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Abstract: Cloud computing is a rapidly growing technology that has been implemented in various
fields in recent years, such as business, research, industry, and computing. Cloud computing provides
different services over the internet, thus eliminating the need for personalized hardware and other
resources. Cloud computing environments face some challenges in terms of resource utilization,
energy efficiency, heterogeneous resources, etc. Tasks scheduling and virtual machines (VMs) are
used as consolidation techniques in order to tackle these issues. Tasks scheduling has been extensively
studied in the literature. The problem has been studied with different parameters and objectives.
In this article, we address the problem of energy consumption and efficient resource utilization in
virtualized cloud data centers. The proposed algorithm is based on task classification and thresholds
for efficient scheduling and better resource utilization. In the first phase, workflow tasks are pre-
processed to avoid bottlenecks by placing tasks with more dependencies and long execution times in
separate queues. In the next step, tasks are classified based on the intensities of the required resources.
Finally, Particle Swarm Optimization (PSO) is used to select the best schedules. Experiments were
performed to validate the proposed technique. Comparative results obtained on benchmark datasets
are presented. The results show the effectiveness of the proposed algorithm over that of the other
algorithms to which it was compared in terms of energy consumption, makespan, and load balancing.

Keywords: cloud computing; energy consumption; task scheduling; load balancing; makespan; PSO

1. Introduction

Cloud computing provides ubiquitous, convenient, and on-demand services and
resources over the internet. A shared pool of configurable computing resources is used to
provide these services. Services in cloud computing can be accessed and managed with
less effort and fewer interactions [1]. The world has become a global village with the use of
the internet through remote access to services and hardware from distant locations. The
services that are present over the internet are a revolution in the field of computing in this
era. Complex jobs need more and more computational power to execute. Sophisticated and
high-performance computing is needed to execute these jobs. Rather than purchasing new
hardware, it is a better option to pay per use of services of high-performance computing
hardware. Cloud service providers provide such facilities to users so they can access the
resources and services by using a pay-per-use model [2]. In the last few years, the number
of cloud data centers has increased due to the suitability of storage and computation
services for a large number of applications. The services of cloud computing are classified
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into three main categories, i.e., software as a service (SaaS), platform as a service (PaaS),
and infrastructure as a service (IaaS) [3]. Users have no geographical restrictions, i.e., they
can access services from anywhere at any time [4]. Cloud computing provides virtualized
resources for handling various requests for different tasks [5]. The infrastructure of a
cloud data center usually consists of thousands of large computing hosts with high-speed
computing resources.

A huge amount of data is generated every year; thus, a high processing power and
storage capacity are required. Many scientific fields, such as astronomy, bioinformatics,
meteorology, environmental science, and geological sciences, deal with large-scale data [6].
The processing of the huge amounts of data generated by these scientific fields severely
degrades the performance of clouds [7]. It is a quite challenging task to ensure efficient
task scheduling in cloud computing in order to improve the performance of the cloud. In a
cloud computing environment, scheduling can be performed at different layers of service,
i.e., IaaS, PaaS, and SaaS [8]. Load balancing is used to distribute loads among available
resources in a way that the overall load is balanced. The load balancing algorithm receives
the requests and distributes user requests among available resources i.e., virtual machines
(VMs). The task of the load balancer is to determine the load of available resources and
distribute the load among resources. If resources are not utilized with a proper load
balancing algorithm, the quality of service (QoS) will be degraded.

In this paper, we present an energy-efficient scheduling algorithm for workflow
scheduling in cloud computing. The objective of the proposed algorithm is to reduce the
energy consumption, makespan, with berrer load balancing. The proposed algorithm works
in two phases, i.e., pre-processing and optimization with Particle Swarm Optimization
(PSO). In the first phase, workflow tasks are placed in the respective queues according to
the number of levels and length of the tasks. Thresholds are used to allocate resources
to tasks to balance the load among resources. In the next phase, PSO is used to optimize
scheduling and find better solutions. The paper is organized as follows. Section 2 presents
a literature review, followed by the presentation of the materials and methods in Section 3.
Section 4 presents the results and a discussion. Finally, Section 5 concludes the article.

2. Literature Review

Workflow scheduling and VM consolidation have been studied extensively in the
literature. The scheduling of workflows in cloud environments has become popular due
to the extensive applications in both scientific and business areas. Many task scheduling
algorithms have been presented in various articles. The solutions consist of heuristic
approaches, meta-heuristics, or a combination of both heuristics and meta-heuristics. In this
section, we present a review of the different meta-heuristic methods for load balancing and
workflow scheduling in cloud computing. There are also review articles with more details
on resource allocation and scheduling.

