4α3

16α4+2α−1
0 < α < 2π, µ = 0.5 x(4) = 0.3046575007... µ = 0.5; α = 3.0

x(4) = 4α3

16α4−4α2+4α−1
0 < α < 2π, µ = 0.5 x(4) = 0.4729887207... µ = 0.5; α = 3.0

x(4) = 8α4−4α3+2α2

16α4+8α3−12α2+6α−1
0 < α < 2π, µ = 0.5 x(4) = 0.6234955250... µ = 0.5; α = 3.0

x(4) = 2α2

4α2+2α−1
0 < α < 2π, µ = 0.5 x(4) = 1.3498296254... µ = 0.5; α = 3.0

x(4) = 8α4

16α4+2α−1
0 < α < 2π, µ = 0.5 x(4) = 1.5242944437... µ = 0.5; α = 3.0

x(4) = 8α4

16α4−4α2+4α−1
0 < α < 2π, µ = 0.5 x(4) =1.7744661356... µ = 0.5; α = 3.0

x(4) = 16α4−8α3+2α2

16α4+8α3−12α2+6α−1
0 < α < 2π, µ = 0.5 x(4) = 1.9484472133... µ = 0.5; α = 3.0

x(4) = 2α2

4α−1 0 < α < 2π, µ = 0.5 x(4) = 2.5475266813... µ = 0.5; α = 3.0

x(4) = 16α5−8α4+4α3

16α4+8α3−12α2+6α−1
0 < α < 2π, µ = 0.5 x(4) = 2.6286105510... µ = 0.5; α = 3.0

x(4) = 4α3

4α2+2α−1
0 < α < 2π, µ = 0.5 x(4) = 2.7855644262... µ = 0.5; α = 3.0

x(4) = 16α5−4α3+2α2

16α4+8α3−12α2+6α−1
0 < α < 2π, µ = 0.5 x(4) = 2.8315128133... µ = 0.5; α = 3.0

x(4) = 16α5−4α3+2α2

16α4−4α2+4α−1
0 < α < 2π, µ = 0.5 x(4) = 2.9105145253... µ = 0.5; α = 3.0

x(4) = 16α5

16α4+2α−1
0 < α < 2π, µ = 0.5 x(4) = 2.9943872569... µ = 0.5; α = 3.0

Table 2. Some preimages of fixed points for the two chaotic maps considering 0 < µ < α and α < 2π

and k = 1, 2, 3, ....

xp = σ−k(µ, α, x∗) xp = τ−k(µ, α, x∗)

x ≥ α or x ≤ 0 µ
π arcsin

( µ
α

)
, k = 1

αµ
2α−µ µ− µ

π arcsin
( µ

α

)
, k = 1

µ2

2α−µ
µ+ α−µ

π arcsin
( µ

α

)
, k = 1

µk

αk−2(2α−µ)
α- α−µ

π arcsin
( µ

α

)
, k = 1

2αk−αk−1µ−αµk−1+µk

αk−2(2α−µ)
x =

µ
2 , k = 2

µk(2µ2−2αµ−µ2)
αk(2α−µ)

α+µ
2 , k = 2

2αk−αk−1µ−2αk−4µk−3−4αk−5µk−2−3αµk−1+µk)
αk−2(2α−µ)

µ
π arcsin

(
2α
µ

)
, k = 2

µ− µ
π arcsin

(
2α
µ

)
, k = 2

µ +
α−µ

π arcsin
(

2α
µ

)
, k = 2

α− µ−α
π arcsin

(
2α
µ

)
, k = 2

On the other hand, in order to show the big picture of the statistical behavior of both
chaotic systems, we show in Figure 2 the bifurcation diagrams for the STM, and in Figure 3
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the bifurcation diagrams for the FC. Remember that, a bifurcation diagram illustrates the
changes that occurred to the number sequences produced by a chaotic system considering
different values of its control parameters. In Figures 2a and 3a, µ ∈ (0, 3.0) and α = 3.0,
meanwhile in Figures 2b and 3b µ = 0.5 and α ∈ (0, 3.0), in Figures 2c and 3c µ = 1.5
and α ∈ (0, 3.0), and in Figures 2d and 3d µ = 2.5 and α ∈ (0, 3.0). In all cases, the initial
conditions were randomly selected for each value of control parameter used when the
chaotic system was being iterated.

According to Table 1, Figure 2 shows the fixed points (red lines) and some periodic
orbits for the STM. For all cases, A corresponds to x=α, and B to x = α2

(2α−µ)
. But in Figure 2b,

C corresponds to x = 2α2

(8α3−4α2+4α−1) , and D to x = 2α2

(16α4+2α−1) ; in Figure 2c, C corresponds

to x = 8α4

(8α3+18α−27) , and D to x = 54α2

(16α4+54α−81) ; and in Figure 2d, C corresponds to x =
50α2

(8α3−20α2+100α−125) , and D to x = 5.25968×1014α2

(3.36619×1013α4+5.25968×1014α−1.31492×1015)
.

On the other hand, Figure 3 shows the fixed points (red lines) to x=α and, additionally,
Figure 3c indicates a stability island. The fixed points periodic orbits and stability islands
must be identified and avoided when the chaotic system is applied in cryptosystems.
Additionally, note that, the bifurcation diagrams in Figures 2a and 3a completely cover the
plane µ vs τ(µ, α, x); but, the bifurcation diagram for the FC does not exhibit the annulling
chaos conditions that are present on the STM, which are given by x0 = µ or x0 = α,
and x0 = 0.

(a) (b)

(c) (d)

Figure 2. Bifurcation diagram of the STM: (a) µ ∈ (0, 3.0) and α = 3.0, (b) α ∈ (0, 3.0) and µ = 0.5, (c) α ∈ (0, 3.0) and µ = 1.5,
and (d) α ∈ (0, 3.0) and µ = 2.5. Red and black lines show the fixed points, and green and magenta lines show the conditions
for periodic orbits.
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(a) (b)

(c) (d)

Figure 3. Bifurcation diagram of the FC: (a) µ ∈ (0, 3.0) and α = 3.0, (b) α ∈ (0, 3.0) and µ = 0.5, (c) α ∈ (0, 3.0) and µ = 1.5,
and (d) α ∈ (0, 3.0) and µ = 2.5. Red lines show the fixed points of the chaotic system.

Now, in order to analyze the stability island of order 3 in the FC, we have generated
Figure 4, which shows in detail the window for the stability island of order 3 identified
at Figure 3. This window allows us to identify the auto-similarity property of the FC and,
according to Sharkovski’s Theorem [68,69], it ensures that the FC has an infinite number of
stability islands. Therefore, in the FC the stability islands emerge according to Sharkovski
sequence 2n × k, with k = 3, 5, 7, 9, ... for n= 1, 2, 3, 4, ... [68,69], and they are inherited from
the sine chaotic map. All stability islands must be considered and avoided. It is worth
noting that the period doubling phenomenon observed in Figure 3c, boxed in red, appears
again in Figure 4a. Figure 4b shows a zoom at region boxed in red at Figure 4a. Figure 4c,d
have been included in order to show that the auto-similarity property, the doubling period
phenomenon and the stability island of order 3 appear again. This is sufficiently clear
evidence that the FC has an infinite number of stability islands, which emerge according to
the Sharkovski sequence.

We highlight that, if µ is considered the main control parameter, both chaotic systems
exhibit a chaotic behavior when µ ∈ (0, α); meanwhile, if α is considered the main control
parameter, they exhibit a chaotic behavior when α > µ, and this behavior is limited
by the function τ = α. Additionally, the statistical distribution of the STM is closer to
the uniform distribution than the statistical distribution of the FC, which is denser at
ends. But, the FC does not have fixed points and stability islands at parameter domains
of chaotic behavior when µ < α. In a similar way to Palacios-Luengas et al. [14] and
Pichardo-Méndez et al. [67], the statistical distribution of the sequences produced by both
chaotic maps can be estimated through the stationary statistical distribution by using the
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Birkhoff’s Ergodicity Theorem [70], and considering that the evolution of a set of initial
condition must be studied when the chaotic system is applied to it.

(a) (b)

(c) (d)

Figure 4. Bifurcation diagram of the FC when µ = 1.5. (a) α ∈ (1.405, 1.425), it corresponds to a close-up on Figure 3c.
(b) α ∈ (1.408, 1.422), it corresponds to a close-up on (a). (c) α ∈ (1.402, 1.4205), it corresponds to a close-up on (b).
(d) α ∈ (1.402, 1.4205), it corresponds to a close-up on (c).

