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Abstract: In this paper, effective electromagnetic (EM) focusing achieved with a phase compensation
technique for microwave hyperthermia systems is proposed. To treat tumor cells positioned deep
inside a human female breast, EM energy must be properly focused on the target area. A circular
antenna array for microwave hyperthermia allows EM energy to concentrate on a specific target
inside the breast tumor. Depending on the cancerous cell conditions in the breast, the input phases of
each antenna are calculated for single and multiple tumor cell locations. In the case of multifocal
breast cancer, sub-array beam focusing via the phase compensation technique is presented to enhance
the ability of EM energy to concentrate on multiple targets while minimizing damage to normal
cells. To demonstrate the thermal treatment effects on single and multiple tumor locations, the
accumulation of the specific absorption rate (SAR) parameter and temperature changes were verified
using both simulated and experimental results.

Keywords: microwave hyperthermia; circular array antenna; phase compensation technique; tumor
treatment; electromagnetic beam focusing; female breast phantom

1. Introduction

Breast cancer treatments have been investigated throughout the past decade, and
thermal treatments for breast cancer using microwaves are being rapidly developed to
reduce the dangerous side effects associated with conventional methods [1]. Primary
breast cancer treatments include surgical operations, radiotherapy, chemotherapy, and
hyperthermia. Among these, microwave hyperthermia is an effective treatment that uses a
beneficial heating effect. Because cancerous tissues are highly vascularized, and it is harder
to remove excess heat from them than from healthy tissues, thermal damages are sensitive
to the cancer [2]. A non-invasive microwave hyperthermia system for cancer treatment
is reliable, cost effective, and painless compared with surgical operations. Furthermore,
hyperthermia has a synergistic effect when used in combination with radiation oncology
or chemotherapy [3–6]. In hyperthermic systems, tumor cells are damaged under the
temperature range of 43–47 ◦C, while normal cells are not damaged [7]. Non-invasive
microwave hyperthermia employing an antenna array is a reliable treatment method that
can achieve effective breast tumor necrosis [8]. In this procedure, electromagnetic (EM)
energy is radiated from array elements and concentrated on the tumor region, where
heating is applied for treatment [9–11].

Microwave hyperthermia for deep-seated tumors inside the human breast should be
designed so that EM energy can be transferred well into the interior of the body. The human
body is composed of various dielectric tissues that make it difficult to provide a suitable
EM energy concentration because of dielectric losses [12]. One of the challenges of this
treatment method is to design microwave hyperthermia systems that, while focusing the
EM energy into the human body, heat only malignant tissues, without overheating normal
tissues [13]. Mathematically, accurate EM energy focusing methods are essential for optimal
accumulation. Many techniques, such as the time reversal method, specific absorption rate
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(SAR) optimization, temperature optimization, and phased array, have been researched to
prove the efficacy of hyperthermia treatments [14–19]. The SAR optimization technique
can assume the correlation between SAR and temperature to anticipate deviations in
thermal boundary conditions [14–16]. Temperature-based optimization seeks to optimize
the temperature distribution; however, this method is dependent on the properties of the
thermal tissue, which results in very large uncertainty and higher computational costs than
the SAR-based optimization technique [14,19].

Therefore, the SAR optimization method for effective energy focusing using a phased
array is a very attractive technique due to the practicality of its implementation and its
simple procedure [14–17,19–21]. To deliver microwaves inside the breast, the input phase of
each antenna should differ depending on the location of the tumor cells. Strong constructive
interference in the target area can be achieved with accurate phase control. Narrowband
phased-array antenna systems for treating single targets that operate on a single frequency
best suited for healing superficial and single tumor locations are presented in [18,20,21].
However, these systems have some issues, such as the relatively large number of hot spots,
poor resolutions, and their limitation to unicentric breast cancers. Multifocal/multicentric
breast cancers, which occur when there is more than one distinct type of tumor cell in
a single quadrant, are more aggressive and are associated with worse outcomes than
unifocal cancers [22]. Hyperthermia therapy for multiple tumor locations has been studied
by [23,24]. In [23], iron oxide nanoparticle-loaded nanocapsules were injected into different
tumor positions to be used with magnetic hyperthermia therapy. In [24], a multi-frequency
excitation approach for multiple tumor locations was proposed for enhanced EM energy
penetration and the resolution of its localization. However, the nanocapsule must be
injected into the treatment area [23], and the power source unit is too complex to provide
the signals required for multiple-frequency excitation [24].

