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Abstract: Silica aerogel possesses an ultra-low thermal conductivity by virtue of its nano-structure.
Owing to the fragility of monolithic aerogel, the development and production of aerogel-based
insulation materials involve the incorporation of granular aerogel with other materials to form
composite materials. In the present study, the application of silica-aerogel-incorporated composite
cement paste as render on the roof-top surface is coupled with the installation of a novel silica-aerogel-
incorporated composite insulation board below the roof tiles. Control and silica-aerogel-incorporated
samples of the composite cement paste and insulation were prepared. Thermal conductivity and
strength tests were performed on the samples. A simulation study was performed on a Building
Information Model subjected to a tropical climate to project the resultant impact of the cement render
coupled with the insulation board on the thermal-energy-efficiency of the roof. For optimization of
thermal and strength performances, silica aerogel contents of 4 wt.% and 3 wt.% were selected for
the cement render and insulation board, respectively. The projected annual cooling load and energy
savings revealed that the application of a 20-mm cement render, coupled with the installation of a
100-mm thick insulation board, is recommended as the optimum roof configuration.

Keywords: aerogel; composite material; cooling load; pitched roof; roof insulation; roof material;
roof tiles

1. Introduction

Aerogel was developed by Samuel Stephens Kistler in 1931 [1] and is, presently, known
to man, the lightest solid in the world [2]. It is produced by replacing the liquid component
of a gel with a gas to create a nano-porous solid, which, from an initial monolithic form,
can then be converted to a granular form [3]. It possesses a remarkably low thermal
conductivity [4] that is lower than those of other commercial insulation materials [5–7],
as well as air [8–11]. It efficiently prevents solid and gaseous conduction by virtue of its
non-crystalline slender skeleton and distinctive nano-sized pore structure. Accordingly, it
has been labeled as a superinsulation material [12–14]. It can be synthesized from many
types of materials, such as, among others, alumina, carbon, polymer, and silica [15].

Silica aerogel possesses an ultra-low thermal conductivity of 0.005 W/mK due to its
high specific surface area of 500–1200 m2/g, high porosity of 80–99.8%, and low density
of about 0.003 g/cm3 by virtue of its nano-structure [16–20]. It has a fractal geometry
that can be structured randomly in colloidal aggregate systems. In general, its synthesis
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is performed in three steps, which are, preparation, aging, and drying, of silica gel. The
preparation of silica gel is performed by adding a catalyst to a silica source solution
to induce gelation as a result of the condensation of the liquid phase. The gel is then
aged in its mother solution to increase its strength and, as a consequence, minimize the
amount of shrinkage during the next step, where drying is performed at a slow rate under
the conditions of supercritical drying to extricate the gel from the pore liquid without
disintegrating its solid matrix, which, in the case of the conventional evaporation, will
occur due to capillary action [4,20].

Aerogel can be manufactured in monolithic or granular forms [3]. In general, mono-
lithic aerogel has better thermal and optical properties than granular aerogel [21,22]. How-
ever, monolithic aerogel has been found to be fragile [23] and, consequently, susceptible to
cracking during manufacturing [24]. Large-scale commercialization of monolithic aerogel
is not yet actualized owing to its fragility, as well as limitations in manufacturing technol-
ogy [25]. Apart from that, monolithic aerogel is expensive and requires protection from
moisture and tension [21,22]. Hence, in view of the impediment to the manufacturing
and application of monolithic aerogel, the adoption of aerogel in commercial products is
predominantly, at present, in its granular form [21,22,25].