Now, as an example, in Figure 5 we show the trajectory diagrams of both chaotic
systems when α = 3.0 considering 10,000 iterations. For the STM, in Figure 5a, we use
µ = 0.9 and x0 = 1.9, and, in Figure 5b, we show that a short trajectory reaches a fixed
point when µ = 1.5 and x0 = 0.0625. On the other hand, for the FC, in Figure 5c, we show
that a chaotic trajectory occurs when µ = 0.9 and x0 = 1.9, and, in Figure 5d, we show that
a short trajectory reaches a fixed point when µ = 1.5 and x0 = 1.460321868288294.

The next step, in the behavior analysis of a chaotic system is to define whether the
fixed points or the periodic orbits are stable (attractor) or unstable (repeller) points or
orbits. Analyzing the stability of the fixed points, let |ηn| = |ξn(µ, α, x0 + η0)− ξn(µ, α, x0)|
be the relative difference between the values of the position n in the number sequences
produced by the chaotic system ξ(·), where ξ(·)=σ(·) for the STM and ξ(·)=τ(·) for the
FC. Using x0 + η0 and x0 as initial conditions to produce two number sequences, let η0 be
some number arbitrarily small, and µ and α the control parameters of the chaotic systems.
If |ηn+1| < |ηn|, then the selected control parameter will cause the chaotic map to converge
∀ n, causing the produced number sequence to fall at some fixed point, which will be an
attractor fixed point. Conversely, if |ηn+1| > |ηn|, then the selected control parameter will
cause the chaotic map to diverge ∀ n, causing the produced number sequence to move
away from the fixed point, which will be a repeller fixed point. This derivative criterion for
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repelling and attracting fixed points can be generalized to periodic orbits. For this purpose,
we recommend reviewing Ref. [68].

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 00 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0

��
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���
��x)

�
(a)

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 00 . 0
0 . 5
1 . 0
1 . 5
2 . 0
2 . 5
3 . 0

��
(�

���
��x)

�
(b)

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 00 . 0
0 . 5
1 . 0
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2 . 0
2 . 5
3 . 0

��
(�

���
��x)

�
(c)

0 . 0 0 . 5 1 . 0 1 . 5 2 . 0 2 . 5 3 . 00 . 0
0 . 5
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2 . 0
2 . 5
3 . 0

��
(�

���
��x)

�
(d)

Figure 5. Trajectory diagrams. (a) STM when α = 3.0, µ = 0.9, and x0 = 1.9 (chaotic trajectory), (b) STM when α = 3.0,
µ = 1.5, and x0 = 0.0626 (short trajectory reaches the fixed point x∗ = 2.0), (c) FC when α = 3.0, µ = 0.9, and x0 = 1.9
(chaotic trajectory), and (d) FC when α = 3.0, µ = 1.5, and x0 = 1.460321868288294 (short trajectory reaches the fixed point
x∗ = 3.0).

Now, as an example of this concepts, we analyzed the cases when x0 is a fixed point,
in order to estimate the trap conditions. Thus, let x∗ be a fixed point, and considering that
τn(µ, α, x∗) = x∗ ∀ n, the relative difference ηn+1 can be written as,

|ηn+1| =|ξn(µ, α, x∗ + η0)− ξn(µ, α, x∗)|,
=|ξn(µ, α, x∗ + η0)− x∗|.

(5)
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By Taylor’s series,

|ηn+1| =
∣∣∣∣∣ξn(µ, α, x∗)− ηn

dξ(µ, α, x)
dx

∣∣∣∣∣
x∗
− x∗

∣∣∣∣∣,
=

∣∣∣∣∣ηn
dξ(µ, α, x)

dx

∣∣∣∣∣
x∗

∣∣∣∣∣,
=|ηnξ ′(µ, α, x∗)|.

(6)

Therefore, ηn+1 < ηn occurs when ξ ′(µ, α, x∗) < 1 and x∗ is a fixed attractor point,
and ηn+1 > ηn occurs when ξ ′(µ, α, x∗) > 1 and x∗ is a repeller fixed point. Then, con-
sidering Table 1 for σ(µ, α, ·), and according to Equation (7), x∗ = 0 is a repeller point
because σ′(µ, α, x) > 1 and 0 < µ < α. We can verify this condition using Figure 5b, in
which µ = 1.5, α = 3.0, and x = 0.0625, and the trajectory (number sequence) reaches the
fixed point x∗ = 2.0. In a similar way, according to Equation (7), x∗ = α2

2α−µ is a repeller

point if σ′(µ, α, x) > 1, and this condition occurs when 1.0 < α < 2.0 and 2α-α2 < µ, or
when 2.0 < α. But it is an attractor point when 0.0 < α < 1.0, or when 1.0 < α < 2.0 and
0.0 < µ < 2α-α2.

σ′(µ, α, x) =

{
α
µ 0 < x ≤ µ

α
µ−α µ < x < α

, (7)

On the other hand, considering Table 1 for τ(µ, α, ·), and according to Equation (8),
x∗ = 0.0 is a repeller point when 0 < α ≤ µ or when α < µ+παcos

(
π(µ−2α)

α−µ

)
, and it will be

an attractor point when µ+παcos
(

π(µ−2α)
α−µ

)
< α. In a similar way, x∗ = α will be a repeller

point when παcos
(

πα
µ

)
> µ, and it will be an attractor point when παcos

(
πα
µ

)
< µ. Finally,

x∗ = µ is a repeller point because πα
µ is always greater than 1.0.

τ′(µ, α, x) =


πα
µ cos

[
π x

µ

]
0 < x ≤ µ

πα
α−µ cos

[
π

x−2α+µ
α−µ

]
µ < x < α

, (8)

In this way, a chaotic system will have a CAT condition when the sequences it produces
reach an attractor fixed point. Therefore, it is very important to know and avoid fixed
points in a chaotic system when it intends to be incorporated in cryptosystems.

In despite of the analysis performed so far, we must not forget that the mean value
of the period of sequences generated by finite-state implementations of a chaotic map is
influenced by the rounding error [71–73]. Therefore, and according to Li et al. [47] and
Protopopescu et al. [58], it is highly recommended to use the highest precision available to
represent real numbers and perform mathematical operations on devices and computers.

2.3. Sensitivity Analysis

A very effective way of determining the chaos annulling traps (CATs) in a chaotic
system is by performing a sensitivity analysis. For this analysis, the Lyapunov exponent, λ,
helps to detect a chaotic behavior in systems because it quantifies the separation rate of
infinitesimally close trajectories in its phase space. In a similar way, to analyze the fixed
points, λ is calculated considering that |ηn| = η0enλ. Note that if λ > 0, the two trajectories
produced by the chaotic map will diverge when the separation of their initial conditions is
arbitrary small. In this case, the map has a chaotic behavior, and in the case of λ < 0 the
map will have a non-chaotic behavior. Although there are other approaches to calculate
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the Lyapunov exponent such as using unstable periodic orbits [74], we decided to apply
the following numerical approximation used by Palacios et al. [14].

λ ≈ 1
n

n−1

∑
i=0

ln|ξ ′(µ, α, xi)|. (9)

Note that, Equation (9) represents the maximum value of the velocity average, in
exponential order, with which a first trajectory produced by a chaotic map moves away (or
approaches) from other trajectories generated by the same map from an initial condition
very close to the one used to produce the first trajectory. From Equation (9), and considering
that for the STM, σ′(µ, α, xi) is defined by Equation (7), and for the FC, τ′(µ, xi) is defined by
Equation (8), we have calculated λ for both chaotic maps and we showed in Figure 6 their
behavior as a function of the control parameters, µ and α. Figure 6a shows λσ as a function
of µ ∈ (0, α) and α = 3.0 for the STM. Note that λσ > 0 ∀ µ. In a similar way, Figure 6b
shows λτ as a function of µ ∈ (0, α) and α = 3.0 for the FC. Also, note that λτ > 0 ∀ µ.