The energy efficiency in cloud data centers has been widely studied. The authors
of [9] proposed an energy-efficient algorithm for reducing the energy consumption and
improving the resource utilization in cloud data centers. The method is based on the
classification of tasks and VMs in order to reduce scheduling time. The scheduling mech-
anism uses historical task scheduling data to classify user tasks and selects VM types
accordingly. The algorithm targets resource utilization, energy consumption, and fault
tolerance. The mechanism of merging the same task types minimizes the mean response
time and reduces the overall energy consumption. Gill et al. [10] proposed an algorithm
called BULLET for scheduling workflows. The algorithm is based on PSO, and it schedules
workloads in cloud computing by using QoS metrics according to the user’s requirements.
QoS requirement metrics are established and the weight of each service is mentioned, such
as the consumed energy, execution time, and execution cost. When the user asks for QoS,
the services are checked in terms of their QoS metrics and a weight is calculated according
to the demands. A workload analyzer analyzes the loads of different workloads and checks
whether a workload is feasible for porting to the cloud. When a workload is feasible, it is
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submitted to the workload manager. The workload manager analyzes the workload char-
acteristics described by the QoS metrics for clustering. The K-Means clustering algorithm
is used for clustering. Resource information metrics include information on the available
resources, such as the CPU, memory, resource cost, number of resources, and types of re-
sources. The resource provisioner provides the available resources and, finally, the resource
scheduler executes the workload on the provisioned resources. Workflow scheduling using
hybrid GA-PSO in cloud computing was presented in [11]. GA-PSO starts with random
chromosomes to generate the initial population and defines the number of iterations for
which to execute the workflow tasks in the cloud. The initial population is processed
using the basic operators of the GA, i.e., selection, crossover, and mutation, in order to
find the fittest chromosomes. The fittest chromosomes are passed to the PSO algorithm as
the initial population. The number of iterations is equally divided between the GA and
PSO, i.e., if the number of iterations in GA-PSO is n, then n/2 iterations are processed with
GA, and the second half is processed by PSO. In the end, the fittest particles are selected
as the solution to the workflow problem. Decreasing the number of initial populations
decreases the complexity of the algorithm. Another technique for task scheduling based
on a two-way strategy was proposed in [12]. In the initial phase, the algorithm applies
a Bayes classifier in order to classify tasks using historical scheduling data. Pre-created
VMs are used to process the tasks. In case the classification does not match with the
pre-created VMs, the method creates a specified number of VMs according to the classifi-
cation of the tasks. Pre-created VMs are used to save time during the scheduling phase.
In the second phase, task requirements are matched with VMs and scheduled dynamically.
The proposed task scheduling method shows more accuracy and consumes less energy
compared to the standard methods, i.e., Min-min and Max-min. The authors of [13] pro-
posed a hybrid technique to tackle the problem of workflow scheduling. The problem was
considered as a multi-objective optimization considering the cost, makespan, and load
balancing as measurement parameters. PSO was used for optimization. In the first phase,
pre-processing was used, followed by optimization. The proposed algorithm was validated
with comparative experimental results.