In this paper, effective EM focusing with a novel phase compensation technique for
multifocal microwave hyperthermia is proposed. A narrowband signal at 2.45 GHz is
applied to the array antenna elements to organize a simple power supply circuit. The
antenna array configuration is optimized for application to a small female breast and
for an effective electric field (E-field) concentration on the target area. To deliver a use-
ful therapeutic result, each antenna excites an equal polarization signal, which requires
elaborate control of the input phase. Depending on the tumor condition in the breast
phantom, the input phases of each antenna are calculated for single and multiple targets
with phase delay compensation. For multifocal breast cancer, the energy localization on
each tumor cell is important for the minimization of damage to normal cells. To enhance
the EM energy focused on multiple targets, the sub-arrays are designated near each tumor
location for maximum energy transformation. Therefore, sub-array antennas with a phase
compensation technique applying a modified phase are proposed for multicentric breast
carcinoma. To demonstrate the thermal treatment effects under single and multiple tumor
conditions, the SAR distributions and temperature changes are obtained via simulations
and experiments with a breast phantom.

2. The Antenna Array System for Microwave Hyperthermia Treatment

The antenna array configurations for breast cancer treatments are determined by the
type, aperture size, and polarization characteristics of the designed single antenna. The
prototype of the tapered slot antenna (TSA) and circular array configuration presented in
this paper were proposed in our previous paper [25], which aimed to use the above elements
in microwave imaging and hyperthermia systems. To verify the antenna performances, a
3D simulation of a cylindrical breast phantom was performed and the SAR and temperature
results were presented in 2D planes. An antenna for delivering microwaves to a deep-
seated tumor should be designed to induce strong constructive interference of the E-field.
Therefore, an antenna array is used to deliver EM energy to tumor cells located deep inside
the breast phantom. Each antenna is arranged vertically to be efficiently organized around
the small female breast phantom and for effective E-field synthesis [16,21].
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2.1. The Antenna for the Array Configuration

Since this paper is a part of ongoing research related to our existing work, the antenna
for microwave hyperthermia used in this study was a TSA, based on our previous study [25].
The designed TSA has a small aperture size for easier application, and has been optimized to
effectively deliver EM energy into the breast. The design configuration of a single antenna
is presented in Figure 1a. To verify the EM effects on the 2D plane, a cylindrical shaped
artificial breast phantom that takes into account the breast’s fatty component (εr = 5.14,
σ = 0.137 S/m) was modelled as homogeneous medium [26]. The designed TSA was
printed on an 0.8-mm-thick FR-4 substrate (εr = 4.3, tanδ = 0.025) over an 80 mm × 40 mm
area, as shown in Figure 1b [25]. The meander line was designed beneath the tapered
slot of the TSA to operate at 2.45 GHz for the microwave hyperthermia treatment. In
Figure 2, the simulated and measured reflection coefficients are compared. The reflection
coefficient (S11) was measured under the condition presented in Figure 1a, where the
designed antenna is in direct contact with the phantom. For the antenna measurement and
thermal experiment, a gelatin-based phantom was fabricated, and the dielectric property
of performed phantom is εr = 5.1 at 2.45 GHz [27].
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Figure 2. The simulated and measured reflection coefficients for the used TSA antenna.

