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Abstract: Aiming at the rock-socketed pile in the soft rock area, this paper studies the inherent
constitutive relationship between the vertical restraint stiffness at the pier bottom and the bearing
capacity of the pile foundation. A new method to evaluate the bearing capacity of the pile foundation
is proposed. Based on the Rayleigh energy method and the Southwell frequency synthesis method,
the analytical expression of the vertical vibration fundamental frequency of the pier was calculated,
and the constraint stiffness expression of the pier bottom was derived. By investigating the impact
of parameters on the bearing capacity coefficient of the pile foundation, the fitting formula of the
bearing capacity coefficient was obtained by multiple linear regression. Then, with this method, the
vertical fundamental frequency of the pier was obtained through a field dynamic test to calculate the
vertical constraint stiffness and evaluate the bearing capacity of the rock-socketed pile in the soft rock
area. This method can overcome the shortcomings of the traditional static load test method, such as
the high cost, long cycle, and poor representativeness. Finally, this method’s accuracy was verified
by comparing field measurements and finite element simulation results. The results show that the
difference between the code design constraint stiffness and the constraint stiffness by the frequency
synthesis method was about 0.7%, and the bearing capacity difference between the analytical solution
and the numerical simulation was small. The new method is accurate and effective.

Keywords: rock-socketed pile; soft rock; frequency synthesis method; multiple nonlinear regression;
restraint stiffness; bearing capacity coefficient

1. Introduction

The distribution of rock strata in China is mainly soft rock; therefore, the rock-socketed
pile foundation is embedded mostly on soft rock. Researchers [1–6] have investigated and
measured the properties of soft rock with different methods. According to engineering
data, as Gannon et al. [7] pointed out, the uniaxial compressive strength of soft rock is
between 0.6 and 12.5 MPa, and the modulus is between 100 and 100000 MPa.

Researchers have also carried out many studies on the vertical bearing properties of
socketed piles in soft rock. Based on the analysis of 14 groups’ static load test results of rock-
socketed piles, McVay et al. [8] established a relationship between the unconfined compressive
strength, splitting strength of limestone, and pile side friction. With the dilatancy effect and
the slip-line field theory, Zhang et al. [9] studied the shear failure process of the vertically
loaded bearing pile socketed into weak rocks. Singh et al. [10] performed a parametric analysis
on the rock-socketed pier and revealed the impact of these parameters on the pier behaviors.
Hassan et al. [11] carried out an in-situ static load test and a numerical calculation analysis
on both deep and shallow rock-socketed piles embedded in argillaceous rock at the pile end
and put forward a formula for the bearing capacity of rock-socketed piles. Zhao et al. [12]
conducted a vertical static load test on rock-socketed piles embedded in muddy siltstone.
The results showed that the load settlement curve of ultra-long rock-socketed piles falls
slowly, and there is no significant turning point. Zhao also established the shear function
based on the shear failure and dilatancy effect and determined the relationship between the
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embedded depth and section roughness [13]. By considering the elastic and elastic-visco-plastic
properties of the surrounding and underlying soils, Ter-Martirosyan et al. [14] presented a
method for determining an incompressible pile’s settlement and bearing capacity. Cai et al. [15]
investigated the bearing mechanism of rock-inclined piles and proposed an efficient method to
estimate the bearing capacity of the piles.

Due to the large bearing capacity and high cost of a static load test of the rock-
socketed pile in weak rock, almost no destructive tests have been carried out in engineering
applications. Therefore, the research on the bearing properties of rock-socketed piles in
the soft rock area is mainly based on modeling tests. The vertical bearing capacity of rock-
socketed piles is generally obtained by numerical simulation and field test piles measured
data [16–18]. Huang et al. [19] conducted indoor model tests of rock-socketed piles in
the soft rock under different overburden pressures and socketed depths, investigated the
piles’ axial bearing characteristics, and revealed the bearing mechanism and influencing
factors. To obtain the natural frequency calculation of structures, researchers [20–23] have
investigated different methods. The frequency synthesis method is an effective way to
establish the relationship between the natural frequency and the constraint stiffness. With
the frequency synthesis method, An and Li deduced the natural frequency of the variable
cross-section pier, considering the support spring constraint and proposed the analytical
algorithm of the transverse vibration frequency of the column pier [24]. Feng et al. studied
the bridge pile foundation vertical capacities based on numerical simulation and indoor
model tests, analyzed the relationship between the position of the pile and the resistance of
the pile side and the bearing capacity of the pile foundation, and proposed a more accurate
indoor pile foundation test method [25]. Gao et al. carried out a series of field loading tests
of 16 large-diameter belled concrete piles and discussed the influence of pile dimensions
on vertical bearing capacity [26].