Oppositely, Figure 6c shows λσ as a function of α ∈ (0, 3.0) and µ = 0.5, 1.5 and 2.5
for the STM. Note that λσ > 0 when α > µ. In a similar way, Figure 6d shows λτ as a
function of α ∈ (0, 3.0) and µ = 0.5, 1.5, and 2.5 for the FC. Also, note that λτ >0 when
α > µ. According to results showed in Figure 6d, we must emphasize that the FC exhibits
islands of stability only when µcritical < α < µ in the chaotic map; assuming that µcritical is
the value of µ when λ crosses zero for the first time. Thus, if α ∈ (0, 3.0) for the FC, it will
always be true that λσ > 0 when α > µ is satisfied avoiding that chaotic map generates
chaos annulling conditions. On the other hand, if µ ∈ (0, 3.0) for the FC, it will always
be true that λτ > 0 when µ ∈ (0, α). Therefore, when µ ∈ (0, α), the FC will produce
chaotic sequences.
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Figure 6. (a) λσ for the STM when α = 3.0 and µ ∈ (0, α), (b) λτ for the FC when α = 3.0 and µ ∈ (0, α), (c) λσ for the
STM when α ∈ (0, 3.0) and µ = 0.3 (blue line), µ = 1.5 (red line), and µ = 2.5 (magenta line), and (d) λτ for the FC when
α ∈ (0, 3.0) and µ = 0.3 (blue line), µ = 1.5 (red line), and µ = 2.5 (magenta line).
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2.4. Sensitivity Test

In the first instance, the behavior of chaotic PRNGs can be predicted since they are
deterministic systems and it is necessary to determine the conditions and limitations
that allow such a prediction to be made. In order to address this, it is worth noting that
chaotic PRNGs are implemented using dynamic systems with high dependence on initial
conditions. Therefore, small variations in the initial conditions can imply, in the short
term, great differences in the future behavior of the dynamic system. This feature limits
the prediction of the system’s behavior even in the short term. Thus, considering that the
chaotic PRNGs are deterministic systems, their behavior can be completely determined if
their initial conditions are known exactly. In this way, the sensitivity test helps to estimate
how quickly the system’s behavior changes when the initial condition changes by an
arbitrarily small number; in this case the initial condition can vary by at least 1× 10−15 and
until 1× 10−1. In this sense, the main intention in designing a chaotic PRNG should be that
the underlying chaotic map has the highest possible level of sensitivity, even for arbitrarily
small initial conditions. This is true for the proposed chaotic map when compared to
the STM.

In order to explain this condition, and considering the iterated functions expressed
by Equations (2) and (4), both chaotic systems produce sequences whose behavior highly
depends on initial condition x0 and the control parameter µ. In both maps, if x0 or µ are
changed, the number sequences produced by them will also change. But the question that
arises now is, which of two maps is more sensitive to initial conditions? A first answer
to this question is given in Figure 7, which shows the temporal behavior for five number
sequences produced by each chaotic map, considering that these sequences start with near
initial conditions. That is, x0 = 0.5 and x

′
0 = x0 + ε0, assuming that ε0 = 1× 10−k is an

arbitrarily small number in R, where k = 1, 2, 3, 4, 5. In both maps, we use α = 3.0 and
µ = 2.0 as control parameters.
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Figure 7. Sequences produced by both chaotic maps when x0 = 0.5, α = 3.0, and µ = 2, with ε0 = 0.0 (black), ε0 = 1× 10−2

(blue), ε0 = 1× 10−3 (red), ε0 = 1× 10−4 (green), and ε0 = 1× 10−5 (magenta), (a) STM and (b) FC.

Note in Figure 7 that the chaotic sequences produced by using the STM are very close
to each other until eighth iteration, and in later iterations they are notoriously separated.
Instead, the sequences produced by using the FC are separated from second iteration. Note
that this high sensitivity becomes more evident as k is decreased.

In order to obtain a sensitivity measure of a chaotic map to initial conditions, we define
the tolerance level, Nth, that the chaotic map reaches when the initial condition changes
from x0 to x′0 = x0 + ε0, considering a small threshold, δ, arbitrarily selected. Note that x′n
is the n-th element in the sequence from x′0, xn is the n-th element in the sequence from x0,
and ε0 = 1× 10−k with k ∈ [1, 15]. In this case, Nth is the iteration number for which both
sequences are separated by more than δ assuring that εNth > δ, when δ is an arbitrarily
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selected small number. Therefore, Nth is the tolerance level of the chaotic map as a function
of k, where k is the smallness of ε0. In summary, then, Figure 8a shows Nth versus k for
the FC (blue lines) and the STM (red lines), considering that k ∈ [1, 15], x0 = 0.1, µ = 1.0,
α = 2.0, and n = 1000 with δ = 1×10−3 (“�") and δ = 1× 10−5 (“N"). Note that the FC has
a smaller tolerance level than the STM for changes in the initial conditions, because when
using the same k, in both chaotic maps, Nth for the FC is smaller than Nth for the STM.

Now, using these concepts, we define the sensitivity level according to Equation (10).
In Figure 8b, we show the behavior of L(δ, k) for both chaotic maps when k ∈ [1, 15] with
δ = 1× 10−3 and δ = 1× 10−5.

L(δ, k) =
1

Nth(δ, k)
. (10)
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Figure 8. Sensitivity to initial conditions for the FC and the STM, (a) Nth(δ, k) and (b) L(δ, k) versus k, considering k ∈ [1, 15],
x0 = 0.1, µ = 1.0, α = 2.0, and n = 1000 with δ = 1 ×10−3 (“�") and δ = 1 ×10−5 (“N").

On the other hand, according to the work developed in 2019 by Liu and Feng [75], we
apply the sensitivity test to both chaotic maps, and we calculate the sensitivity index, Sn,
defined by Equation (11) when two sequences produced by the chaotic map have length n
and their initial conditions are different by ε0.

S(n, k) =
1
n

n

∑
i=1

εi(k) . (11)

In Figure 9a,b, we show the behavior of Sn,k for the STM and the FC, respectively,
when k = 1, 5, 10, and 15 and n ∈ [1, 5000]. Note that, in the long term, the FC is more
sensitive to initial conditions that the STM, and after n = 2500 both maps tend to a constant
value for S(n, k). According to Liu and Feng [75], greater the value of Sn,k, the stronger
the sensitivity.
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Figure 9. (a) Sensitivity level for the STM, considering 100 randomly selected initial conditions; (b) Sensitivity level for the
FC, considering 100 randomly selected initial conditions; (c) Sensitivity index for the STM and (d) Sensitivity index for the
FC. In all cases we consider k ∈ [1, 15], x0 = 0.1, µ = 1.0, α = 2.0, and n ∈ [1, 5000].

2.5. Remarks

From the preliminary sensitivity tests, we highlight that the FC has a lower tolerance
level and a higher sensitivity to the initial conditions than the STM. From the analysis of
the chaos annulling conditions and the sensitivity analysis, we highlight that the FC has
less chaos annulling conditions than the STM, and like the STM it does not have stability
islands once it enters the chaotic behavior. Thus, the FC is an excellent option for the
implementation of PRNGs.

3. The Proposed PRNG

Considering the approaches necessary to increase the complexity and to avoid the
insecurity conditions of the PRNGs based on single chaotic maps, and assuming that the
proposed PRNG is implemented in a computer, we use the highest finite precision [47,58],
cascading chaotic maps [47,59–61], combining chaotic maps by using modular opera-
tion [62,63], and using a function composition from chaotic maps [64–66]. It is worth noting
that, considering recent technological advances, it would be interesting to address the
possibility that the PRNGs based on chaotic maps can be implemented in microfluidic
lab-on-a-chip devices [76–79]. The microfluidic technology is characterized by its advan-
tages of miniaturization, integration and automation. It has enabled the development
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of universal computing based on two-phase microfluidics, and it is named bubble logic
because the bubbles in a microfluidic device can carry process control information similar
to what happens in a microprocessor, while performing chemical reactions [80–82].

Resuming the strategies mentioned to increase the complexity and to avoid the insecu-
rity conditions of the PRNGs based on single chaotic maps, the cryptanalysis will be more
difficult for the proposed PRNG, since the output sequences will be determined by many
different mixed chaotic orbits. We emphasize that all mathematical operations included in
the proposed PRNG have been performed considering double precision arithmetic and
floating-point representation for the real numbers. In addition, we do not apply scaling
or discretization processes to the functions used, rather we use them in their original
form by using double precision arithmetic for the calculations. Thus, the final output
of the proposed PRNG converted to 8-bit, 16-bit, and 32-bit integers, depending on the
configuration used. It is worth noting that with a computer and any arithmetic, we can not
produce chaos; the use of a computer leads to the degradation of the chaotic dynamics [83].