For effective electric field concentration in the female breast phantom, each antenna is
arranged vertically. For these antennas’ arrangement, the same linear polarization profile in
each array antenna element is related to the effective hyperthermia treatment. In Figure 3,
the E-field distribution at 2.45 GHz in the breast phantom, including in the tumor, is
presented. A spherical breast tumor of radius r = 5 mm is positioned in the center of the
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cylindrical phantom. As shown in this figure, the polarization of the single TSA antenna is
well-formed along the z-axis. A full simulation was performed with FIT-based CST Studio
Suite 2019 [28].
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2.2. Antenna Array Configuration for Effective Electric Field Concentration

As mentioned in the previous section, the designed TSA antenna is linearly polarized
along the radiation direction, and each antenna should be aligned along the surface of
the cylindrical phantom for effective E-field synthesis. The number of radiators, which
should be determined for the successful E-field concentration on the target area, was set at
12 due to the SAR accumulation in the breast phantom, in accordance with our previous
study [25]. The array configurations for inducing microwave hyperthermia along the
xz- and xy-planes are presented in Figure 4a,b, respectively. To feed the array antenna,
simultaneous excitation is induced with an EM simulation tool. To apply the input power
to each antenna, a discrete port is assigned to each TSA and the open boundary condition in
CST is set to analyze the antennas’ performances. The narrowband antennas are arranged
at regular intervals for vertical linear polarization along the z-axis.
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2.3. The Specific Absorption Rate and Temperature Increase

The EM field produced by the TSA antenna array elements propagates toward the
inside of the breast phantom and concentrates in the target area. The localized EM energy is
used to calculated the SAR parameter, which is defined as a measure of energy absorbed per
unit mass of the human body in the unit time t. The SAR is defined as the time derivative
of the incremental energy (dW) absorbed by the incremental mass (dm) [29].

SAR =

(
d
dt

)(
dW
dm

)
=

(
d
dt

)[
dW

ρ(dV)

]
(1)
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The incremental mass dm can be replaced with a volume element dV for a given
density of the tissue ρ. The SAR factor can also be defined for time-harmonic E-fields using
the Poynting vector theorem [30]:

SAR =

(
σ

2ρ

)∣∣Ei
∣∣2 (2)

where σ is the electrical conductivity of the tissue material and Ei is the intensity of the
internal E-field in volts per meter. The average SAR parameter is defined as the ratio
of the total power absorption per unit mass of the exposed human body. The induced
E-field interacts with the body and changes the temperature depending on the square of
the magnitude of the E-field strength.

The analysis of temperature distribution as a function of the applied external E-field
was conducted to broaden our study to incoporate multiphysics methods. To show the rate
of temperature increase in human tissue exposed to external microwave energy, the Pennes
bioheat equation is given below [31]:

ρCp
∂T
∂t

=
1
2

σ
∣∣E∣∣2 +∇·(k∇T) + WbCb(Tb − T)v (3)

where ρ, Cp, k, and σ are the density, heat capacity, thermal conductivity, and electric
conductivity of tissue, respectively, and Wb and Cb are the perfusion rate and heat capacity
of blood, respectively. The external E-field is an essential factor for determining the
temperature increase in the exposed tissue over a certain period of time following the EM
exposure of the TSA antennas’ array.

3. Electromagnetic Focusing for Microwave Hyperthermia
3.1. Electromagnetic Focusing for Unifocal Breast Cancers

Each TSA antenna radiates with precise input phase characteristics to provide effective
treatment to randomly positioned cancer cells in the breast phantom. The radius of the
breast tumor for microwave hyperthermia treatment was set at 5 mm. The breast tissue
properties of the fat and the tumor applied to all simulations are presented in Table 1 to
verify the SAR and temperature distributions.

Table 1. Dielectric and thermal properties of breast tissues at 2.45 GHz [32].

Properties Fat Tumor

Dielectric permittivity εr 5.14 55
Loss tangent tan δ 0.137 0.29
Density ρ (kg/m3) 920 920

Thermal conductivity σ (W/K/m) 0.42 0.42
Heat capacity Cp (J/K/kg) 3000 3000

The phase delay of each antenna (ϕn) should be compensated to focus the E-field on
the target position, thereby localizing the heat operation to a treatment area. The input
phase characteristics of the TSA antenna array can be defined by compensating the phase
delay caused by the different path lengths of the antennas to the target tumor. Hence, the
in-phase condition of the radiated E-fields can be satisfied with an unifocal breast cancer,
leading to strong constructive interference. Figure 5 presents a schematic view of the EM
waves focusing on the breast phantom while the array configuration encircles the breast
phantom. The phase delay of each antenna is calculated to meet the requirements for the
in-phase condition of the E-field deep inside the phantom. The locations of the antennas
are defined as (xn, yn) and the cancer location in the phantom is defined as (xt1, yt1). The
path length from each antenna to the cancer location defined by 2D Cartesian coordinates
can be defined as:

PLn =

√
(xt1 − xn)

2 + (yt1 − yn)
2 (4)
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where n is the current antenna number. The radius of the breast phantom is 50 mm,
with the middle defined as (0,0), so with Cartesian coordinates, each path length between
the radiating antenna and cancer location can be calculated and converted to the phase
as follows:

ϕPLn = k× PLn ×
180
π

=
2π
λeff
× PLn ×

180
π

(5)

where k is the wave number, and λeff is the effective wavelength in the phantom (εr = 5.14)
at 2.45 GHz. To determine the input phases of each antenna, the phase delay should be
calculated accordingly:

ϕn = ϕPLn − ϕmin (6)

where ϕmin is the minimum phase value among the 12 path lengths. Therefore, the
calculated final input phase ϕn is the total compensating input phase to satisfy the in-phase
condition on the focusing area. Thus, ϕn of each antenna is calculated depending on the
tumor position.
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To verify that the EM was focusing on the unifocal cancer, the input phases of each
antenna when the tumor was positioned at (20,0) mm and (15,15) mm were calculated
for the xy-plane in Table 2. These calculated input phases (ϕn) were aimed to enhance
the constructive interference of the E-field at the focal point, which leads to a high SAR
distribution on the treatment area. The maximum SAR distribution values at (20,0) mm
and (15,15) mm according to the xy-planes presented in Figure 6a,b are 23.1 W/kg and
27.7 W/kg, respectively, at the focal points.

Table 2. Calculated input phases for unifocal breast cancer.

Position of
Single Tumor

(xt1,yt1)

Antenna Number

1 2 3 4 5 6 7 8 9 10 11 12

(20, 0) mm 159◦ 90.6◦ 27.8◦ 0◦ 27.8◦ 90.6◦ 159◦ 216.3◦ 253.7◦ 266.7◦ 253.7◦ 216.3◦

(15,15) mm 53.8◦ 0◦ 0◦ 53.8◦ 126.6◦ 194.2◦ 244.6◦ 271.3◦ 271.3◦ 244.6◦ 194.2◦ 126.6◦
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3.2. Electromagnetic Focusing for Multifocal Breast Cancer

In the case of multifocal breast cancer, time and costs can be reduced by treating
multiple tumors simultaneously rather than sequentially. Unlike for a single tumor, the
calculation method for the input phases (ϕn) for multiple targets should be modified to
deliver precise EM energy deposition. In deep-seated tumors, the TSA antennas should
transfer adequate energy to necrotize the tumor cells without harming the normal tissue.
To enhance the thermal focusing, an exquisite phase control technique should be applied
to each microwave antenna, and unwanted electric field focusing should be avoided. Thus,
the multiple E-field focusing technique with a sub-array antenna configuration and phase
compensation technique will be discussed.

The configuration of the E-field focused on two breast tumors with an antenna sub-
array is presented in Figure 7. The radii of the two breast tumors for multifocal breast
cancer were set at 5 mm as well. The magnitude of the radiated E-field is decreased due
to the dielectric loss component of the breast phantom. Therefore, in terms of the tumor
positions, designating the antennas that are closest to the tumor cell as a sub-array ensures
E-field concentration on each breast tumor. Therefore, as shown in Figure 7, sub-arrays #1
and #2 consist of antennas #1–6 and #7–#12, respectively. Tumor cells #1 and #2 are located
at positions (xt1, yt1) and (xt2, yt2) in the phantom, respectively. To focus the E-field on
two breast tumors at the same time, each antenna sub-array radiates the E-field onto tumor
cells #1 and #2. The input phase of each antenna sub-array should be calculated separately
to provide optimal focusing depending on the multiple targets. The phase delay of each
antenna is calculated to meet the requirement of the in-phase condition of the E-field deep
inside the phantom. Hence, the path length from each antenna sub-array to the tumor cells
using 2D Cartesian coordinates can be defined as follows:

PLn1 =

√
(xt1 − xn1)

2 + (yt1 − yn1)
2PLn2 =

√
(xt2 − xn2)

2 + (yt2 − yn2)
2 (7)

where n1 and n2 are the antenna numbers of sub-arrays #1 and #2, respectively. The
calculated path lengths can be converted to the phases of each sub-arrays accordingly:

ϕPLn1 = k× PLn1 ×
180
π

=
2π
λeff
× PLn1 ×

180
π

ϕPLn2 = k× PLn2 ×
180
π

=
2π

λeff
× PLn2 ×

180
π

(8)

where k is the wave number and λeff is the effective wavelength in the phantom (εr = 5.14)
at 2.45 GHz, and ϕPLn1 and ϕPLn2 are the calculated phases of antenna sub-arrays #1 and
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#2, respectively. To decide the input phases of each antenna, the phase delay should be
calculated as follows:

ϕn1 = ϕPLn1 − ϕmin1 ϕn2 = ϕPLn2 − ϕmin2 (9)

where ϕmin1 and ϕmin2 are the minimum phase values of the phases in sub-array #1 and
#2, respectively. Therefore, the calculated final input phases ϕn1 and ϕn2 are the total
compensating input phases to satisfy the in-phase condition of each tumor. Thus, ϕn1
and ϕn2 of each antenna are calculated and applied depending on the position of the
tumor cells.
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Figure 7. Configuration of the six-element antenna sub-array focusing system for two breast tumors.

The positions of two tumor cells at (15,10) mm and (−15,−10) mm on the xy-plane
are presented in Figure 8a. Antennas #1–#6 transmit microwaves to tumor #1, while #7–
#12 transmit EM energy to tumor #2 in the simultaneous cancer treatment regimen. The
calculated input phases aimed to concentrate the E-field on the two tumors in different
positions. However, the SAR patterns were formed at positions away from the desired
locations, and an unwanted E-field was applied to the breast phantom, as shown in
Figure 8b. Although each antenna sub-array focused the electric field on different targets
(tumors #1 and #2), incorrect field synthesis occurred outside of the target area due to
the interactions of the E-fields passing through the tumor cells. In addition, unwanted
E-field synthesis was observed due to interferences from the TSA antennas, which were
facing each other. To minimize unwanted interference and provide a correct beamforming
condition to the target positions, the phase compensation technique will be discussed in
the next section.

3.3. Phase Compensation Technique for Multiple Focusing

As mentioned in the previous section, unwanted E-field focusing occurred due to the
interactions between the sub-arrays. In circular antenna arrays, the interferences between
the antennas on opposite sides are most severe. An inaccurate synthesis of the E-field inside
the breast phantom can degrade the success of the hyperthermia treatment. Therefore, in
this section, the phase compensation technique is applied to enhance the SAR focusing in
the target points.

To minimize the number of unwanted interferences, each input phase was calculated to
satisfy the in-phase condition in the target tumors, and the phase compensation technique
was applied to allow destructive interference to occur between the sub-arrays, as shown in
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Figure 8a. In the calculated input phase of sub-array #2, the modified phase ϕm was added
to antennas #7–#12 to compensate for phase ϕn2 in Equation (10):

ϕ∗n2 = ϕn2 + ϕm (10)

where ϕ∗n2 is the modified phase applied to sub-array #2. The input phases depending on
the different values of the modified phases are reported in Table 3, and the SAR distribu-
tions with phase compensation depending on the modified phase values are presented
in Figure 9. The added modified phases ϕm are 0◦, 60◦, 120◦, and 180◦, respectively. In
Figure 9, the modified phase is insufficient for achieving destructive interference in the
unwanted spot, and inaccurate E-field synthesis is still observed. However, when the
modified phase ϕm is 180◦, sub-arrays #1 and #2 are out-of-phase, so destructive inter-
ference occurs outside the cancer spots, and maximum SAR occurs at (15,10) mm and
(−15,−10) mm, as shown in Figure 9d. In this condition, the E-fields are well concentrated
on the desired positions, leading to successful thermal therapeutic effects.
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Table 3. Calculated input phases with a modified phase for two different breast tumors.