At present, the most convincing method to determine the bearing capacity of bridge
pile foundation is the field static load test. However, this method has a long test cycle
with a high cost, a sophisticated test process, and specific loading conditions for the test
field. In addition, due to the complex geological conditions in mountainous areas, few
pile foundation test results are not representative. This has become another inevitable
problem of bridge pile foundations in mountainous regions. Therefore, to ensure the safety
of structures and bring economic benefits, it is necessary to present a method to reduce the
test cost and evaluate the bearing capacity of the pile conveniently.

In this paper, a new method to evaluate the bearing capacity of the pile foundation by
dynamic testing is presented. The bearing capacity of the pile foundation can be calculated
theoretically only by identifying the vertical fundamental frequency of bridge piers. This
method is simple, quick, and low-cost. First, based on the Rayleigh energy method and
frequency synthesis method, the analytical expression of the constraint stiffness of the pier
bottom is derived. Then, the bearing capacity coefficient (i.e., the bearing capacity and stiffness
constraints both constitutive) with six types of influence factors are introduced and analyzed.
With a convenient dynamic field test of the pier, the vertical fundamental frequency of the pier
can be observed, and the constraint stiffness of the pile foundation can be identified with the
frequency. Last, the vertical bearing capacity of the pile foundation is evaluated by the fitted
bearing capacity coefficient and verified by the finite element method.

2. Research Methodology
2.1. The Calculation Method of the Vertical Fundamental Frequency of Bridge Piers

The multi-component complex system consists of the mass element and the defor-
mation element. The mass element is the mass state of each part of the system, and the
deformation element is the deformation state of each part of the system. Each mass element
and deformation element can be combined as a single subsystem, and its fundamental fre-
quency can be calculated by the Rayleigh energy method. Then, the fundamental frequency
of the whole multi-component complex system is synthesized by the frequency synthesis
method. As the natural frequency calculated by the energy method is the upper-limit value
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of the fundamental frequency, the frequency calculated by the combination of the Rayleigh
energy method and frequency synthesis method may not necessarily be the lower-limit
solution. However, according to practical applications, this method is considered accurate
in calculating the spatial fundamental frequency of bridge piers.

Because of the pile side resistance, the pile end resistance, and the compressive
capability of concrete, the pile foundation has vertical stiffness. The stiffness also acts on
the pier bottom and gives the pier bottom a specific vertical restraint stiffness Kv. In the
condition of the bare pier, the constraint stiffness can be expressed by vertical translational
spring, and the top of the pier is unconstrained. As shown in Figure 1, the pier displacement
caused by vertical vibration consists of two parts: the pier’s vertical translation xm(z) and
the pier’s vertical deformation xn(z). The vertical translation amplitude and the vertical
deformation amplitude of the pier are expressed as cm and cn, respectively.

Figure 1. The vertical translation and deformation of the pier.