Thus, the proposed PRNG includes three chaotic maps produced by the function
composition from the sine function and the skew tent map. It consists of three blocks:
(i) RCMb- Block of the robust chaotic maps, which includes three FCs, each one using
different values for µ, α and x0. RCMb receives the key K of the PRNG as input, and it
produces three output sequences; in this case, K is a word constituted by the concatenation
of µi and αi with i = 1, 2 and 3, and the values for the initial conditions x0, y0, and
z0; and each one of the three output sequences is a chaotic sequence of real numbers
produced by each chaotic map. (ii) Tb- Block to translate real number sequences into
integer number sequences, and it includes three functions with a single input and a single
output. Finally, (iii) MSb- Block sum module 2bits, which has three inputs and a single
output that represents the output of the proposed PRNG, where bits can be 8, 16 or 32. As
previously expressed, and considering Figure 10, we define the following steps to generate a
pseudorandom number sequence with uniform distribution and good statistical properties.

1. Assuming that RCMb includes three FCs, from k, we produce three pseudorandom
sequences of real numbers: x̂ = {x̂j}, ŷ = {ŷj} and ẑ={ẑj}, with j = 1, 2, 3, .... Note
in Figure 10 that K is constituted from the concatenation of µi and αi with i = 1, 2 and
3, and the values for the initial conditions x0, y0, and z0 required in the chaotic maps.

2. In RCMb, from x̂, ŷ and ẑ, three new pseudorandom sequences are produced and, for
this, in each FC, the results of 1000 iterations are discarded to eliminate the transient
values produced in the beginning by the chaotic maps. In this way, the final chaotic
sequences are x = {x0 = x̂0, xi = x̂i+30}, y = {y0 = ŷ0, yi = ŷi+30} and z = {z0 = ẑ0,
zi = ẑi+30}, respectively, where i = 1, 2, 3, ....

3. Using Tb, the pseudorandom sequences x = {xi}, y = {yi}, and z = {zi} are
translated from domain of real numbers to domain integer numbers of 8, 16 or 32 bits,
producing X = {Xi}, Y = {Yi} and Z = {Zi}, respectively. This action is performed
by using Xi = mod(xi · 10u, 2bits), where Xi is i-th integer number of X, and it is
produced from xi, which is i-th real number of x; in this case, we considerate that
bits = 8, 16 or 32 and u = 14.

4. By using Si = mod(Xi + Yi + Zi, 2bits), from X, Y, and Z, MSb produces the pseudo-
random sequence, S = {Si}, of integer numbers with 8, 16 or 32 bits.
Note in step 3, that bits influences on the range for Xi; that is, Xi ∈ (0, 2bits) and 10u is
a scaling factor that translates the real numbers xi ∈ (0, α) to real numbers in (0, 10u).
Therefore, considering that α� 10u, the mod function redistributes on the interval
(0, 2bits) the new sequence of numbers that had been rescaled from the sequence of
numbers xi to (0, 10u).
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Figure 10. Block diagram of the proposed PRNG.

4. Performance Tests of the Proposed PRNG

In this section, we apply different tests for the pseudorandom sequences generated
by the proposed PRNG. For each evaluation, we select a key set, K̂ = {K1, K2, ..., K1000},
required in the PRNG. Then using K̂, we generate the pseudorandom sequences St with
t = 1, 2, ..., 1000, where each sequence consist of 8, 16 or 32-bit numbers. The tests carried
out for the proposed PRNG are as follows: correlation coefficient, key sensitivity, entropy,
statistical analysis, randomness, and linear complexity. In addition, the estimation of the
keys space was made, and the execution speed was calculated. In all performance tests
applied to the proposed PRNG, according to Sections 2.2 and 2.3, we have selected the
parameters that avoid the annulling conditions of chaos and confirm that the Lyapunov
exponent is positive. Also, Section 5 is included showing the results obtained with the
proposed PRNG against similar algorithms based on chaotic maps.

4.1. Correlation Coefficient

We use the correlation coefficient, rp,q, to determine the dependence degree and the
statistical relationship between two pseudorandom sequences produced by the proposed
PRNG. In this case, rp,q is defined as follows:

rp,q =

n

∑
i=1

(Sp
i −mp)(S

q
i −mq)(

n

∑
i=1

(Sp
i −mp)

2
n

∑
i=1

(Sq
i −mq)

2

)1/2 (12)

where Sp
i and Sq

i are the i-th element of the pseudorandom sequence Sp and Sq, respectively,
mp and mq are the mean of Sp, and Sq, respectively, and p and q = 1, 2, 3, ..., 1000.

In this test, each St has a length of 1,000,000 6-bit numbers and for each one of them
the values Ki, with i = 1, 2, 3, ..., 1000, were chosen pseudorandomly. Figure 11 shows the
statistical distribution for the different correlation coefficients was obtained when p 6= q,
and both can be 1, 2, 3, ..., 1000. According to numerical measure of r if two pseudorandom
sequences are close to −1 or 1, then these sequences are very similar. Conversely, if the
correlation is 0, then the sequences are not equal. Consequently, it is necessary that the
values of r are too close to 0. Note that the values of correlation coefficient are distributed
in [−0.0045, 0.0034] with mean −5.4976 × 10−4.
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Figure 11. Statistical distribution for the different correlation coefficients.

4.2. Key Sensitivity

In order to evaluate the sensitivity of the proposed PRNG to small changes in the
keys, we use the following metrics: the number of changing pixel rate (NPCR), the unified
average changed intensity (UACI) [84] and the average absolute difference (AAD) [85]. For
these tests, we select a set of 1000 keys, so that Ki and Ki+1 (i = 1, 2, 3, ..., 1000) differ by a
single bit between them. According to the structure of the proposed PRNG, we assume in
the key for the proposed PRNG that only z0 changes in the least significant bit (LSB), and
this small change is quantified by η0. Therefore, we select each initial condition considering
that zt+1

0 = zt
0 + η0, where t = 1, 2, 3, ..., 1000. Now, to calculate the NPCR, UACI, and

ADD, we use Equations (13), (15) and (16), respectively, considering two cases. That is, the
pseudorandom sequences are analyzed by reading 16-bits or 8-bits numbers.

In this way, NPCR is represented by Equation (13).

NPCR(p, q) =
1
n

n

∑
i=0

Di(p, q), (13)

where,

D(p, q) =

{
0 i f Sp

i = Sq
i

1 i f Sp
i 6= Sq

i
, (14)

UACI is represented by Equation (15).

UACI(p, q) =
1
n

 n

∑
i=0


∣∣∣Sp

i − Sq
i

∣∣∣
2bits − 1

, (15)

where bits = 8 when the pseudorandom sequences are read in 8-bit numbers, and bits = 16
when they are read in 16-bit numbers.

And, AAD is represented by Equation (16).

AAD(p, q) =
1
n

n

∑
i=1
|Sp

i − Sq
i |, (16)

Importantly, pseudorandom sequences of 1,000,000 numbers were generated for NPCR
and UACI, and sequences of 2,000,000 numbers were generated for AAD. In all cases, the
sequences are made up of 16-bit numbers. Figure 12 shows the statistical distribution
for NPCR(p,q), UACI(p,q), and AAD(p,q). Figure 12a,c,e show NPCR16(p,q), UACI16(p,q),
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ADD16(p,q) when the pseudorandom sequences are read in 16-bits numbers. On the other
hand, Figure 12b,d,f show NPCR8(p,q), UACI8(p,q), ADD8(p,q) when the sequences are
read in 8-bits numbers. Note that, when the pseudorandom sequences are observed as
sequences with 16-bits numbers, the all calculated values for the NPCR(p,q) are 0.999977,
for the UACI(p,q) the mean value is 0.33349, and for the AAD(p,q) the mean value is
2.18455 × 104. In a similar way, when the pseudorandom sequences are observed as
sequences with 8-bits numbers, the calculated mean of the NPCR(p,q) is very close to
0.99608, for UACI(p,q) is close to 0.33460, and for AAD(p,q) is 85.3289, which is very close
to ideal value reported by Wang et al. in 2016 [52].
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Figure 12. Statistical distribution for the sensitivity metrics estimated from 1000 pseudorandom sequences considering that
the PRNG keys are very close to each other: (a) NPCR16(p,q), (b) NPCR8(p,q), (c) UACI16(p,q), (d) UACI8(p,q), (e) AAD16(p,q),
and (f) AAD8(p,q).
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4.3. Entropy Analysis

In order to measure the uncertainty degree in pseudorandom sequences generated by
the proposed PRNG, we use the Shannon’s entropy (H). For this test, we generate 1000
pseudorandom sequences of 1,000,000 with 16-bits numbers. In this case, we use the 8-bit
entropy function. Thus, each pseudorandom sequence St was observed in 8-bit numbers
and H8(St) can be calculated using Equation (17).