Modified Phase,
ϕm

Antenna Number

1 2 3 4 5 6 7 8 9 10 11 12

0◦ 71.5◦ 18.3◦ 0◦ 29.2◦ 86.9◦ 148.6◦ 71.5◦ 18.3◦ 0◦ 29.2◦ 86.9◦ 148.6◦

60◦ 71.5◦ 18.3◦ 0◦ 29.2◦ 86.9◦ 148.6◦ 131.5◦ 78.3◦ 60◦ 89.2◦ 146.9◦ 208.6◦

120◦ 71.5◦ 18.3◦ 0◦ 29.2◦ 86.9◦ 148.6◦ 191.5◦ 138.3◦ 120◦ 149.2◦ 206.9◦ 268.6◦

180◦ 71.5◦ 18.3◦ 0◦ 29.2◦ 86.9◦ 148.6◦ 251.5◦ 198.3◦ 180◦ 209.2◦ 266.9◦ 328.6◦

To confirm the out-of–phase condition between sub-array #1 and #2, the modified
phase ϕm = 180◦ is applied in sub-array #2 for two other cases of tumor locations: case
1—two tumors are at (−10, 20) mm and (15,−10) mm; case 2—two tumors are at (20,0) mm
and (−15,−15) mm. The input phases for case 1 and 2 are shown in Table 4. In Figure 10a,b,
the SAR distributions in accordance with the input phases in Table 4 are presented. As a
result, the maximum SARs are presented at (−10, 20) mm and (15,−10) mm in Figure 10a,
and (20,0) mm and (−15,−15) mm in Figure 10b, respectively. By applying the modified
phase, ϕm = 180◦ in sub-array #2, the out-of-phase condition is achieved between sub-array
#1 and #2 and the EM energy is well-focused in the target areas.
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Table 4. Calculated input phases for multifocal breast cancer for ϕm = 180◦.

Position of
Multiple
Tumors

(xt1,yt1), (xt2,yt2)

Antenna Number

1 2 3 4 5 6 7 8 9 10 11 12

Case 1—(−10,20) mm,
(15, −10) mm 199.5◦ 148.6◦ 86.8◦ 29.2◦ 0◦ 18.3◦ 467.72◦ 429.9◦ 369.2◦ 293.8◦ 219.9◦ 180◦

Case 2—(20,0) mm,
(–15, −15) mm 159.6◦ 90.9◦ 27.9◦ 0◦ 27.9◦ 90.9◦ 233.9◦ 180◦ 180◦ 233.9◦ 307◦ 374.9◦
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4. Thermal Experiment Results

To verify the thermal effects, the temperature measurement setup and block diagram
of the temperature measuring system are presented in Figure 11a,b, respectively. At the
boundaries of the phantom in simulation, the initial temperature was set to 0 ◦C for a clear
comparison of the measured temperature increase. The thermal experiments consisted
of four stages of radio frequency (RF) signal generation and amplification, RF energy
excitation, an experiment on the fabricated phantom, an experiment on the thermal effect,
and an evaluation of the effects of the temperature rise [19]. The thermal effects on tumor
necrosis were verified by analyzing the effective treatment area (ETA) [8], which was
regarded as a region in which the tumor satisfies the temperature increase requirement of
7–10 °C.
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Figure 11. (a) Configuration of the temperature measurement setup, and (b) block diagram of the temperature measuring
system [25].