The authors of [14] presented a novel solution for VM allocation in cloud data centers.
The method was based on the Krill Herd algorithm. The algorithm uses VM aggregation
and host shutdown for power management. During this process, QoS is maintained.
Efficient integration and the selection of convenient VM migration strategies reduce energy
consumption. The results showed that the proposed method reduced energy consumption
compared to other algorithms. A scheduling solution based on a non-linear mixed-integer
programming model was presented in [15]. The proposed mechanism makes a tradeoff
between execution time and energy consumption during the resource allocation phase.
A backward technique is applied to adjust task scheduling and achieve the desired goals.
The experimental results showed that the proposed approach significantly reduced the
computation time for large sizes of parallel applications. Attiqa et al. [16] proposed a
Multi-Objective Genetic Algorithm (MOGA) that was used to schedule workflows in cloud
environments. The MOGA gave a solution that reduced the makespan and provided an
energy-efficient solution in a cloud environment. The results of the proposed algorithm
showed a significant enhancement in terms of budget, deadline, and energy consumption.
The technique also improved resource utilization. Verma et al. [17] proposed a Hybrid PSO
(HPSO) method for minimizing the execution time and execution cost in cloud computing.
The algorithm is a hybridization of the Budget and Deadline Constraint Heterogeneous
Earliest Finish Time (BDHEFT) and multi-objective PSO. The HPSO optimizes the two
contradictory parameters—makespan and cost—under the budget and deadline constraint.
In addition to these two parameters, energy consumption is also considered as a parameter.
The proposed algorithm gives a set of the best solutions, from which the user can select
the best solution. In another study [18], a parallel Genetic Algorithm (GA) was used to
solve the multi-objective optimization problem of workflow scheduling. The makespan,
cost, and load balancing were the targeted parameters. The proposed algorithm first
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calculates the best solution for each parameter in parallel, and then the best solution
is found for all parameters. The proposed method was evaluated with comparative
experimental results. Another algorithm that minimizes energy consumption and Service-
Level Agreement Violations (SLAVs) during VM consolidation was proposed in [19].
The authors used an energy-aware VM consolidation algorithm that minimized SLAVs.
The algorithm uses a fine-tuned prediction model for VM migration, CPU and memory
utilization prediction, and target host selection. The proposed method was evaluated with
the Planet Lab datasets. The comparative results showed that the proposed algorithm
significantly reduced energy consumption and SLAVs. The authors of [20] presented
a technique for VM placement that was based on an improved permutation-based GA
and a multidimensional resource-aware best-fit allocation strategy. The objective of the
algorithm was to reduce energy consumption by reducing the active hosts. The comparative
results showed that the proposed mechanism consumed less energy with fewer active
hosts in comparison to other methods. Moreover, the proposed method also yielded
better resource utilization and load balancing. Another technique based on prediction
and dynamic resource-table-updating mechanisms was proposed in [21]. The objective of
the proposed method was energy efficiency in task scheduling. The algorithm considers
the tasks’ arrival times and the sizes of the tasks for efficient scheduling. The results are
computed in terms of the completion time and response time. The simulation results
showed the efficiency of the proposed algorithm over the other techniques with which it
was compared. The authors of [22] proposed a task scheduling algorithm and workload
classification architecture for VM placement in cloud data centers. The objectives of the
technique were resource utilization and energy consumption. The proposed algorithm
was validated with comparative experimental results. Cloud data centers demand a
huge amount of energy, which changes at different hours of operation, together with the
utilization of resources. A mechanism for handling the energy consumption in different
operating hours was proposed in [23]. The proposed technique uses frequency scaling
and non-power-aware hosts to achieve the desired objectives. VM consolidation policies,
i.e., the utilization of local regression minimization and static-threshold random selection,
were used. The comparative results showed the improvements gained by the proposed
method over the other methods with which it was compared. Ensuring the QoS in the
presence of energy consumption is a challenge for cloud service providers. To address
this issue, the authors of [24] proposed an energy-efficient, QoS-aware algorithm for VM
consolidation. The proposed algorithm was based on a Markov-chain-based prediction
approach in order to measure the load of the hosts, i.e., to identify over-utilized and
underutilized hosts. The linear weighted sum approach was used for VM selection and
placement during migration. The algorithm targets QoS and energy consumption.

Techniques for energy efficiency suffer from the problem of performance degradation.
To tackle this issue, thresholding is used to achieve a balance between the two parame-
ters. The authors of [25] proposed an energy-efficient algorithm for VM consolidation.
The objectives of the method were energy efficiency and throughput. The workload of a
host was considered in order to set thresholds for resource utilization and manage VM
migrations. The proposed method performed well in terms of the desired parameters
in comparison with other standard methods. In [26], the authors proposed a scheduling
algorithm based on the Deep Q-network (DQN) technique. The objectives of the method
were the optimization of energy consumption and makespan. The tradeoff between the
two parameters was used to optimize the problem and achieve the desired objectives.
The dynamic behavior of the proposed algorithm according to different workload require-
ments was proved with experimental results. The results showed the effectiveness of the
proposed algorithm in comparison to other methods. The authors of [27] used bio-inspired
heuristics for VM consolidation. A more desirable environment for cloud computing was
considered on the basis of a larger capacity margin and a higher fitness value for the VMs
and hosts, respectively. The comparative experimental results were shown to validate
the performance of the proposed algorithm. The authors of [28] proposed an algorithm
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that overcame the issues of load balancing and load scheduling. The algorithm worked
with precision and privacy. The authors used a hybrid approach that could allocate tasks
by using the Modified Canopy Fuzzy C-means Algorithm (MCFCMA). The algorithm
allocates tasks to respective resources with the help of PSO. In the proposed technique,
the load is based on the selected tasks, the cluster requests the tasks with the help of the
MCFCMA, and it schedules these tasks for each VM. The feature value is calculated with
the help of the PSO algorithm. The proposed technique minimizes the execution time, cost,
and load. A scheduling algorithm that uses the Traveling Salesman Problem (TSP) solution
strategy was proposed in [29]. The algorithm first converts the problem into an instance
of the TSP and then applies the solution to the problem. The method consists of three
phases, i.e., clustering, conversion, and assignment. In the first phase, a large problem is
divided into small-sized clusters. In the conversion phase, the problems are converted
into an instance of the TSP. Finally, the clusters are scheduled to available resources in the
assignment phase. The proposed technique was validated with comparative experimental
results. Another algorithm for efficient resource utilization and energy consumption was
proposed in [30]. The proposed algorithm, i.e., ERES, dynamically allocates resources to
workflow tasks according to the input tasks. The algorithm dynamically manages the server
load, and live migration of the VMs is used to avoid overloaded and underloaded hosts.
Simulation results were presented to validate the effectiveness of the proposed algorithm.
FIMPSO is another algorithm for load balancing in a cloud computing environment [31].
The hybridization of Firefly and PSO was used in the proposed algorithm. The Firefly
algorithm is used to reduce the search space, whereas an improved, modified PSO is used
to select the best responses during the resource allocation process. The resource utilization
and response time are the targeted parameters of the proposed algorithm. Comparative
experimental results were shown to validate the proposed algorithm.