By virtue of its ultra-low thermal conductivity, aerogel has been employed as the
insulation material for the space suits of the National Aeronautics and Space Administra-
tion of USA, underwater oil pipelines and the metallurgy industry [26]. Typically, owing
to the fragility of monolithic aerogel, the development and production of aerogel-based
insulation materials involve the incorporation of granular aerogel with other materials
to form composite materials that can be employed as insulation materials for various
applications where heat transfer is a concern. Installation of an aerogel-based insulation
material in the building envelope has been explored in previous research, where the ma-
terial has to concurrently fulfill thermal and strength performance requirements. The
prospect of employing aerogel in the building envelope was tested for the first time in
Kosny et al. [26], where the thermal performance of residential steel- and wood-framed
walls and commercial low-sloped roofs that were insulated with a fiber-reinforced silica
aerogel composite material were evaluated using three-dimensional computer simulations
and a series of hot-box tests. Later, Morelli et al. [27] projected the effect of installing an
aerogel-stone wool composite material on the interior walls and window reveals of a typical
old Danish multi-family building located in Copenhagen, Denmark, along with several
other measures, on the energy consumption, with the aim of retrofitting the building to
become a nearly-zero-energy building. Puad et al. [28] explored the potential application of
a composite insulation material, which was composed of kapok fiber and silica aerogel that
were incorporated with low-density polyethylene, for residential roof under the climate
of Malaysia, by concurrently evaluating its thermal and tensile strength performances.
Biseniece et al. [29] evaluated the thermal performance of an aerogel blanket as a composite
insulation material that was to be installed on the interior walls of a historic masonry build-
ing located in Riga, Latvia, by performing long-term in-situ measurements of heat flux and
temperature. Hu et al. [30] employed an aerogel-membrane roof composed of an outer
membrane layer and an inner composite membrane layer that were integrated with an aero-
gel blanket at an airport terminal in Hunan, China, to reduce the temperature effect and,
in consequence, retard material creep strain and structural deterioration. Kosny et al. [4]
developed an aerogel-incorporated radiant barrier, where an aerogel blanket was lam-
inated with a reflective aluminized plastic foil on both sides, and analyzed its thermal
performance using two test huts located in Albuquerque, New Mexico, USA, where, in
the roof, the first hut did not employ any insulation, while the second hut employed the
aerogel-incorporated radiant barrier.

Apart from incorporating aerogel to form composite insulation materials for the build-
ing envelope, previous research also explored the prospect of filling the cavity of the glazing
component of the building envelope with aerogel to improve thermal and daylighting
performances. Cotana et al. [31] evaluated the thermal-energy, lighting and acoustic perfor-
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mances of an aerogel-filled glazing through field experiments on prototype buildings with
an indoor environment that typifies that of Italian residential buildings, as well as analyses
in the laboratory. Abdul Mujeebu et al. [32,33] conducted simulation studies to project the
effect of replacing double-glazing with aerogel-filled-glazing in windows on the energy
performance of a multi-story office building that was exposed to the weather conditions
of Dhahran, Kingdom of Saudi Arabia, as well as economic feasibility. Moretti et al. [14]
proposed aerogel-filled polycarbonate panels to improve the thermal performance and
lighting control of the building envelope for non-residential buildings, especially the roof.
Mohamed et al. [5] investigated the flammability and thermal degradation of a composite
material that consists of unsaturated polyester resin and expanded polystyrene, with the
incorporation of silica aerogel as fillers, for the fabrication of translucent windows and
roof panels with enhanced insulation properties. Bidini et al. [3] evaluated the thermal,
energy and daylighting performances of an aerogel-filled double-glazed window through
a field experiment that employed two test boxes in Perugia, Italy, where the first box
employed the standard double-glazing window with a layer of air sealed between them,
and the second box employed an identical window, but filled with a layer of granular
aerogel instead of air. Buratti et al. [34] adopted a similar experimental setup but employed
granular aerogel that was mixed with opaque hollow silica instead. Zheng et al. [35]
evaluated the thermal and daylighting performances of an atrium with an aerogel-glazed
roof in an office building in Hunan, China. Abdul Mujeebu and Ashraf [36] conducted a
simulation study on the energy performance and economic feasibility of an aerogel-filled
double-glazed window in a multi-story office building at various locations in the Kingdom
of Saudi Arabia. Zheng et al. [25] evaluated the thermal and daylighting performances of
aerogel-glazed skylight in comparison to double-glazed skylight using a test cell on the
roof of a building in Changsha, China.