H(St) =
2bits−1

∑
i=0

p
(
St

i
)
log

1
p
(
St

i
) , (17)

where p(St
i ) represents the probability estimated for each St

i , t = 1, 2, ..., 1000 and bits = 8.
When we calculated the statistical distribution of H8(S) for the pseudorandom se-

quences considering 8-bit numbers, the mean of H8(St) ≈7.99991 is very close to 8 as we
expected; i.e., the proposed PRNG generates pseudorandom numbers of 8 bits approxi-
mately with equal distribution, which corresponds to a uniform statistical distribution.

4.4. Statistical Analysis and Randomness Testing

In order to evaluate the randomness of the sequences generated by the proposed
PRNG, we consider two statistical test suites for the pseudorandomness evaluation of
number sequences produced by the proposed PRNG: NIST SP 800-22 [86] and TestU01 [87].
For the NIST SP 800-22 suite and for each configuration of the proposed PRNG (8, 16 or
32-bit), we randomly select 2000 keys (initial conditions) to produce 2000 pseudorandom
sequences generated with a size of L = 1, 000, 000 bits. Subsequently, to obtain the pro-
portion of the sequences passing the test, we obtained the confidence interval defined as(

p̂± 3
√

p̂(1− p̂)
m

)
·m, where m = 2000, p̂ = 1.0− υ, and the significance level is υ = 0.01.

Therefore, the confidence interval for 2000 binary sequences must be in [1966, 1993]. It is
worth noting that if PvalueT ≥ 0.0001 then the sequences can be uniformly distributed. For
those NIST sub-tests that consider more than one PvalueT an average value was obtained,
which is shown in Table 3.

Table 3. Results of pseudorandomness tests applying the NIST SP 800-22 suite to 2000 binary sequences with a 1,000,000-
bit length.

8-Bit 16-Bit 32-Bit
Statistical Test Proportion PvalueT Proportion PvalueT Proportion PvalueT Result

Frequency 1983/2000 0.508172 1984/2000 0.279844 1979/2000 0.332188 Success
BlockFrequency 1978/2000 0.136499 1976/2000 0.474986 1984/2000 0.061453 Success
CumulativeSums * 1982/2000 0.785879 1981/2000 0.385543 1980/2000 0.401199 Success
Runs 1983/2000 0.872425 1979/2000 0.151616 1986/2000 0.119857 Success
LongestRun 1977/2000 0.307818 1983/2000 0.761719 1977/2000 0.709558 Success
Rank 1981/2000 0.541216 1976/2000 0.837781 1984/2000 0.536163 Success
FFT 1973/2000 0.239883 1981/2000 0.040768 1972/2000 0.020973 Success
NonOverlappingTemplate * 1979/2000 0.770499 1980/2000 0.985788 1985/2000 0.716696 Success
OverlappingTemplate 1973/2000 0.790621 1975/2000 0.714660 1982/2000 0.640243 Success
Universal 1981/2000 0.547298 1980/2000 0.060683 1974/2000 0.610070 Success
ApproximateEntropy 1974/2000 0.057875 1975/2000 0.496351 1976/2000 0.016431 Success
RandomExcursions * 1222/1242 0.640478 1228/1240 0.958260 1231/1240 0.887740 Success
RandomExcursionsVariant * 1973/2000 0.873987 1988/2000 0.961440 1978/2000 0.829047 Success
Serial * 1983/2000 0.357820 1978/2000 0.038565 1989/2000 0.899171 Success
LinearComplexity 1981/2000 0.059358 1981/2000 0.188090 1980/2000 0.279844 Success

* Average of multiple tests is considered.

On the other hand, the TestU01 test suite is a software library implemented in the ANSI
C language and offering a collection of utilities for the empirical statistical testing of RNGs
and PRNGs. TestU01 suite has three level of assessment: SmallCrush (15 tests), Crush
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(144 tests) and BigCrush (160 tests). Besides, TestU01 includes the Alphabit, Rabbit and
BlockAlphabit tests designed for testing bit generators implemented in hardware. Similar
to the NIST tests, Pvalue is defined between [0.001, 0.9990] to pass the single tests. Then,
we tested the proposed PRNG using the BigCrush (160 tests) level, Alphabit and Rabbit
tests. Table 4 shows successful results when the proposed PRNG was configured for 8, 16
or 32 bits to generate 32-bit number sequences with size L = 226, 228 and 230. It is worth
noting that for the TestU01 suite a virtual computer with Ubuntu 64-bit operating system,
6 GB RAM and 3-core CPU was used. The total CPU time for testing the proposed PRNG
were 58:08:56.82, 33:22:15.61 and 24:05:17.30 configured for 8, 16 and 32 bits, respectively.

Table 4. Results of pseudorandomness tests using TestU01 suite.

PRNG Configuration

8-Bit 16-Bit 32-Bit

Size Alphabit Rabbit Alphabit Rabbit Alphabit Rabbit

226 17/17 40/40 17/17 40/40 17/17 40/40
228 17/17 40/40 17/17 40/40 17/17 40/40
230 17/17 40/40 17/17 40/40 17/17 40/40

BigCrush 160/160 160/160 160/160

4.5. Linear Complexity

The Berlekamp–Massey algorithm is used to estimate the linear complexity of a PRNG,
and it is as tool to determine the shortest linear feedback shift register (LFSR) that produces
a specific binary sequence [88]. Linear complexity in a PRNG is an important security
condition when we want to know if such PRNG is suitable for cryptographic applications.
A high linear complexity by itself does not guarantee any pseudorandomness property
of the sequence under consideration, and therefore, it must also be known whether the
sequences produced with the proposed PRNG pass the pseudo-randomness test suites of
the NIST SP 800-22 and TestU01. Then we use the Berlekamp Massey algorithm to estimate
the linear complexity, Lc(S), of pseudorandom sequences, St, t = 1, 2, 3, ..., W, which are
produced by the proposed PRNG and they are read in binary format. Basically, this test
determines the minimum degree of the polynomial that produces, in a linear feedback
shift register (LFSR), a sequence like S. Therefore, a PRNG with the highest possible linear
complexity is desirable. For this test, we generate a set of W = 1× 103 pseudorandom
sequences that in binary format have 2 × 105 bits. In this case, we use different initial
conditions with slightly differences among them. Then, we compute the mean and the
standard deviation of Lc(St) for 1× 103 sequences. Note in Figure 13 that Lc(S) reaches a
maximum level of 1× 105, and the variation of the standard deviation values are small.
Furthermore, note that the linear complexity test helps us to confirm that the approaches
we implemented in the proposed PRNG have worked in order to increase linear complexity
and avoid the problems presented by PRNGs based on single chaotic map.
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Figure 13. Linear complexity profile for 1000 sequences of pseudorandom numbers for the pro-
posed PRNG. (a) considering sequences from 1 to 200,000 bits. (b) zoom of (a) considering sequences
from 100,000 to 100,050 bits.

4.6. Key Space Analysis

The key space analysis is related with the security analysis in congruence with the
Kerchoff’s principle. This principle defines specifications related to the security analysis of
a cryptographic module [89], and it says that a system for cryptography applications must
be secure even if everything about the system is in the public domain, except the key. In
this sense, we assume that the security of the proposed PRNG is associated with the size of
the key space required to produce the numerical sequences. Assuming that the proposed
PRNG is a cryptographic module of public knowledge, then its security is kept only in the
key that is required to produce the pseudorandom sequences. Then, the proposed PRNG
must have a key space as large as possible to be effective in a brute force attack. According
to Figure 10, the key is constituted by µ1, x0, α1, µ2, y0, α2, µ3, z0, and α3. Considering a
standard format for floating point in double precision [90], the PRNG has 576 bits as key
and then, the global key space is 2576 values, which satisfies the general requirement of
resisting brute force attack. Now, to avoid the CATs conditions, we must select µi ≤ αi,
i = 1, 2, and 3, and then, the key space is reduced to approximately 2384 values. In this
calculation, we consider that each µi will be bounded to the least significant ki bits, and
consequently, each αi will take values with the most significant 64 −ki bits.