As the mass and stiffness of piers are continuously distributed, it will result in low
accuracy when calculated by the discrete multi-degree-of-freedom method. The Hamilton
principle is used to derive the vibration shape function of the pier with infinite degrees of
freedom. As shown in Figure 1, H is the pier height, m is the continuous mass, EA is the
vertical stiffness, M is the mass at the pier top, mc is the mass of the platform, and the h is
the height of the platform. With the vertical vibration caused by the distributed load on
the pier top, the vertical displacement on the central axis of the pier is expressed as u(z, t).
The initial position under the self-weight of the pier is the equilibrium position. The kinetic
energy T and the potential energy V of vertical vibration of the pier are expressed as:

T =
1
2

∫ H

0
m
(

∂u
∂t

)2
dz (1)

V =
1
2

∫ H

0
EA
(

∂u
∂z

)2
dz (2)

Without considering the work done by an external load, according to Hamilton’s
principle, there is an equation defined as:∫ t2

t1
δ(T −V)dt = 0 (3)

where t1, t2 are any two moments.
Introducing Equations (1) and (2) into (3) gives the equation:

∫ t2

t1

∫ h

0

[
EA

∂2u
∂t2 −m

∂2u
∂z2

]
δudzdt = 0 (4)
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For any δu, Equation (4) can be expressed as the bridge pier’s partial differential
equation of vertical vibration.

m
∂2u
∂t2 − EA

∂2u
∂z2 = 0 (5)

In u(z, t) = ϕ(z)q(t), ϕ(z) is the vertical vibration shape function, and q(t) is the
primary coordinate function, which represents the vibration amplitude of the vertical pier
vibration. Substituting u(z, t) into Equation (5) and using the separating variables method
gives the following equation:

EAϕ(z)′′

mϕ(z)
=

..
q(t)
q(t)

(6)

The left side of Equation (6) is a function of the coordinate z, and the right side is a
function of time t. If Equation (6) holds for any z and t, they must be equal to the same
constant. Supposing that the constant is a, then:

ϕ(z)” − am
EA

ϕ(z) = 0 (7)

..
q(t)− aq(t) = 0 (8)

Only when the constant a is negative can the vertical vibration Equations (7) and (8) of
the bridge pier be solved. Setting the constants a = −ω2, β2 = ω2 m

EA yields the following
equations:

ϕ(z) = A sin β x + B cos β x (9)

q(t) = C sin ω t + D cos ω t (10)

The vertical vibration shape function of the pier is a trigonometric function, and its
integral constants A and B are determined by boundary conditions. The maximum ki-
netic energy and potential energy of the vertical vibration of the pier are calculated with
Equations (11) and (12), respectively.

ω2T =
n
2

∫ H

0
m(z)

[
xm(z) + xn(z)]2dz +

ω2

2
[Mx2

M(z) + mcx2
m(z)] (11)

V =
1
2

Kvc2
m +

n
2

∫ H

0
EA(z)

(
∂xn(z)

dz

)2
dz (12)

In these equations, n is the number of piers, xM(z) is the vertical translation caused
by the pier top mass, and xm(z) is the vertical translation caused by the pier body.

According to the law of conservation of energy, Tmax = Vmax = ω2T = V. Therefore,

ω2 =
V
T

(13)

Based on the Southwell frequency synthesis method [22], the vertical mass elements
and displacement elements are combined as shown in Figure 2, and the vertical fundamen-
tal frequency of the pier is:

1
ω2

v
≤ 1

ω2
1
+

1
ω2

2
+

1
ω2

3
+

1
ω2

4
+

1
ω2

5
(14)

where ω1 is the fundamental frequency formed by the combination of the pier distributed
mass md and the vertical pier translation pvt, ω2 is the fundamental frequency formed
by the combination of md and the vertical deformation pvd, ω3 is the combination of the
additional mass at the pier top ma and pvt, ω4 is the combination of ma and pvd, and ω5 is
the combination of the pier cap’s mass mc and pvt.
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Figure 2. Combinations of vertical displacement elements and mass elements.