The roof-top surface represents the generality of surfaces that are exposed to direct
solar radiation in urban areas. In addition, in the tropical region, the intensity of the
direct solar radiation that reaches the roof-top surface is higher than the rest of the Earth.
Concomitantly, the annual rainfall is also high; therefore, buildings in the tropical region
commonly employ pitched roofs as protection, not only from the solar radiation, but
also from rain water. In Malaysia, which is subjected to the tropical climate, commonly,
cement roof tiles are employed as part of the pitched roof owing to their low cost and high
resistance to weather conditions, albeit with inauspicious thermal properties [37], which,
in the case of the roof tiles, is typically not considered the main priority [38].

At present, research on the adoption of aerogel in the building envelope is predomi-
nated by the development and evaluation of aerogel-based composite insulation materials
that can be installed in the roof, on the interior wall or on the window reveal, as well as
aerogel-filled glazing for the window and skylight. Accordingly, research on the adoption
of aerogel on or as part of the roof tile material, coupled with the adoption of aerogel-based
composite insulation materials, is deficient, notwithstanding its prospect in inducing a
consequential reduction in the heat transfer through the roof, in view of the fact that the
roof assembly, in the tropical region, especially the roof tiles, are directly exposed to intense
and prolonged solar radiation, in addition to the high amounts of rainfall, all-year round.
In the present study, the application of silica-aerogel-incorporated composite cement paste
as render on the roof-top surface is coupled with the installation of a novel silica-aerogel-
incorporated composite insulation board below the roof tiles. Findings of the present study
are most applicable to pitched roof assemblies in tropical regions and, additionally, are
also relevant to those in other regions with similar climate where intense solar radiation
is present.

2. Materials and Methods

The silica aerogel sample that was employed in the present study was obtained from
a local manufacturer in Malaysia. The sample was analyzed by performing a morphol-
ogy study and characterization. Silica-aerogel-incorporated composite cement paste and
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composite insulation samples were then prepared with varying amounts of silica aerogel.
Thermal conductivity and strength tests were performed on the samples. A simulation
study was then performed on a Building Information Model (BIM) that adopted a pitched
roof to project the resultant impact of the application of silica-aerogel-incorporated com-
posite cement paste as render on the roof-top surface coupled with the installation of a
silica-aerogel-incorporated composite insulation board below the roof tiles on the thermal-
energy-efficiency of the roof, based on the annual cooling load and energy savings.

2.1. Morphology Study and Characterization of the Silica Aerogel Sample

Morphology of the silica aerogel sample was studied by performing imaging using a
Scanning Electron Microscope (SEM) of model Quanta FEG 650 that was manufactured
by the FEI Company (Hillsboro, OR, USA). The sample was smeared on a glass plate of
the SEM and then scanned. Characterization of the silica aerogel sample was performed
by conducting X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF) analyses to study
its crystallographic structure and chemical composition, respectively, and accordingly,
ascertain its compatibility when it is incorporated with the other materials. In order to
conduct the XRD and XRF analyses, a representative portion of the sample was ground
to grains of approximately 20 µm size using a motorized grinding machine. The sample
for the XRD analysis, which was performed using an X-Ray Diffractometer of model
D8 ADVANCE, which was manufactured by Bruker Corporation (Billerica, MA, USA),
was prepared by hand-pressing the powdered sample to fill a circular hole, of 25 mm
in diameter, on a sample holder. The surface of the sample was then flattened using a
glass slide. On the other hand, the sample for the XRF analysis was prepared by igniting
0.5 g of the sample at 1050 ◦C for 20 min, to remove impurities, before casting the sample
into a glass disc of 32 mm in diameter. The sample was analyzed for 10 major elements
using an XRF Spectrometer of model Axios that was manufactured by Malvern Panalytical
(Malvern, WO, UK), using the oxides-analysis option, which enabled the detection of
oxygen and, accordingly, the elements in their oxidized states. Calibration was conducted
using a high-quality, internationally-standardized, and certified reference material, namely
rhyolite, whose composition was compared with that of the silica aerogel sample.