4.7. Speed Analysis

In order to show the performance of the proposed PRNG, we implemented it in
electronic devices with 8, 16 and 32-bits architectures. Table 5 shows the clock cycles for the
different configurations of the proposed PRNG according to the following criteria: when
the proposed PRNG is set to 8-bit, the number obtained in each iteration is concatenated
until to form a 32-bit number. Similarly, when the proposed PRNG is set to 16-bit, it must
concatenate two 16-bit numbers to form a 32-bit number. Therefore, the results reported
in Table 5 correspond to the clock cycles consumed by the proposed PRNG when it is
configured for 8, 16 or 32 bits to generate 32-bit numbers.
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Table 5. Clock cycles consumed by the proposed PRNG when the 8, 16, or 32-bit configurations
are used.

PRNG Configuration
Microcontroller 8-Bit 16-Bit 32-Bit

Architecture

8-bit 141,645 132,920 25,139
16-bit 67,699 65,290 12,319
32-bit 33,206 30,605 5308

Additionally, we implemented the proposed PRNG for the 8, 16 and 32-bit configura-
tions by using a C language compiler (MinGW) on an Intel Core i7-4800MQ CPU-2.70GHz
with 24G RAM. For each case, we obtained the time required to generate 1,000,000 pseu-
dorandom numbers performing this process 2000 times, and then the average time was
calculated. These results are reported in Table 6 and they allow consider that the proposed
PRNG can be implemented in an electronic system with limited hardware.

Table 6. Execution time to generate 1,000,000 pseudorandom numbers by using the proposed PRNG
considering the three configurations.

PRNG Configuration Running Speed (MBytes/s)

8-bit 4.720276
16-bit 9.163551
32-bit 19.978822

5. Comparison Results

The efficiency of the proposed PRNG is compared with similar PRNGs based on
chaotic maps. In this section, we focus on four tests: Correlation coefficient, Key sensitivity
using correlation coefficient and variance ratio, key space and running speed. For this
section three PRNGs were selected: (i) 32-bit PRNG proposed by Zhang et al. [91], (ii) 8-bit
PRNG proposed by Huang et al. [40] and (iii) 8-bit PRNG proposed by Liu et al. [92].
We performed experiments on equal terms to the considered PRNGs for comparison
with similar works. The comparison tests were developed using a C language compiler
(MinGW) on an Intel Core i7-4800MQ CPU-2.70GHz and 24G RAM. Then, to determine the
correlation coefficient we generate 6000 number sequences of 12000 numbers with different
keys. The correlation coefficient obtained was within [−0.032, 0.029], while for the PRNG
reported by Zhang et al. the correlation coefficient was within [−0.035, 0.035]. Regarding
the key sensitivity, four sets of keys with a single bit difference between them were defined,
then four number sequences of 12,000 numbers were generated. Finally, we obtain the
difference between the sequences by applying the correlation coefficient and calculate the
average to obtain the value shown in the Table 7. Note that the key sensitivity obtained for
the proposed PRNG is slightly lower than the key sensitivity reported by Zhang et al. [91].
It is worth noting that the key space of the proposed PRNG considers double precision for
64-bit numbers, which is considered a great advantage over the PRNG developed by Zhang
et al. [91]. Regarding the speed running test, Zhang et al. use an Intel Core i7-10710U CPU
and 16GB RAM. The algorithms were implemented in Visual Studio 2019 using C++, it can
be observed that the PRNG proposed by Zhang et al. [91] has a high speed with respect
to the proposed PRNG. However, the different architectures under which the tests were
carried out could affect the measurements.

In the second part of this section, the tests were performed when the proposed PRNG is
set to 8-bit and only three tests are considered: key sensitivity, key space and running speed.
Considering that the proposed PRNG has a high sensitivity to key changes, we performed
the key sensitivity test using two different sequences generated by using two keys: K1
and K2, where |K1 − K2| = 1× 10−15. Then, we calculated the variance ratio (D) [40,92]
between the two binary sequences with size L = 1, 000, 000 resulting D = 49.9872%, which
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is similar to results reported by Liu et al. [92] and Huang et al. [40]. On the other hand, the
proposed PRNG has a key space larger than the PRNG proposed by Liu et al., but its key
space is similar to the PRNG proposed by Huang et al. [40]. Finally, the running speed of
the proposed PRNG is similar to running speed of the PRNG proposed by Zhang et al. [91].
It is woth noting that each author performs the tests with different equipment. For example,
Liu et al. [92] used a computer with 3.3 GHz CPU and 4GB RAM, but they do not indicate
the used programming language. Huang et al. [40] used a computer with 3.3 GHz CPU,
4GB RAM, and MATLAB 2014R. Note in Table 7 that the proposed PRNG has a competitive
performance when it is configured for 8 and 32 bits, and when compared against the
PRNGs proposed by Zhang et al. [91], Huang et al. [40], and Liu et al. [92]. Table 7 does
not include information comparison for the 16-bit configuration because we do not find
similar PRNGs with 16-bit configurations, which could be used in the comparison.

Table 7. Comparison analysis of the proposed PRNG against similar algorithms.

Test Proposed PRNG Zhang et al. [91] Liu et al. [92] Huang et al. [41]

Corr. Coeff. b [−0.032, 0.029] [−0.035, 0.035] – –
Key Sensit: Corr. Coeff b 0.009278 0.007724 – –
Key Sensit: The variance

ratio (D) a 49.9872% – 49.9850% 49.9950%

Key space 2576 2136 2184 2448

Running speed (MB/s) 19.978822 b 65.867475 b – –
4.720276 a – 2.729887 a 2.688817 a

a 8-bit generator and b 32-bit generator.

6. Conclusions

This work contributes to the design of PRNGs based on chaotic maps. In this case, we
introduce a function composition (FC), which couples the sine function and the skew tent
map to produce pseudorandom number sequences. We analyze the behavior of the chaotic
maps by using the bifurcation diagram and Lyapunov exponent, and identifying the chaos
annulling conditions and stability islands. In the FC, the Lyapunov exponent is positive
when the control µ is in (0, α) and then it can be used in the implementation of a PRNG.
Using three FCs, the proposed PRNG has a large key space, it produces pseudorandom
sequences with good statistical features and it has robust sensitivity to key changes. Ideally,
the key space of the proposed PRNG is 2576, and in a modest case it can be 2384. Similarly,
the strategy used to translate real numbers sequences into 8, 16 or 32-bit integer number
sequences does not affect the behavior of the used chaotic maps. This does not exclude
the possibility of having different behaviors due to precision errors in the representation
of real numbers and arithmetic operations. Therefore, in this work we consider using
the highest precision available when implemented on a computer or digital electonic
device. In this regard, it would be interesting to research the possibility of implementing
the proposed chaotic maps by using microfluidic-based processors and circuits. On the
other hand, in this work, we prove that the proposed PRNG can produce uniformly
distributed number sequences when the annulling chaos conditions are identified and
avoided. Further, the number sequences generated by the proposed PRNG were evaluated
by the following set of tests: correlation coefficient, key sensitivity, statistical analysis,
entropy, linear complexity, and pseudorandomness. Additionally, we estimate the key
space and the execution time when the proposed PRNG was programmed in C Language
and electronically implemented on low-resources devices; notably, in all tests the proposed
PRNG had a good performance. We especially emphasize that the proposed PRNG has
a very high linear complexity when evaluated using the Berlekamp-Massey algorithm
avoiding the problems presented by PRNGs based on a single chaotic map. Also, the
proposed PRNG can be configured to generate pseudorandom 8, 16 or 32-bits numbers,
so it can be implemented in microcontrollers of different architectures. Note that the
proposed PRNG is two times faster than the algorithms proposed by Huang et al. and
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Li et al., but is three times slower than the algorithm proposed by Zhang et al. when it is
configured for 32 bits, since the algorithm proposed by Zhang et al. was computationally
improved. In the key sensitivity test we considered two approaches: variance ration and
correlation coefficient. Note that variance ratio is very close to 50%, which is similar to
the results reported by Huang et al. and Li et al. Similarly, the correlation coefficient is
very close to zero, which is similar to results reported by Zhang et al. Respecting to the
pseudorandomness of the number sequences, we highlighted that the proposed PRNG
configured for 8, 16 or 32 bits passes all tests of the NIST SP 800-22 suite considering
1× 103 and 2× 103 binary sequences, where each sequence has 1× 106 numbers. For
the TestU01 suite, we consider the BigCrush level, Alphabit and Rabbit tests. Note that
the proposed PRNG configured for 8, 16 or 32 bits passes all tests. Consequently, based
on the various tests performed the proposed PRNG generates pseudorandom sequences
with good statistical properties when is configured for 8, 16 or 32 bits. It is important
to mention that a strict security analysis to determine whether the proposed PRNG is
cryptographically secure is not included in this work. This issue is not in the scope of
this work. But the results obtained for linear complexity give a good indication that the
proposed PRNG is secure. However, despite the analysis we present about key space and
linear complexity, we recommend performing a strict cryptographic security analysis of the
proposed PRNG before it can be used in cryptography and/or security applications. Note
that the confirmation of compliance with the Shujun’s requirements is not included in the
scope of this work. This is because we do not propose the use of a single one-dimensional
chaotic map, rather we propose a function composition, which couples the chaotic tent
map and the sine function. Furthermore, we recommend that if the proposed PRNG is
used in stream ciphers, the Shujun’s requirements should be verified. Finally, we have to
remark that it could be of interest to research chaotic maps that can be implemented in
microfluidic-based processors and circuits.