According to the Rayleigh energy method, the shape function of vertical pier vibration
should meet the geometric boundary conditions. The following shape equation is used for
the vertical vibration of the pier system:

xm(z) = cm (15)

xn(z) = cn sin
πz
2H

(16)

Then, the vertical fundamental frequencies ω1, ω2, ω3, ω4, ω5 of each combined
subsystem is calculated as:

ω2
1 =

Kvc2
m

n
∫ H

0 ρAx2
m(z)dz

=
Kv

nρAH
(17)

ω2
2 =

n
∫ H

0 EA
(

∂xn(z)
∂z

)2
dz

n
∫ H

0 ρAx2
n(z)dz

=
π2E

4ρH2 (18)

ω2
3 =

Kvc2
m

Mx2
m(z)|z=H

=
Kv

M
(19)

ω2
4 =

n
∫ H

0 EA
(

∂xn(z)
∂z

)2
dz

Mx2
n(z)|z=H

=
nπ2EA
8MH

(20)

ω2
5 =

Kvc2
m

mcc2
m

=
Kv

mc
(21)

Setting md = nρAH, the fundamental frequency of the whole system is expressed as
Equation (22) by the frequency synthesis method.

1
ω2

v
=

M + md + mc

Kv
+

(4md + 8M)H
nπ2EA

(22)

In this equation, ρ is the density of pier; A is the cross-section area of piers; Kv is the
vertical restraint stiffness of pile foundation to pier bottom (unit: N/m); M, md, and mc
are the masses of the pier top, pier, and pier cap, respectively; H is the height of the pier;
ωv is the vertical fundamental frequency of the pier, EA is the vertical stiffness of the pier,
and n is the number of the pier.

2.2. Identification of the Pier Bottom Vertical Constraint Stiffness

The fundamental frequency can be expressed as an explicit expression of the pier bot-
tom constraint stiffness. With other parameters remaining unchanged, a specific constraint
stiffness corresponds to a unique fundamental frequency, which means that a specific
fundamental frequency also corresponds to a unique constraint stiffness. Therefore, the an-
alytical equation of vertical restraint stiffness of the pier bottom expressed by fundamental
frequency is:

Kv =
M + md + mc

1
ω2

v
− (4md+8M)H

nπ2EA

(23)
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Equation (23) can be used to predict the vertical restraint stiffness of a solid pier with
an equal cross-section.

2.3. Calculation of the Pile Bearing Capacity

Referring to the design code (JTG 3363-2019), the calculation formulas of the character-
istic value of the single pile vertical bearing capacity Ra and the vertical constraint stiffness
of the pile Kvs are shown in Equations (24) and (25),

Ra = c1 Ap frk + u
m

∑
i=1

c2ihi frki +
1
2

ςsu
n

∑
i=1

liqik (24)

where c1 andc2i are the end resistance exertion coefficient and the lateral resistance exertion
coefficient of the rock stratum i; Ap is the cross-section area of the pile end (unit: m2);
frk is the standard value of the saturated uniaxial compressive strength of the rock at the
pile end, frki is the saturated uniaxial compressive strength of the rock stratum i, and qik
is the standard lateral resistance value of the soil layer i at the pile side (unit: KPa); u is
the circumference of the pile section and hi is the length of the pile embedded in the rock
stratum i (unit: m); m is the number of rock strata and n is the number of soil layers; ςs is
the lateral resistance exertion coefficient of the covered soil layer; and li is the thickness of
the rock and soil layers under the cap bottom or the partial erosion line.

Kvs =
1

l0+ξh
EA + 1

C0 A0

(25)

where ξ is a coefficient for the end bearing pile, ξ = 1; l0 is the free length of the pile and h
is the length of the pile between the bedrock and soil surface (unit: m); A is the average
section area of the pile in the soil; C0 is the resistance coefficient of the rock foundation; ϕ
is the average internal friction angle of the soil layer; S is the center distance of the pile
bottom; d is the diameter pile bottom section (unit: m); and for the end bearing pile, A0 is
calculated as

A0 =
πd2

4
(26)

The elastic modulus is an essential physical index of the rock deformation properties,
calculated as described in [27]:

frk = 1.878524E0.978474 + 0.11667 (27)

Horvath et al. [28] described the relationship between the pile lateral resistance and
the uniaxial compression strength of saturated rock as:

qik = 0.25
√

frk (28)

2.4. Analysis of the Bearing Capacity Coefficient’s Parameters

Many factors affect the bearing capacity and restraint stiffness of a single rock-socketed
pile, including design parameters, engineering geology conditions, and construction factors.
The geological situation is set, as the embedded rock is moderately weathered soft rock,
and the overlying rock is strongly weathered soft rock. According to the properties of soft
rock, the parameters are valued in ranges as follows: the elastic modulus of the bearing
stratum rock is valued between 2.0 and 5.0 GPa, the elastic modulus of rock at the pile
side is valued between 0.2 and 0.6 GPa, the pile body modulus is valued between 20.0 and
40.0 GPa, the pile length is valued between 6.0 and 18.0 m, the pile diameter is valued
between 0.8 and 2.0 m, and the rock-socketed depth is valued between 1.0 to 9.0 m.