Energy-efficient scheduling in the presence of other constraints, such as resource
utilization and fault tolerance, is a challenging issue. There is a need to develop solutions
that address the problem while considering these parameters. This paper presents a
scheduling algorithm in order to address the above-mentioned problem. The proposed
algorithm is based on task classification, queueing, and thresholds for allotting VMs to
tasks and creating the necessary resources. Queuing is used to hold tasks with different
intensities in order to reduce resource allocation time. Task classification is used to find
suitable VMs in order to reduce the scheduling time. Thresholds are used to efficiently
utilize cloud resources and reduce the failure ratio.

3. Materials and Methods

This section presents the proposed algorithm in detail. The algorithm targets the
makespan, energy consumption, and load balancing. The algorithm consists of two phases,
i.e., preprocessing and PSO-based optimization. First, we discuss the workflow and cloud
model, followed by the details of each phase.

3.1. Workflow and Cloud Model

Workflow applications consist of a set of tasks with dependencies, i.e., execution and
data dependencies. In the prior case, the tasks have a parent–child relationship. A child
task cannot start execution until all parents of that task have completed the execution.
In the latter case, the tasks share data, i.e., the output generated by some tasks becomes the
input for other tasks. These dependencies make it difficult for a scheduler to effectively
schedule resources for workflow applications. Workflow tasks are represented as a directed
acyclic graph (DAG), e.g., D (V, E), where E represents edges of the graph and V represents
the vertices. Cloud computing consists of virtualized resources, which are referred to
as VMs. The goal of a scheduling algorithm is to allocate Ri to Wj, where Ri is the
ith resource from a pool of VMs (VM1, VM2, VM3, . . . , VMn) and Wj is the workflow
application (Wi, W2, W3, . . . , Wm). The goal is to minimize the energy consumption and
execution time with a balanced load among resources. The resources have pre-allocated
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capacities of processing, memory, storage, bandwidth, etc. The processing capacity Ci
of a resource VMi is computed with the number of processing elements (PEs) and the
MIPs of each PE, as shown in Equation (1). The resources have pre-allocated capacities of
processing, memory, storage, bandwidth, etc. The processing capacity Ci of a resource VMi
is computed with the number of processing elements (PEs) and the MIPs of each PE, as
shown in Equation (1).

Ci = (PE×MIPSi) (1)

The capacity of n resources or VMs is calculated with Equation (2).

C =
n

∑
i=1

Ci (2)

Each VM has a resource utilization at a particular time, which is referred to as the
load of the VM. The load is calculated with Equation (3), where TL is the total length of the
tasks being processed by VMi, and Ci is the capacity of VMi.

Lvmi =
TL
Ci

(3)

Equation (4) is used to calculate the load L of all VMs.

L =
n

∑
i=1

Lvmi (4)

Load balancing is measured as the load among different nodes in the cloud environ-
ment, as shown in Equation (5).

σ=

√
∑n

i=1(Lvmi − L̄)2

n
(5)

where Lvmi is the load of VMi, L̄ is the average load of all VMs, and n is the number of VMs.
In cloud computing, the energy consumption is strongly influenced by the utilization

of resources. The utilization can be calculated with Equation (6).

U = α
∑n

i=1 ci

C
+ β

∑n
i=1 mi

M
(6)

where n is the number of VMs running on host h, and cj, mj refer to the computing
and memory allocated to VMi. In Equation (6), C and M are the total processing capability
and memory of the host, and α and β are the weight parameters of each resource.

The energy consumption can be calculated with Equation (7), where k represents the
operational energy consumption, i.e., the idle mode. Emax represents the energy consump-
tion during the peak utilization of the processors, and U represents the utilization of the
resources of the host calculated with Equation (6).

Ec = Eidle + (Emax − Eidle)×U (7)

Workflow tasks may need data for processing. The completion time of the workflow
includes both the processing time and the time consumed in obtaining the required data.
Equation (8) is used to calculate the completion time of task ti.

Time(ti) = Time((Transti , tj) + TimeE(ti, VMk)) (8)
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In Equation (8), (Transti , tj) is the time consumed by transmitting data from task ti to
tj, and TimeE(ti, VMk) is the execution time of ti on VMk. Both parameters are calculated
with Equations (9) and (10), respectively.