2.2. Preparation of Cement Paste Samples

Ordinary Portland cement (OPC) and free water were prepared in accordance with
the standards defined by the British/European Standard (BS EN), which are BS EN
197-1:2011 [39] and BS EN 1008:2002 [40], respectively. Granular silica aerogel was prepared
according to the method introduced by Halimaton Hamdan in 2011 [41]. Cement paste was
prepared by mixing the OPC with the free water with a water-cement ratio of 0.5 based on
the procedure of the American Society for Testing Materials (ASTM) in ASTM C305-20 [42].
One control cement paste sample without silica aerogel and four silica-aerogel-incorporated
composite cement paste samples that contained 2 wt.%, 4 wt.%, 6 wt.%, and 8 wt.% of
the silica aerogel were prepared and then poured into cube steel molds with dimensions
of 50 mm × 50 mm × 50 mm and left to harden at room temperature for 24 h. Then, the
hardened samples were cured in the curing tank for 28 days at the water temperature of
25 ± 2 ◦C in accordance with BS EN 12390-2:2019 [43].

2.3. Preparation of Composite Insulation Samples

High-density polyethylene (HDPE) pellets, kapok fiber, and silica aerogel were em-
ployed to form samples of a novel composite insulation using the hot pressing tech-
nique [44]. The constituent materials were weighed and packed into cavity slots of steel
molds, where silica aerogel and kapok fiber were sandwiched in between two layers of
HDPE. Two shapes of the samples were formed as shown in Figure 1. The dog-bone
shape was adopted to conduct tensile strength tests as per the Type 1 sample mentioned in
ASTM D638-14 [45]. The prism shape was adopted to conduct flexural strength tests as per
Procedure B as mentioned in ASTM D790-17 [46].
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Figure 1. Shapes of composite insulation samples for the (a) tensile tests (dog-bone) and (b) flexural tests (prism).

A thin layer of wax was applied onto the surface of the mold in advance to ease
the process of detaching the samples from the cavity slots. After the cavity slots were
filled, the mold was closed by placing a steel cover on top and subsequently, the samples
were compressed at 160 ◦C using the Hydraulic Laboratory Press of model Monarch CMG
30H-15 that was manufactured by Carver Inc. (Wabash, IN, USA), without applying any
pressure for the first five minutes, and subsequently, with a pressure of 120 tons-force for
60 min. Then, the Hydraulic Laboratory Press was switched off and the mold was left to
cool for approximately 60 min until the temperature of the samples decreased to 80 ◦C. The
mold was then removed from the machine, and the samples were detached from the cavity
slots, as shown in Figure 2.
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2.4. Compressive Strength and Permeable Porosity Tests on Composite Cement Paste Samples

Compressive strength tests were conducted on the composite cement paste samples
at three, seven and 28 days of curing using the Digital Compression Machine of model
ADR Touch SOLO 2000 BS EN manufactured by ELE International (Leighton Buzzard, UK)
with a loading rate of 0.9 kN/s. The compressive strength (Fc) indicates the maximum
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compressive load that a sample can withstand before failure (Pc) per unit of cross-sectional
area of the sample (A) as shown in Equation (1). An average of five readings was taken as
the compressive strength for each type of sample.

Fc =
Pc

A
. (1)

Permeable porosity tests were also performed on the composite cement paste samples.
After 28 days of curing, the samples were dried in the oven at 110 ◦C until the mass
reduction per 24-h interval did not surpass 1%. The saturated surface-dry mass of the
samples in air (Ws), oven-dry mass of the samples in air (Wd), and buoyant mass of the
saturated samples in water (Wb) were measured to calculate the permeable porosity (φ) as
shown in Equation (2).

ϕ =
Ws − Wd
Ws − Wb

× 100%. (2)

2.5. Tensile and Flexural Strength Tests on Composite Insulation Samples

Tensile strength tests were conducted on the composite insulation samples at the room
temperature of 23 ◦C and relative humidity of 55% using the Universal Testing Machine
(UTM) of model AI-7000S manufactured by GOTECH Testing Machines Inc. (New Castle,
DE, USA), with tensile grips. The test was conducted based on the Type 1 sample as
mentioned in ASTM D638-14 [45]. The speed adopted to pull the samples, which fall under
the semi-rigid category, was 5.00 mm/min. The tensile strength (Ft) was recorded when
the samples have completely failed.