The ratio of the bearing capacity Ra (calculated using Equation (24)) to the constraint
stiffness Kvs (calculated using Equation (25)), i.e., the bearing capacity coefficient λ, is
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proposed. With the parameters valued in the above ranges, the relationships between the
parameters and the bearing capacity coefficient were calculated and are shown in Figure 3.

Figure 3. The bearing capacity coefficient curves with different parameters: (a) the pile foundation length, (b) the pile
foundation diameter, (c) the rock-socketed length, (d) the pile foundation modulus, (e) the modulus of the bearing stratum
rock, and (d) the modulus of rock at pile foundation.
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It can be seen from Figure 3 that the pile length, socketed depth, and pile modulus
have a more significant impact on the bearing capacity coefficient, while the pile diameter
and the bearing stratum rock modulus have a smaller influence. By comparison, the pile
side rock modulus has no apparent impact on the bearing capacity coefficient, which is
also the reason that rock-socketed piles are mostly end bearing piles.

2.5. Fitting of the Pile Bearing Capacity Coefficient

To obtain the bearing capacity coefficient λ, a multiple linear regression analysis was
used, and the influence of a comprehensive coefficient k with six control variables was
considered. With the coefficient λ as the dependent variable and the length of pile L, the
diameter of pile D, the embedded rock elastic modulus Eb, the elastic modulus of surround-
ing rock Es, the rock socketed depth h, and the pier elastic modulus Ep as independent
variables, the mathematical regression model of the bearing capacity coefficient is obtained:

λ =
Ra

Kvs
= k

[
c1 A frk,b + uc2h frk,b +

1
2

ςsu(L− h)qsk

](
L

EA
+

1
C0 A

)
(29)

k = a0La1 Da2 Ea3
b Ea4

s h0
a5 Ea6

p (30)

where a0 ∼ a6 are the pending parameters, frk,b is the saturated uniaxial compressive
strength of the bearing stratum at the pile end, qsk is the lateral resistance of strongly
weathered rock, and k is a comprehensive coefficient that can comprehensively reflect the
influence of each variable on the bearing capacity and the constraint stiffness.

The numerical model with 120 sample data of the above six impact factors was estab-
lished. With Formula (29) used as the calculation model, a multiple nonlinear regression
was carried out. A loss function was used to minimize the sum of squared residuals,
and the parameter was obtained by each iteration substituted into the loss function. When
the sum of squared residuals is less than 1× 10−8 the iteration is terminated. After 190
iterations, the optimal solution is obtained, and the prediction regression model is:

λ = k
[

c1 A frk,b + uc2h frk,b +
1
2

ςsu(L− h)qsk

](
L

EA
+

1
C0 A

)
(31)

k = 2866.669L−0.507D0.237E−0.704
b E−0.009

s h−0.267E0.499
p (32)

The fitting results of all the sample data were evaluated with the coefficient of determi-
nation R2. The closer the coefficient is to 1, the better the fitting effect is. After calculation,
the fit degree was 0.997, which shows that the model can explain 99.7% of the variation,
and the fitting degree is accurate.

3. Field Test and Numerical Simulation
3.1. Background Engineering

The background engineering is a uniform cross-section circular bridge pier of C40
concrete. The pier height is 9.4 m and the diameter is 1.4 m. The pile foundation is a bored
cast-in-place pile, the length of the pile is 15.0 m, and the diameter is 1.5 m. The elevation
of the test pier and pile is shown in Figure 4. The test pier is a double-pier column form,
and the bent beam is consolidated with the piers at the pier top. The pier is consolidated
with the pile foundation, and a ground beam connects the two pile foundations.
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Figure 4. The elevation of the test pier. (Units: cm)

According to the design data, the mechanical properties of rock and soil layers at the
bridge site are shown in Table 1.