Trans(ti, tj) =
sizeo f (ti, tj)

β(VMk, VMm)
(9)

In Equation (9), sizeo f (ti, tj) represents the amount of data that task ti transfers to task
tj, and β(VMk, VMm) represents the bandwidth used by VMk and VMm. If both VMs are
located in the same data center, the transmission cost is neglected.

TE =
li

Cmj

(10)

where li represents the length of tasks i and Cmj represents the processing capacity of VMj,
which was calculated with Equation (1). The makespan is the total execution of all tasks in
a workflow. The makespan can be calculated with Equation (11), where MS refers to the
makespan and FT is the finishing time of a task.

MS = FTn
i=1[taskitime] (11)

3.2. Particle Swarm Optimization (PSO)

PSO is an optimization technique that is used to solve multimodal optimization
problems. The technique is based on swarms of birds or schools of fishes, where possible
solutions are generated as swarms of particles and each position represents a possible
solution. Two values, i.e., velocity and position, are used to represent a particle. Initially,
random positions are used for all particles. The particles move in the search space to find
the best solutions. Two factors, i.e., pbest, which refers to a particle’s best position, and
gbest, which refers to the global best position, influence the final solution. The position
and velocity are updated in each iteration of the execution [8]. Equation (12) shows the
function for calculating the velocity [29].

vt
id = wvt−1

id + c1r1(pbestt
id − xt

id) + c2r2(gbestt
id − xt

id) (12)

In Equation (12), vt
id represents the velocity of the dimension d of the particle i in time

t. Equation (13) is used to update the position of a particle. In Equation (13), pt
id refers to

the position of particle i at time t in the dth dimension, and vt
id is the velocity calculated in

Equation (12) [13].
pt+1

id = pt
id + vt

id (13)

The fitness of the solution is calculated with the minimum and maximum values of
energy consumption, makespan, and load balancing. The weight factor is used for each
parameter. In the experiments of this article, an equal weight, i.e., 0.33, was used for all
parameters. Equation (14) is used to calculated the fitness value [13].

Fitness = w
maxec − ec

maxec −minec + w
maxlb − lb

maxlb −minlb + w
maxms −ms

maxms −minms (14)

The scheduling problem can be formulated as a multi-objective optimization problem.
The problem is represented with m decision vectors x = (x1, . . ., xm) ∈ X in search space X
and n objectives y = (y1, . . ., yn) ∈ Y in objective space Y, as shown in Equation (15) [13].

min(y = f (x) = [ f1(x), . . . , fn(x)]) (15)

As the problem is considers multiple objectives, it is difficult to claim an optimal
solution for all objectives. Usually, the Pareto optimal set is taken from many solutions.
The Pareto optimal set is a solution that is considered optimal for a set of objectives. For two
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decision vectors x1 and x2, the dominance of decision vector x1 over x2 is defined as shown
in Equation (16). The equation shows that the decision vector x1 is as good as x2 for all
objectives, and x1 is strictly superior to x2 in at least one objective [13].

x1 ≺ x2 ⇐⇒ ∀i fi(x1) ≤ fi(x2) ∧ ∃j f j(x1) < f j(x2) (16)

If none of the decision vectors in the solution space dominate the decision vector x1,
then x1 is said to be Pareto optimal, as shown in Equation (17) [13].

@x2 ∈ X : x2 ≺ x1 (17)

A Pareto optimal set consists of all Pareto optimal decision vectors, as shown in
Equation (18), and the Pareto optimal front refers to the image of the Pareto optimal set, as
shown in Equation (19) [13].

PS = {x1 ∈ X, |@x2 ∈ X : x2 ≺ x1} (18)

PF = { f (x) = ( f1(x), . . . , fn(x))|x ∈ PS} (19)

3.3. Proposed Algorithm

The proposed algorithm targets the dependencies between tasks and the execution
times of tasks in order to reduce the makespan and energy consumption and to balance
the loads among resources. VMs are allocated to tasks according to the demands of the
workflow tasks to ensure a balanced load among the resources. The proposed algorithm
reads the workflow tasks and sets thresholds for the depth and length of the tasks, where
depth refers to the levels of tasks and length is the execution time of the tasks. The threshold
values are used to process tasks according to different priorities during their execution.
Tasks with more dependencies create bottlenecks in the system and cause long execution
times. Similarly, tasks with longer execution times need to be processed with priority to
reduce the overall execution time. These tasks are processed with high priority, i.e., VMs
with high processing capabilities are allocated to these tasks. The proposed algorithm also
searches for tasks with long execution times and processes these tasks with priority in
order to avoid unnecessary waiting of tasks at the same level. Thresholds are defined for
both the number of dependencies and the time according to the input data. These steps
are used to reduce the execution time, which also leads to reduced energy consumption as
resources are utilized efficiently. Algorithm 1 shows the steps involved in the procedure.