Flexural strength test was conducted for the composite insulation samples at room
temperature using the same machine, but, this time, the tensile grips were replaced with
a three-point-bend platform. The samples were tested in accordance with Procedure B
as mentioned in ASTM D790-17 [46]. The moving crosshead of the machine was set to
descend at a constant speed of 21.33 mm/min and stopped when the deflection of the
sample had reached 5%, which was when the flexural strength (Ff) was recorded.

2.6. Thermal Conductivity Test on Composite Cement Paste and Insulation Samples

Thermal conductivity tests were performed on the composite cement paste and insula-
tion samples. The composite cement paste samples were tested after 28 days of curing. On
the other hand, the composite insulation samples were tested after cooling, subsequent to
hot-pressing. The tests were conducted using the Thermal Conductivity Analyzer of model
TCi manufactured by C-Therm Technologies Ltd. (Queen St. Fredericton, NB, Canada)
The method applied was the Modified Transient Plane Source technique in accordance
with ASTM D7984-16 [47]. An average of five readings of thermal conductivity (k) that
were taken at one-minute intervals was adopted for each sample to ascertain the stability
of the reading.

2.7. Simulation Study on Building Information Model (BIM) with Pitched Roof

A simulation study was performed on a BIM, which was employed previously in
Farhan et al. [38] for a different study, to project the resultant impact of the silica-aerogel-
incorporated cement paste as render on the roof-top surface, coupled with the silica-aerogel-
incorporated composite insulation board installed below the roof tiles, on the annual cool-
ing load and energy savings. The BIM was created in Integrated Environmental Solutions
<Virtual Environment> (IES <VE>) using its ModelIT module, as shown, in axonometric
view, in Figure 3. The dimensions of the BIM were 4 m width, 4 m length and 3 m height,
and they were determined as such to fulfill the minimum requirements of a habitable room
in Malaysia as per the Uniform Building By-Laws 1984 [48]. The materials assigned to the
BIM were adopted based on the materials employed in Farhan et al. [38]. The simulation
data generated from the BIM in IES <VE> were already validated in Farhan et al. [38]
against the data collected from test cells located in Universiti Teknologi MARA, Shah
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Alam, Malaysia, which were also employed in previous studies by Irwan et al. [49,50],
Halim et al. [51], Morris et al. [52,53], and Zakaria et al. [54]. Correspondingly, the location
of Shah Alam, Malaysia, was also selected as the location of the BIM in the present study, as
Shah Alam is subjected to a tropical climate and, hence, exposed to intense and prolonged
solar radiation, as well as high amounts of rainfall.
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The thermal conductivity values of the silica-aerogel-incorporated samples with op-
timum amounts of silica aerogel, which were determined from the results of the thermal
and strength performance tests, were assigned to the modeled layer of the silica-aerogel-
incorporated composite cement paste that was applied as render on the roof-top surface,
and the modeled layer of the silica-aerogel-incorporated composite insulation board that
was installed below the roof tiles, which were embedded in the BIM using the ModelIT
module of IES <VE>. The ApacheSim module of IES <VE> was then employed to project
the annual cooling load and, accordingly, calculate annual energy savings. The configura-
tion of the roof was varied based on the presence of the render on the roof-top surface and
composite insulation board below the roof tiles, as well as the thickness of the composite
insulation board. Accordingly, five roof configurations were employed for the simulation
study, which are presented in Table 1. The thickness of the composite insulation board was
varied at 100 mm, 200 mm, and 300 mm, while the thickness of the cement render coated
on the roof tiles was fixed at 20 mm in accordance with conventional practices.

Table 1. Roof configurations of the BIM employed for the simulation study.

BIM Roof
Configuration ID

Presence of Cement Render
on the Roof-Top Surface

Presence and Thickness of
Roof Insulation Material

C Without cement render Without insulation
R

With cement render

Without insulation

R100 With 100-mm thick composite
insulation board

R200 With 200-mm thick composite
insulation board

R300 With 300-mm thick composite
insulation board
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3. Results and Discussion

3.1. Morphology Study of the Silica Aerogel Sample

The SEM image of the silica aerogel sample at 50,000× magnification is presented in
Figure 4. The image indicates that the sample has no definite form, with the silica particles
forming aggregates with each other. It has a porous structure with the aggregates formed
by spherical particles, with an average size of 54.77 nm.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 20 
 

Table 1. Roof configurations of the BIM employed for the simulation study. 