Table 1. Mechanical properties of rock and soil layers.

Type Silty
Clay

High-Weathered
Argillaceous Siltstone

Medium-Weathered
Argillaceous Siltstone

Compression modulus (MPa) 5.42 / /
Cohesion force (KPa) 31.5 / /

Friction angle (◦) 18.1 / /
Coefficient of friction on basis 0.25 0.4 0.45

Allowable bearing capacity (KPa) 160 320 1000
Standard value of soil friction resistance around the

pile (KPa) 40 110 160

Uniaxial compressive strength of saturated rock (MPa) / / 11
Thickness (m) 1.1 5.34 8.56

3.2. Field Test Results of the Pier’s Fundamental Vertical Frequency

In the natural environment, structures vibrate slightly and irregularly with the sur-
rounding vibration, and the structure’s slight vibration is pulsation. The pulsation has
various frequencies, and the harmonic quantity of the structure’s fundamental frequency is
the main component of the pulsation. The vertical fundamental frequency of the test pier
was tested by the MGCplus dynamic data acquisition and analysis system. This system is
accurate and reliable in dynamic tests and analyses. First, the dynamic signal was collected
by the acceleration sensor and amplified by the amplifier. Then, the data was directly
collected and recorded, and the acceleration time history curve was observed in real-time
on the computer. Finally, with data post-processing software, the amplitude–frequency
characteristics could be analyzed. The ultra-low frequency acceleration sensor was placed
vertically on the pier side in the field test, as shown in Figure 4. The environmental vibra-
tion response of the pier was detected, and the MGCplus dynamic data acquisition and
analysis system and computer at the other end read the detected signal. A photograph of
the test pier pile is shown in Figure 5.



Appl. Sci. 2021, 11, 5923 10 of 16

Figure 5. Field photograph of the test pier.

A group of three field tests on the dynamic characteristics of the pier was carried out
using the pulsation method. One set of the results with the measured vertical acceleration
time history curve and the frequency chart is shown in Figure 6.

Figure 6. (a) The vertical acceleration time history curve; (b) the measured pier vertical fundamen-
tal frequency.

Figure 6a shows the test bridge pier shaft to the acceleration time history diagram;
using a filter to remove high- and low-frequency signal components and process the data
by fast Fourier transformation, the frequency within the power spectral density curve
was obtained, as shown in Figure 6b. The power spectrum peaks were determined by the
frequency of each corresponding order of natural frequency. The first peak point was the
fundamental frequency of the measured pier structure.

The pier’s measured vertical natural vibration frequencies were 23.282 Hz, 23.758 Hz,
and 23.955 Hz. The three results are almost the same and indicate the method is accurate.
Their average value is 23.665 Hz, and this was used as the vertical fundamental frequency.

3.3. Prediction of the Vertical Bearing Capacity

The pier fundamental frequency 23.665 Hz was used in Equation (23), and the other
parameters of the test pier are shown in Table 2 based on the design data. The identified
vertical constraint stiffness of the pile foundation Kv was 2.715× 109N/m by Equation (23).
The design vertical constraint stiffness Kvs based on the code was calculated as 2.696× 109N/m
by Equation (25).
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Table 2. The test pier material’s design parameters.

Parameter Value Unit

Density ρ 2549 kg/m3

Elastic modulus E 3.25 × 1010 MPa
Vertical fundamental frequency ων 23.66 Hz

Mass of the pier top M 82,913.87 kg
Mass of the pier cap mc 39,941.62 kg

Mass of the pier md 73,513.90 kg
Pier height H 9.4 m

Cross-section diameter D 1.5 m

The constraint stiffness identified by the frequency synthesis in this paper is about 0.7%
larger than the calculated design value. The reasons are that the contribution of the pile
side friction to the vertical stiffness was not considered in the code, and some parameters in
the analytical formula were determined by interpolation. However, the difference between
them is only about 0.7%, which indicates that it is accurate and feasible to identify the pier
foundation vertical constraint stiffness by the frequency synthesis method.