Algorithm 1: Avoid bottleneck tasks
Input : workflow w
Output : Queues of tasks based on depth and length
Assign thresholds dt for depth of tasks and lt for length of tasks
for each task t in the task list do

depth = number of levels dependent on t
length = execution time of t
if depth>= dt then

move t to depth queue
end
if length>= lt then

move t to length queue
end

end
Return queues
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In the next phase, the proposed algorithm uses queues according to the intensities
of tasks, i.e., for CPU-intensive tasks and tasks with more dependencies, separate queues
are maintained. Putting tasks with different intensities in separate queues saves time in
finding the suitable VMs during the VM allocation process. In addition to the intensities
of tasks, other information related to tasks, i.e., arrival time and the deadline, is used to
store tasks in queues. After classifying tasks into different queues, the next step is to create
suitable VMs for the tasks. For this purpose, historical scheduling records (HSRs) are
used. If there is no matching record in the HSRs, a new VM is created with the necessary
resources needed to process the task, and the HSRs are updated accordingly. The steps
involved in the proposed algorithm are shown in Algorithms 2–4.

Algorithm 2: Create VM types
Input : Historical scheduling record (HSRs), task lists (from specified queues),
Output : VMs (Types)
N = number of tasks in a queue
for (each task t in N) do

compute P(Tt) (Equation 21)
H = best n P(Tt)

end
for (each l in H) do

if (t found in HSRs) then
allocate VMj based on type of t
else

CreateVM()
end
Assign VMj to task t

end

end

Algorithm 3: Create VMs
Input : List of tasks Lt from queues from algorithm 1 , list of hosts Lh

Output : List of VMs
for (each host h in Lh) do

u = resource utilization of h
if (host resources are available) then

Create VM
Update HSRs

end
else

Power on new host
Create VM
Update HSR

end

end
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Algorithm 4: Task Scheduling
Input : List of tasks Lt from queues from algorithm 1, list of VMs Vl

Output : Schedule of tasks for VMs
for (each task t in Lt) do

Classify tasks as CPU intensive, memory intensive, or both CPU and memory
intensive

Store each category in separate queues
Vl=VMtypes()
for (each VM v in Vl) do

calculate the matching degree of v and t
if (the desired condition is satisfied) then

schedule t to v
else

Vn=CreateVM()
schedule t to Vn

update HSRs
end

end

end

end

In the first phase, the tasks are marked, i.e., suitable VMs are found for the tasks. The
types of tasks are classified accordingly, and the VM types are determined. For a set of
tasks T extracted from the historical data, let Tl represent a type l task in T. The ratio P can
be calculated with Equation (20) [6,11].

P =
|Tl |
|T| (20)

Let task Tr
i represent a candidate task, where r = {1,2,3,4} represents the CPU, mem-

ory, bandwidth, and storage requirements of the task and Vr
j represents a VM in which

r = {1,2,3,4} represents the CPU, memory, bandwidth, and storage capacity of the VM,
respectively. The matching degree of task Tr

i with VM Vr
j can be calculated with Equa-

tion (21) [6,11].

P(Tr
i |Vr

j ) =

{
(Vr

j /Tr
i )

2, if Tr
i >Vr

j .

(Vr
max −Vr

j + Tr
i )/Vr

max, otherwise.
(21)

where Vr
max = k ∈ UmaxVr

k and k represents the type of VM. The possibility that a task Tj
belongs to type Yj can be calculated with Equation (22) [11].

P(Yj|Ti) = Π4
r=1P(Tr

i |Vr
j ) (22)

The proposed algorithm uses PSO to optimize the scheduling problem. After the pre-
processing phase, scheduling with PSO starts. Initially, particles are positioned randomly
with a random velocity. During the execution, the particles are updated with the desired
fitness function. The process is repeated iteratively, and the variables are updated in
each iteration. The proposed algorithm uses the fitness function shown in Equation (15).
Algorithm 5 shows the steps. The pseudocode of Algorithm 3 is a modified version of that
from [13].
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The mapping of resources to tasks in the presence of multiple objectives is a complex
and challenging task [28]. In this scenario, a search space is created according to the number
of tasks in the workflow. The dimensions of the search space are set to be equal to the
number of tasks. The values of the dimensions are taken according to the number of VMs,
i.e., from 1 to the number of VMs. In this study, the notations from previous studies [13,32]
are used to represent the mapping of tasks to VMs, i.e., xi

t = (xt
i1, xt

i2, . . . , xt
ij), where xt

ij
represents that, at time t, the jth place of a particle is assigned to VMi. The number of tasks
in the workflow represents the dimensions of the search space. The velocity is represented
by vi

t = (vt
i1, vt

i2, . . . , vt
ij), where vt

ij represents the velocity, which shows that, at time t,
VMi moves to the jth place of a particle with velocity v [13]. In successive iterations,
the algorithm finds non-dominated solutions. These solutions are stored in the archive.
These solutions are called feasible solutions. Initially, the archive is empty and solutions are
stored as long as the algorithms find non-dominated solutions. New solutions are added
to the archive only if the new solutions dominate the current solutions. The dominance of
the solutions is calculated with the fitness function used. Finally, the archive only contains
feasible solutions, which are also referred to as non-dominated solutions.