To verify the heating effect on both a single tumor and on multiple tumors, the
thermal measurements were conducted as follows: two for single tumor cases and one
for a double tumor case. The first and second cases were conducted on a single tumor
located at (0,0) mm and (20,0) mm, respectively, and the third case was conducted on two
tumors located at (15,10) mm and (−15,10) mm. The phases of each antenna array were
applied to the delay lines based on the calculated input phases. The thermal increase
that occurred inside the cylindrical breast phantom was measured using a multi-channel
thermometer with 12 probes and a data logger to manage the real time temperature data.
The probe was set to detect the middle of the cylindrical phantom in the vertical axis.
The simulated and measured results of the thermal effects on a single tumor cell and two
tumor cells are shown in Figure 12a–f. The target positions of the tumor cells are marked
with a black circle. To achieve an optimum temperature increase during a 1-h period
heating, the total input powers of the array antenna were decided by the bio-heat equation
supported by the CST Studio Suite [27]. The total input powers for the single tumor cells at
(0,0) mm and (20,0) mm were 7.1 W and 6 W, respectively. The simulated and measured
maximum temperature increases were 8.4 °C and 8.3 °C for the single tumor cell at (0,0) mm,
and 8.5 °C and 8.3 °C for the single tumor cell at (20,0) mm, respectively. The target
therapeutic areas of the multifocal breast cancer were at (15,10) mm and (−15,−10) mm, as
shown in Figure 12e,f. To provide a heating effect on two targets simultaneously, phase
compensation was applied in sub-array #2, and the input phases were controlled with
delay lines. The induced total RF power was 7.1 W for 1-h treatment. The simulated
and measured maximum temperature increases were 7.8 °C and 7.7 °C, respectively. The
temperature transient distribution over time and the simulation and measurement results
are shown in Figure 12a–c, where a single tumor was present at (0,0) mm and (20,0) mm,
and two tumors at (10,15) mm and (−10,−15) mm. All the temperature results were post-
processed using MATLAB. As shown in Figure 13, the temperature increased gradually
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over time. When comparing the simulation and measurement results, the hot spots were
well-formed, and the results were well-matched. Moreover, the ETAs covered the target
tumor cell positions and areas, thereby leading to effective thermal therapeutic effects.
The inducing power, simulated SAR, and thermal effects achieved with the proposed TSA
antenna array are summarized in Table 5.
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Figure 12. The 2D sections of temperature distribution after the 1-h heating on a single tumor at (0,0) mm: (a) simulation
result and (b) measurement result. Temperature distribution after 1-h heating on a single tumor at (20,0) mm: (c) simulation
result and (d) measurement result. Temperature distribution for 1-h heating on multiple tumors with phase compensation
at (15,10) mm and (−15,−10) mm: (e) simulation result and (f) measurement result.
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Table 5. Comparison of the simulation and measurement results.

Parameters Single Tumor at
(0,0) mm

Single Tumor at
(20,0) mm

Two Tumors at
(15,10) mm,

(−15,−10) mm

Input RF power (W) 7.1 6 7.1
Maximum SAR in the simulation

(W/kg) 18.1 23.1 14.1

Maximum temperature increase
in simulation (°C) 8.4 8.5 7.8

Maximum temperature increase
in measurement (°C) 8.3 8.3 7.7

ETA in simulation (mm2) 226.9 201 153.9
ETA in measurement (mm2) 216.3 195.9 132.7

5. Conclusions

An antenna array that uses the phase compensation technique to effectively concen-
trate EM energy during microwave hyperthermia treatment for deep-seated breast cancer
was proposed in this paper. The thermal effect was determined based on the E-field ab-
sorbed in the therapeutic region. To deliver EM energy inside the human breast, the input
phases of each antenna should be controlled based on the location of the tumor cells. Strong
constructive interference in the target area can be achieved when each TSA has equal polar-
ization characteristics. Therefore, the direction of each antenna and array configuration
was optimized for effective E-field synthesis. Moreover, accurate phase control is needed
on the target area to minimize thermal damage to normal cells. The input phase of each
antenna in the 12-element array was calculated for single and multiple targets depending
on the tumor condition in the breast phantom. For multiple targets in particular, sub-array
beam focusing was applied to simultaneously provide therapeutic effects on the multifocal
breast cancer. To minimize interference between the sub-arrays, the values of the modified
phase for phase compensation were added to the antennas in one of the sub-arrays so
that sub-arrays #1 and #2 were out-of-phase. The temperature distribution of the single
tumor and multiple tumor cases were simulated and measured to verify the therapeutic
performance of the proposed approach. Consequently, the proposed 12-element array
system and the phase compensation technique provided enhanced therapeutic capabilities
for breast cancer hyperthermia treatment.
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