Based on Equation (31), the bearing capacity coefficient λ of the test pier is calculated
as 15.62, and with the vertical constraint stiffness identified in the previous section, the
pile’s bearing capacity is estimated at 42.41 MN.

3.4. Finite Element Numerical Simulation

The actual structure was simplified to an axisymmetric finite element model for
simulation. The finite element model of the test pile and rock-soil stratum was established
by ABAQUS, and the CAX4R element (a 4-node bilinear axisymmetric quadrilateral,
reduced integration, hourglass control) was used to simulate the pile and rock-soil stratum.
In order to ensure the accuracy of the analysis and the efficiency of the calculation, the finite
element mesh of the rock mass was divided into near pile and far pile. The model boundary
conditions were set as follows. On the surface of the rock and the soil mass and cap, a free
boundary was set. Then, after reaching a certain range of bedrock, the displacement of the
pile top load was almost zero, so the surface was under the fixed displacement constraints.
The lateral soil adopted horizontal displacement of the fixed constraints, and the vertical
displacement of the free development of the pile side used the axial symmetry constraint.
The pile bottom and rock mass were connected by Tie to achieve displacement coordination.
The linear elastic constitutive model was used for the concrete pile, as the Mohr–Coulomb
model is an ideal elastic-plastic model that can consider the influence of the stress state and
stress history on the rock and soil and better simulate the nonlinear and dilatancy of the
rock and soil. It was used for the rock-soil stratum. The contact pair algorithm was used to
simulate the contact surfaces, as it can simulate the fracture, slip, and dislocation between
the pile and soil-rock stratum. The normal behavior of the contact surfaces used the hard
contact model. The pile and the rock-soil stratum can transfer normal pressure under the
compression state, and the amplitude of the pressure is not limited. When there is a gap,
the normal pressure is not transferred. The tangential behavior of contact surfaces used the
friction model.

The initial equilibrium state of the pile rock-soil stratum system was established by
the automatic ground stress balance step. Figure 7a,b show the distributions of stress and
displacement before the initial stress equilibrium. Figure 7c,d show the distributions of
stress and displacement after the initial stress equilibrium. Through comparison, it can be
seen that the magnitude of stress remained unchanged after the stress equilibrium, and the
magnitude of maximum displacement was 1 × 10−16 (m). Thus, the results of the initial
ground stress equilibrium are precise enough for the finite element simulation.
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Figure 7. (a) The stress distribution before the ground stress equilibrium; (b) the displacement
distribution before the ground stress equilibrium; (c) the stress distribution after the ground stress
equilibrium; (d) the displacement distribution after the ground stress equilibrium.

4. Results and Discussion

The stress distribution and deformation contour are shown in Figure 8.
Figure 8a,b show the stress and the settlement of the pile top under a 50 MN load.

The maximum stress in the pile was 28.33 MPa, and the maximum settlement at the pile
top was 38.9 mm. The settlement of the pile top under different load levels was calculated,
and the relationship between the settlement and the corresponding load is shown in
Figure 9.
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Figure 8. (a) The equivalent stress distribution of the pile-rock stratum model; (b) the deformation of
the pile-rock stratum model.

Figure 9. The relationship between the settlement and the load at the pile foundation.

As the influence of settlement and the actual pile forming situation were not considered
in the finite element simulation, the calculated bearing capacity was larger than the actual
situation. Figure 9 shows that the load corresponding to the pile top settlement of 30 mm was
42.42 MN. Compared with the bearing capacity (42.41 MN) calculated by the identification
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method in the previous section, the error was less than 1%. Furthermore, the reliability of the
new method for predicting the bearing capacity of rock-socketed piles was proven.