Author Contributions: Conceptualization, L.P.-L. and R.V.-M.; methodology, R.M.-J. and R.V.-M.;
software, L.P.-L.; validation, R.M.-J., E.R.-C. and M.P.-C.; formal analysis, L.P.-L. and R.V.-M.; in-
vestigation, L.P.-L. and O.J.-R.; resources, all authors; data curation, R.M.-J., E.R.-C. and M.P.-C.;
writing—original draft preparation, L.P.-L. and R.V.-M.; writing—review and editing, R.V.-M., R.M.-J.
and O.J.-R.; visualization, M.P.-C. and O.J.-R.; supervision, L.P.-L.; project administration, R.V.-
M.; funding acquisition, R.V.-M. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by the National Council of Science and Technology (CONACyT),
Autonomous Metropolitan University-Iztapalapa (L. Palacios-Luengas, visiting professor) and the
Instituto Politécnico Nacional, México [Grants No. SIP-20210023 (R. Vázquez-Medina) and SIP-
20210208 (O. Jiménez-Ramírez)].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that supports the findings of this study are available within
the article.

Acknowledgments: The authors thank A. L. Quintanar-Reséndiz for the technical support in the
implementation and realization of the experiments.

Conflicts of Interest: The authors declare that there is no conflict of interests regarding the publication
of this paper.

References
1. Ming, X.; Chen, Z.; Zhou, Z.K.; Zhang, B. An advanced spread spectrum architecture using pseudorandom modulation to

improve EMI in class D amplifier. Power Electron. IEEE Trans. 2011, 26, 638–646. [CrossRef]
2. Meliá-Seguí, J.; Garcia-Alfaro, J.; Herrera-Joancomartí, J. J3Gen: A PRNG for low-cost passive RFID. Sensors 2013, 13, 3816–3830.

[CrossRef]

http://doi.org/10.1109/TPEL.2010.2063440
http://dx.doi.org/10.3390/s130303816


Appl. Sci. 2021, 11, 5769 27 of 29

3. Mandal, K.; Fan, X.; Gong, G. Design and implementation of warbler family of lightweight pseudorandom number generators
for smart devices. ACM Trans. Embed. Comput. Syst. TECS 2016, 15, 1. [CrossRef]

4. Liao, Y.; Fan, X. Mathematical calculation of sequence length in LFSR-dithered MASH digital delta-sigma modulator with odd
initial condition. AEU Int. J. Electron. Commun. 2017, 80, 114–126. [CrossRef]

5. Cotrina, G.; Peinado, A.; Ortiz, A. Gaussian pseudorandom number generator based on cyclic rotations of Linear Feedback Shift
Registers. Sensors 2020, 20, 2103. [CrossRef]

6. Feng, L.; Xiaoxing, G. A new construction of pseudorandom number generator. J. Netw. 2014, 9, 2176–2183.
7. Payingat, J.; Pattathil, D.P. Pseudorandom bit sequence generator for stream cipher based on elliptic curves. Math. Probl. Eng.

2015, 2015, 257904. [CrossRef]
8. El-Latif, A.A.A.; El-Atty, B.A.; Venegas-Andraca, S.E. Controlled alternate quantum walk-based pseudo-random number

generator and its application to quantum color image encryption. Phys. A Stat. Mech. Appl. 2020, 547, 123869. [CrossRef]
9. Spencer, J. Pseudorandom bit generators from enhanced cellular automata. J. Cell. Autom. 2015, 10, 295–317.
10. Bhattacharjee, K.; Das, S. Random number generation using decimal cellular automata. Commun. Nonlinear Sci. Numer. Simul.

2019, 78, 104878. [CrossRef]
11. Tuna, M. A novel secure chaos-based pseudo random number generator based on ANN-based chaotic and ring oscillator: Design

and its FPGA implementation. Analog. Integr. Circuits Signal Process. 2020, 105, 167–181. [CrossRef]
12. Guo, W.; Zhao, J.; Ye, R. A chaos-based pseudorandom permutation and bilateral diffusion scheme for image encryption. Int. J.

Image Graph. Signal Process. 2014, 6, 50.
13. Senouci, A.; Bouhedjeur, H.; Tourche, K.; Boukabou, A. FPGA based hardware and device-independent implementation of

chaotic generators. AEU Int. J. Electron. Commun. 2017, 82, 211–220. [CrossRef]
14. Palacios-Luengas, L.; Pichardo-Méndez, J.L.; Díaz-Méndez, J.A.; Rodríguez-Santos, F.; Vázquez-Medina, R. PRNG Based on skew

tent map. Arab. J. Sci. Eng. 2018, 44, 3817–3830. [CrossRef]
15. Irfan, M.; Ali, A.; Khan, M.A.; Ul Haq, M.E.; Shah, S.N.M.; Saboor, A.; Ahmad, W. Pseudorandom number generator (PRNG)

design using hyper-chaotic modified robust logistic map (HC-MRLM). Electronics 2020, 9, 104. [CrossRef]
16. Alhadawi, H.S.; Zolkipli, M.F.; Ismail, S.M.; Lambić, D. Designing a pseudorandom bit generator based on LFSRs and a discrete

chaotic map. Cryptologia 2019, 43, 190–211. [CrossRef]
17. Capeáns, R.; Sabuco, J.; Sanjuán, M.A.F. Parametric partial control of chaotic systems. Nonlinear Dyn. 2016, 86, 869–876. [CrossRef]
18. Pecora, L.M.; Carroll, T.L. Synchronization of chaotic systems. Chaos Interdiscip. J. Nonlinear Sci. 2015, 25, 097611. [CrossRef]
19. Csernák, G.; Gyebrószki, G.; Stépán, G. Multi-Baker map as a model of digital PD control. Int. J. Bifurc. Chaos 2016, 26, 1650023.

[CrossRef]
20. Capeáns, R.; Sabuco, J.; Sanjuán, M.A.F.; Yorke, J.A. Partially controlling transient chaos in the Lorenz equations. Philos. Trans. R.

Soc. A Math. Phys. Eng. Sci. 2017, 375, 20160211. [CrossRef]
21. Ferrer, J.; Ballesté, A.; Roca, J.; Virgili, U.R.; Gómez, A.; Arroyo, D.; Amigó, J.; Li, S.; Alvarez, G. On the Inadequacy of Unimodal

Maps for Cryptographic Applications; URV: Tarragona, Spain, 2010.
22. Palacios-Luengas, L.; Delgado-Gutiérrez, G.; Díaz-Méndez, J.A.; Vázquez-Medina, R. Symmetric cryptosystem based on skew

tent map. Multimed. Tools Appl. 2017, 77, 2739–2770. [CrossRef]
23. Teh, J.S.; Samsudin, A. A chaos-based authenticated cipher with associated data. Secur. Commun. Netw. 2017, 2017, 1–15.