Algorithm 5: PSO-based scheduling algorithm
Input : List of tasks, VM list
Output : Mapping of tasks to VMs
P = initial population
p = ith particle from P
Evaluate p
Calculate velocity of p
gbest= global best position
pbest = particles’ best position
for each particle p in P do

for each task t in workflow w do
initialize Xt

ij randomly
initialize velocity v randomly
evaluate pi

update pbest and gbest
end

end
Return the mapping of tasks to VMs

4. Results and Discussion

This section presents the experimental evaluation of the proposed algorithm. Bench-
mark workflows were used to validate the proposed algorithm [33]. The datasets consist
of different workflows with varying numbers of tasks and varying dependency levels.
The datasets have been used to validate many scheduling algorithms in cloud environments.
Table 1 and Figure 1 show the details and structure of the workflows, respectively [13].

Standard algorithms, i.e., GA and PSO, were used in the comparison as a baseline.
Specialized schedulers [30,31] were also included in the comparison. The algorithms
were selected based on their relevance to the problem. The experiments were carried out
on an Intel Core i3 processor equipped with 8 GB of memory running on the Ubuntu
16.04 operating system. The algorithms were evaluated in terms of makespan, energy
consumption, and balancing degree. CloudSim [34] was used to simulate the algorithms.
The simulation was performed with 10 VMs and three data centers. VMs with different
specifications were selected for simulation. Each VM was allocated 1000 MBs of memory
and MIPS from 1500 to 3000. Processing, memory, storage, and transfer costs were set to
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0.017, 0.05, 0.01, and 0.01, respectively. The GA was evaluated with a crossover probability
of 0.8 and a mutation probability of 0.2. PSO was executed with the value of inertia weight
factor ω of 1.2, and the learning factors were set to 2. The other algorithms were executed
with the parameters specified in the respective articles. Each experiment was repeated 20
times, and the average values were selected for comparison.

Table 2 shows the results of the proposed algorithm compared to those of the other
algorithms. The proposed algorithm yielded better results for all parameters on all datasets.
In comparison to the standard algorithms, i.e., PSO and GA, the proposed algorithm
performed better and at higher rates than the specialized algorithms. In the specialized
schedulers, ERES remained closest to the proposed algorithm in terms of energy consump-
tion. In terms of makespan and load balance, FIMPSO remained close to the proposed
algorithm on the majority of the datasets. For some datasets, the energy consumption of
FIMPSO was better than that of ERES and was close to that of the proposed algorithm.

Figure 1. Structures of the workflows used for the experiments: (a) Sipht, (b) CyberShake,
(c) Epigenomics, (d) LIGO, and (e) Montage.

Table 1. Datasets used for the experiments.

Dataset Nodes w-Levels Parallel
Tasks

Average File Size
(MBs)

Average Execution
Time (s)

Montage 100 9 62 18.05 10.19
Sipht 100 7 51 22.34 173.34
LIGO 100 8 24 28.8 209.78

CyberShake 100 5 48 999.41 21.82
Epigenomics 100 8 24 4033.59 1277.21

Figures 2–6 show the percent improvement gain of the proposed algorithm over the
other algorithms. For the Montage dataset, in terms of makespan, the proposed algorithm
achieved percent improvement gain of 32.60, 31.36, 22.8, and 21.18 over PSO, GA, ERES,
and FIMPSO, respectively. For the same dataset, the improvement gains in terms of energy
consumption over the compared methods were 25.1, 24.01, 18.35, and 20.99. In terms of
load balance, the percent improvement gains of the proposed algorithm over PSO, GA,
ERES, and FIMPSO were 31.55, 32.75, 24.13, and 22.22, respectively. The results are shown
in Figure 2.
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Table 2. Results of the proposed algorithm compared with those of standard and specialized
schedulers on different workflows. Energy consumption is represented in KWh.