BIM Roof  
Configuration ID 

Presence of Cement Render on the 
Roof-Top Surface Presence and Thickness of Roof Insulation Material 

C Without cement render Without insulation 
R 

With cement render 

Without insulation 
R100 With 100-mm thick composite insulation board 
R200 With 200-mm thick composite insulation board 
R300 With 300-mm thick composite insulation board 

3. Results and Discussion 
3.1. Morphology Study of the Silica Aerogel Sample 

The SEM image of the silica aerogel sample at 50,000× magnification is presented in 
Figure 4. The image indicates that the sample has no definite form, with the silica particles 
forming aggregates with each other. It has a porous structure with the aggregates formed 
by spherical particles, with an average size of 54.77 nm. 

 
Figure 4. SEM image of the silica aerogel sample at 50,000× magnification. 

3.2. Characterization of Silica Aerogel Sample 
The XRD pattern of the silica aerogel sample as shown in Figure 5 reveals the pres-

ence of humps at the low-angle region together with narrow and sharp peaks, hence indi-
cating that the sample is moderately amorphous. Furthermore, the analysis revealed the 
presence of silica gel as the main constituent, as well as thenardite, which is an anhydrous 
sodium sulfate (Na2SO4), as indicated by the red line. 

Figure 4. SEM image of the silica aerogel sample at 50,000× magnification.

3.2. Characterization of Silica Aerogel Sample

The XRD pattern of the silica aerogel sample as shown in Figure 5 reveals the presence
of humps at the low-angle region together with narrow and sharp peaks, hence indicating
that the sample is moderately amorphous. Furthermore, the analysis revealed the presence
of silica gel as the main constituent, as well as thenardite, which is an anhydrous sodium
sulfate (Na2SO4), as indicated by the red line.

Table 2 shows the composition of the silica aerogel sample obtained from the XRF
analysis and reveals that, among all of the oxides, the silicon dioxide (SiO2) content is the
highest, which is 74.48%. The high SiO2 content, coupled with the amorphous state of the
particles, imparts an ultra-low thermal conductivity to the silica aerogel. Other than SiO2,
sodium oxide (Na2O) was also present in the sample, with a content of 9.15%. The presence
of oxides other than SiO2 was due to the presence of impurities, owing to the sample being
mixed with the residue from other samples during preparation and heat treatment [55].
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Table 2. Composition of the silica aerogel sample obtained from the X-Ray Fluorescence (XRF) analysis.

Oxides Content (wt.%)