[CrossRef]
24. Yu, F.; Li, L.; Tang, Q.; Cai, S.; Song, Y.; Xu, Q. A survey on true random number generators based on chaos. Discret. Dyn. Nat.

Soc. 2019, 2019, 1–10. [CrossRef]
25. Farah, M.A.B.; Farah, A.; Farah, T. An image encryption scheme based on a new hybrid chaotic map and optimized substitution

box. Nonlinear Dyn. 2019, 99, 3041–3064. [CrossRef]
26. Liu, H.; Kadir, A.; Ma, C.; Xu, C. Constructing keyed hash algorithm using enhanced chaotic map with varying parameter. Math.

Probl. Eng. 2020, 2020, 1–10. [CrossRef]
27. Kari, A.P.; Navin, A.H.; Bidgoli, A.M.; Mirnia, M. A new image encryption scheme based on hybrid chaotic maps. Multimed.

Tools Appl. 2020. [CrossRef]
28. Tutueva, A.V.; Karimov, A.I.; Moysis, L.; Volos, C.; Butusov, D.N. Construction of one-way hash functions with increased key

space using adaptive chaotic maps. Chaos Solitons Fractals 2020, 141, 110344. [CrossRef]
29. Zhou, P.; Du, J.; Zhou, K.; Wei, S. 2D mixed pseudo-random coupling PS map lattice and its application in S-box generation.

Nonlinear Dyn. 2021. [CrossRef]
30. Midoun, M.A.; Wang, X.; Talhaoui, M.Z. A sensitive dynamic mutual encryption system based on a new 1D chaotic map. Opt.

Lasers Eng. 2021, 139, 106485. [CrossRef]
31. Saber, M.; Eid, M.M. Low power pseudo-random number generator based on lemniscate chaotic map. Int. J. Electr. Comput. Eng.

IJECE 2021, 11, 863. [CrossRef]
32. Hu, G.; Li, B. Coupling chaotic system based on unit transform and its applications in image encryption. Signal Process. 2021,

178, 107790. [CrossRef]
33. Mathivanan, P.; Balaji, G.A. QR code based color image stego-crypto technique using dynamic bit replacement and logistic map.

Optik 2021, 225, 165838. [CrossRef]

http://dx.doi.org/10.1145/2808230
http://dx.doi.org/10.1016/j.aeue.2017.10.004
http://dx.doi.org/10.3390/s20072103
http://dx.doi.org/10.1155/2015/257904
http://dx.doi.org/10.1016/j.physa.2019.123869
http://dx.doi.org/10.1016/j.cnsns.2019.104878
http://dx.doi.org/10.1007/s10470-020-01703-z
http://dx.doi.org/10.1016/j.aeue.2017.08.011
http://dx.doi.org/10.1007/s13369-018-3688-y
http://dx.doi.org/10.3390/electronics9010104
http://dx.doi.org/10.1080/01611194.2018.1548390
http://dx.doi.org/10.1007/s11071-016-2929-4
http://dx.doi.org/10.1063/1.4917383
http://dx.doi.org/10.1142/S0218127416500231
http://dx.doi.org/10.1098/rsta.2016.0211
http://dx.doi.org/10.1007/s11042-017-4375-9
http://dx.doi.org/10.1155/2017/9040518
http://dx.doi.org/10.1155/2019/2545123
http://dx.doi.org/10.1007/s11071-019-05413-8
http://dx.doi.org/10.1155/2020/4071721
http://dx.doi.org/10.1007/s11042-020-09648-1
http://dx.doi.org/10.1016/j.chaos.2020.110344
http://dx.doi.org/10.1007/s11071-020-06098-0
http://dx.doi.org/10.1016/j.optlaseng.2020.106485
http://dx.doi.org/10.11591/ijece.v11i1.pp863-871
http://dx.doi.org/10.1016/j.sigpro.2020.107790
http://dx.doi.org/10.1016/j.ijleo.2020.165838


Appl. Sci. 2021, 11, 5769 28 of 29

34. Hu, H.; Liu, L.; Ding, N. Pseudorandom sequence generator based on the Chen chaotic system. Comput. Phys. Commun. 2013,
184, 765–768. [CrossRef]

35. García-Martínez, M.; Campos-Cantón, E. Pseudo-random bit generator based on multi-modal maps. Nonlinear Dyn. 2015,
82, 2119–2131. [CrossRef]

36. Murillo-Escobar, M.A.; Cruz-Hernández, C.; Cardoza-Avendaño, L.; Mendez-Ramírez, R. A novel pseudorandom number
generator based on pseudorandomly enhanced logistic map. Nonlinear Dyn. 2017, 87, 407–425. [CrossRef]

37. Dastgheib, M.A.; Farhang, M. A digital pseudo-random number generator based on sawtooth chaotic map with a guaranteed
enhanced period. Nonlinear Dyn. 2017, 89, 2957–2966. [CrossRef]

38. Sahari, M.L.; Boukemara, I. A pseudo-random numbers generator based on a novel 3D chaotic map with an application to color
image encryption. Nonlinear Dyn. 2018, 94, 723–744. [CrossRef]

39. Garcia-Bosque, M.; Perez-Resa, A.; Sanchez-Azqueta, C.; Aldea, C.; Celma, S. Chaos-based bitwise dynamical pseudorandom
number generator on FPGA. IEEE Trans. Instrum. Meas. 2019, 68, 291–293. [CrossRef]

40. Huang, X.; Liu, L.; Li, X.; Yu, M.; Wu, Z. A new two-dimensional mutual coupled logistic map and its application for
pseudorandom number generator. Math. Probl. Eng. 2019, 2019, 1–10. [CrossRef]

41. Huang, X.; Liu, L.; Li, X.; Yu, M.; Wu, Z. A new pseudorandom bit generator based on mixing three–dimensional Chen chaotic
system with a chaotic tactics. Complexity 2019, 2019, 1–9. [CrossRef]

42. Datcu, O.; Macovei, C.; Hobincu, R. Chaos based cryptographic pseudo-random number generator template with dynamic state
change. Appl. Sci. 2020, 10, 451. [CrossRef]

43. OISHI, S.; INOUE, H. Pseudo-random number generators and chaos. IEICE Trans. 1982, E65, 534–542.
44. González, J.A.; Pino, R. A random number generator based on unpredictable chaotic functions. Comput. Phys. Commun. 1999,

120, 109–114. [CrossRef]
45. Stojanovski, T.; Kocarev, L. Chaos-based random number generators-part I: Analysis [cryptography]. IEEE Trans. Circuits Syst. I

Fundam. Theory Appl. 2001, 48, 281–288. [CrossRef]
46. Stojanovski, T.; Pihl, J.; Kocarev, L. Chaos-based random number generators. part II: Practical realization. IEEE Trans. Circuits

Syst. I Fundam. Theory Appl. 2001, 48, 382–385. [CrossRef]
47. Li, S.; Mou, X.; Cai, Y. Pseudo-random bit generator based on couple chaotic systems and its applications in stream-cipher

cryptography. In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2001; pp. 316–329. [CrossRef]
48. Rezk, A.A.; Madian, A.H.; Radwan, A.G.; Soliman, A.M. Reconfigurable chaotic pseudo random number generator based on

FPGA. AEU Int. J. Electron. Commun. 2019, 98, 174–180. [CrossRef]
49. Wang, Y.; Zhang, Z.; Wang, G.; Liu, D. A pseudorandom number generator based on a 4D piecewise logistic map with coupled

parameters. Int. J. Bifurc. Chaos 2019, 29, 1950124. [CrossRef]
50. Chen, C.; Sun, K.; Peng, Y.; Alamodi, A.O.A. A novel control method to counteract the dynamical degradation of a digital chaotic

sequence. Eur. Phys. J. Plus 2019, 134. [CrossRef]
51. Short, K.M. Steps toward unmasking secure communications. Int. J. Bifurc. Chaos 1994, 4, 959–977. [CrossRef]
52. Wang, Y.; Liu, Z.; Ma, J.; He, H. A pseudorandom number generator based on piecewise logistic map. Nonlinear Dyn. 2016,

83, 2373–2391. [CrossRef]
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