Parameters PSO GA ERES FIMPSO Proposed

Montage

Makespan 276 271 241 236 186
Energy Consumption 232.31 229 213.12 220.25 174
Load Balance 225 229 203 198 154

Sipht

Makespan 5136 4987 4536.23 4592 3985
Energy Consumption 886 882 806.29 802 713
Load Balance 204 202 184 182 159

LIGO

Makespan 4852 4782 4232.36 4173 3374
Energy Consumption 1052 1023 966 936 788
Load Balance 236 227 202 198 155

CyberShake

Makespan 6431 6386 5631.72 5451 4523
Energy Consumption 188 185 161 157 134
Load Balance 246 241 218 214 176

Epigenomics

Makespan 70,836 70,332 40,257.17 39,788 32,902
Energy Consumption 15,732 15,655 13,849 13,725 10,736
Load Balance 253 248 227 223 176

Figure 2. Percent improvement gain of the proposed algorithm over the other methods on the
Montage dataset.

In the case of the Sipht dataset, the percent improvement gains in terms of makespan
over PSO, GA, ERES, and FIMPSO were 22.41, 20.09, 12.15, and 13.21, respectively. In terms
of energy consumption, the improvement gains of the proposed algorithm were 19.51, 19.14,
11.55, and 11.10 over PSO, GA, ERES, and FIMPSO. In terms of load balance, the proposed
algorithm achieved percent improvement gains of 22.05, 21.28, 13.58, and 12.63 over the
other algorithms. Figure 3 shows the results of the percent improvement gains of the
proposed algorithm over the other algorithms.
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Figure 3. Percent improvement gain of the proposed algorithm over the other methods on the
Sipht dataset.

The proposed algorithm also achieved similar improvements compared to the other
methods on the LIGO dataset. Figure 4 shows the results for the LIGO dataset. The results
show that the proposed algorithm achieved percent improvement gains of 30.46, 29.44,
20.28, and 19.14 in terms of makespan over the other methods. For the same dataset,
the improvement gains in terms of energy consumption over the compared methods
were 25.09, 22.97, 18.45, and 15.81. In terms of load balance, the improvement gains
of the proposed algorithm over PSO, GA, ERES, and FIMPO were 34.32, 31.71, 32.26,
and 21.71, respectively.

Figure 4. Percent improvement gain of the proposed algorithm over the other methods on the
LIGO dataset.

Figure 5 shows the results of the percent improvement gain of the proposed algorithm
over the other algorithms for the CyberShake dataset. The improvement gains in terms of
the makespan over the other methods for this dataset were 29.66, 29.17, 19.68, and 17.02.
The improvement gains over PSO, GA, ERES, and FIMPSO in terms of energy consumption
were 28.72, 27.56, 16.77, and 14.64, respectively. For the same dataset, the improvement
gains in terms of load balance were 28.45, 26.97, 19.26, and 17.75 over PSO, GA, ERES, and
FIMPSO, respectively.
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Figure 5. Percent improvement gain of the proposed algorithm over the other methods on the
Cybershake dataset.

In the case of the Epigenomics datasets, the proposed algorithm achieved percent
improvement gains of 53.55, 53.21, 18.27, and 17.30 over the other algorithms. In terms of
the energy consumption, the proposed algorithm achieved percent improvement gains of
28.72, 27.56, 16.77, and 14.64 over PSO, GA, ERES, and FIMPSO, respectively. For the same
dataset, the improvement gains of the proposed algorithm over the other methods in terms
of load balance were 28.45, 26.97, 19.26, and 17.75. Figure 6 shows the detailed results.

Figure 6. Percent improvement gain of the proposed algorithm over the other methods on the
Epigenomics dataset.

5. Conclusions

Cloud computing is a technology that is widely used in many domains, including
scientific applications. Due to the large numbers of users and applications, cloud computing
environments suffer from some issues. These issues include energy consumption, fault
tolerance, user deadlines, etc. Scheduling and VM placement are techniques that are used
to handle these issues. There are many solutions for scheduling cloud resources. This
article addresses the problem of energy efficiency and resource utilization in cloud data
centers. The proposed work is based on task classification, thresholds, and queueing. In the
first phase, workflow tasks are placed in queues according to the number of levels and
the execution times of the tasks. The tasks are classified accordingly, and resources are
created. The proposed algorithm was validated on benchmark datasets, and comparative
experimental results were presented in terms of the makespan, energy efficiency, and load
balancing. The results were compared with those of standard algorithms and specialized
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schedulers. The results showed that the proposed algorithm achieved better results than
those of the other methods in terms of all parameters. A percent improvement gain from
13 to 53 percent was achieved.

The issues of VM migration and adaptive thresholds require further investigation
in order to further improve the solution and achieve better results. The scheduling prob-
lem consists of many parameters, but some parameters are contradictory. The designed
solutions must consider effects on other parameters while improving the desired parame-
ters. Security and privacy are examples of such parameters that need to be addressed, in
addition to other parameters. The implementation of the simulated algorithm in actual
environments will also bring challenges, such as the administration cost, energy consumed
by factors other than computing, failures in hardware, and data backups.
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