5. Conclusions

In this paper, the analytical expression of the vertical restraint stiffness at the pier
bottom was derived based on the Rayleigh energy method and the frequency synthesis
method. The functional expression of the vertical restraint stiffness and the fundamental
frequency of the pier was obtained. Then, the bearing capacity coefficients of the pile under
different impact parameters were calculated and fitted by multiple nonlinear regression
through the iterative algorithm. Based on the above results, a method to evaluate the
bearing capacity of pile foundations is proposed. The main conclusions are as follows:

(1) For the pier bearing capacity coefficient, the pile length, rock-socketed depth, and pile
modulus have a more significant influence. The pile diameter and bearing stratum
rock modulus have a smaller influence, whereas the side rock modulus has almost
no impact. The bearing capacity coefficient increases with the increase of the pile
length, socketed depth, and rock modulus, and it decreases with the increase of the
pile diameter and pile modulus.

(2) A new method for evaluating the vertical bearing capacity of a single pile is proposed.
First, the analytical expression between the vertical fundamental frequency and the
constraint stiffness of the pier is derived. Based on dynamic field tests, the pier
frequency is measured. Then, through multiple regression, the bearing capacity coef-
ficient model is obtained. Finally, with the design and measured data, the predicted
bearing capacity of a single pile can be calculated.

(3) According to the engineering example, the accuracy of the evaluation method was
assessed through the finite element simulation calculation. The results showed that
the error between the constraint stiffness calculated by the code and the constraint
stiffness calculated by the frequency synthesis method was about 0.7%. The bearing
capacity difference between the analytical solution and the finite element numerical
simulation was small, and the method is accurate and effective.
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Abbreviations
Symbols used in this paper.

Kv the vertical restraint stiffness of the pile foundation to the pier bottom
xm(z) the displacement of the pier caused by the pier’s vertical translation
xn(z) the displacement of the pier caused by the vertical deformation
cm the vertical translation amplitude
cn the vertical deformation amplitude of the pier
H the height of the pier
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m the continuous mass of the pier
EA the vertical stiffness of the pier
M the mass of the pier top
mc the mass of the bearing cap
h the height of the bearing cap
z the central axis of the pier
t time
u(z,t) the vertical displacement on the central axis of the pier
T the kinetic energy
V the potential energy
t1, t2 any two moments
ϕ(z) the vertical vibration shape function of the pier
q(t) the primary coordinate function of the pier
xM(z) the vertical displacement of the pier top
ω1 the fundamental frequency formed by the combination of the pier distributed

mass md and the vertical pier translation pvt
ω2 the fundamental frequency formed by the combination of the distributed

mass md and the vertical deformation pvd
ω3 the combination of the additional mass at the pier top ma and the vertical deformation pvt
ω4 the combination of ma and the vertical translation pvd
ω5 the combination of the pier cap’s mass mc and the vertical translation pvt
ρ the density of the pier
A the cross-sectional area of the pier
ωv the vertical fundamental frequency of the pier
md the mass of the pier
c1,c2i the end resistance exertion coefficient and the lateral resistance exertion coefficient

of the rock stratum i
Ap the cross-section area of the pile end
frk the standard value of saturated uniaxial compressive strength of the rock at the pile end
frki the saturated uniaxial compressive strength of the rock stratum i
qik the standard lateral resistance value of the soil layer i at the pile side
u the circumference length of the pile section
hi the length of the pile embedded in rock stratum i
m the number of rock strata
n the number of soil layers
ςs the lateral resistance exertion coefficient of the covered soil layer
li the thickness of rock and soil layers under the cap bottom or the partial erosion line
ξ the coefficient for the end bearing pile
l0 the free length of the pile
C0 the resistance coefficient of the rock foundation
ϕ the average internal friction angle of the soil layer
S the center distance of the pile bottom
d the diameter of the pile bottom section
E the modulus of elasticity of pier
λ the ratio of the bearing capacity to the constraint stiffness
k a comprehensive coefficient
L the length of the pile
D the diameter of the pile
Eb the embedded rock elastic modulus
Es the elastic modulus of the surrounding rock
h0 the socketed rock depth
Ep the pier elastic modulus
a0 ∼ a6 the pending parameters
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