Silicon Dioxide (SiO2) 74.48
Sodium Oxide (Na2O) 9.15

Aluminium Oxide (Al2O3) 0.05
Calcium Oxide (CaO) 0.05

Iron (III) Oxide (Fe2O3) 0.05
Magnesium Oxide (MgO) 0.01

Manganese (II) Oxide (MnO) 0.01
Titanium (IV) Oxide (TiO2) Below detection limit

3.3. Thermal and Strength Performances of Composite Cement Paste Samples

Figure 6 presents the Fc and k, at 28 days of curing, of the composite cement paste
samples that contained varying silica aerogel content. Fc decreased from 49.28 MPa to
42.89 MPa when the silica aerogel content per sample was increased from 0 wt.% to 2 wt.%.
Conversely, a further addition of 2 wt.% of silica aerogel per sample, which was from 2 wt.%
to 4 wt.%, led to the culmination of Fc at its highest value of 54.33 MPa. As the silica aerogel
content was increased from 4 wt.% to 6 wt.% and then 8 wt.%, Fc was adversely affected,
where Fc decreased from 54.33 MPa to 47.03 MPa and then its lowest value of 34.77 MPa,
respectively. A similar trend of Fc was reported in Bostanci et al. [56]. Furthermore, it can
be projected that the adverse effect on Fc will extend as higher amounts of silica aerogel are
incorporated, as revealed in Ng et al. [57]. In essence, the incorporation of 8 wt.% of silica
aerogel led to a loss of strength of 29.44%, where Fc decreased from 49.28 MPa to 34.77 MPa.
On the other hand, the incorporation of silica aerogel led to a drop in k from 1.185 W/mK to
0.340 W/mK, 0.142 W/mK, 0.086 W/mK, and 0.076 W/mK when 2 wt.%, 4 wt.%, 6 wt.%,
and 8 wt.% of silica aerogel were incorporated, respectively. Essentially, the incorporation
of 8 wt.% of silica aerogel resulted in a decline in k of 93.59%, with a gradient that decreased
as the silica aerogel content was increased. In view of the culmination of Fc at its highest
value of 54.33 MPa that coincides with the conspicuous decrease in the gradient of k as
it declined from 1.185 W/mK to 0.142 W/mK, it can be deduced that the silica aerogel
content of 4 wt.% resulted in the optimum formulation of the silica-aerogel-incorporated
composite cement paste.
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Figure 6. Compressive strength (Fc) and thermal conductivity (k) of the composite cement paste after 28 days of curing.

Figure 7 shows that the increase in the silica aerogel content in the composite cement
paste increased its φ, which was due to the nano-sized pore structure of silica aerogel.
The φ of the cement paste, without the incorporation of silica aerogel, was 0.128%. The
incorporation of 2 wt.% of silica aerogel in the cement paste induced a rise in φ from 0.128%
to 0.160%. Further addition of silica aerogel from 2 wt.% to 4 wt.%, 6 wt.%, and 8 wt.% led
to the increase in φ to 0.220%, 0.216%, and 0.256%, respectively. The increase in the silica
aerogel content beyond 4 wt.% led to the sharp decline in Fc from 54.33 MPa to 34.77 MPa
due to the high φ of 0.256%. However, when the silica aerogel content was increased from
2 wt.% to its optimum value of 4 wt.%, the Fc improved from 42.89 MPa to 54.33 MPa in
spite of the increase in porosity from 0.160% to 0.220%.
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Figure 7. Compressive strength (Fc) and permeable porosity (φ) of the composite cement paste after
28 days of curing.
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3.4. Thermal and Strength Performances of Composite Insulation Samples

Figure 8 presents the Ft and k of the composite insulation samples that contained
varying silica aerogel content. The highest Ft of 11.58 MPa was obtained for the composite
insulation sample that was not incorporated with silica aerogel. The Ft decreased sharply
to 7.04 MPa when 1 wt.% of silica aerogel was added. Contrarily, further increments
in the silica aerogel content from 1 wt.% to 2 wt.%, and then 3 wt.%, resulted in the
improvement of Ft from 7.04 MPa to 8.24 MPa, and then 8.74 MPa, respectively. However,
further additions of silica aerogel beyond 3 wt.% induced a decline in Ft from 8.74 MPa
to 7.18 MPa, and then 6.47 MPa, for the samples with silica aerogel contents of 4 wt.%
and 5 wt.%, respectively, due to the agglomeration of the silica aerogel particles, which
affected the strength and elongation of the sample, according to Zolfaghari et al. [58] and
Thongpin et al. [59]. As for k, a gradual decrease was observed with each increment in
silica aerogel content. The sample that was not incorporated with silica aerogel obtained
the highest k of 0.20 W/mK, which then declined to 0.15 W/mK, 0.14 W/mK, 0.09 W/mK,
0.06 W/mK, and then 0.04 W/mK when the silica aerogel content was increased to 1 wt.%,
2 wt.%, 3 wt.%, 4 wt.%, to 5 wt.%, respectively, with a percentage in overall decline of 80%.
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Figure 8. Tensile strength (Ft) and thermal conductivity (k) for the composite insulation materials.

Figure 9 shows the Ff and k of the composite insulation samples that contained varying
silica aerogel content. The highest Ff of 23.24 MPa was obtained for the control sample,
which was not incorporated with silica aerogel. Increment of silica aerogel from 0 wt.%
to 1 wt.% resulted in a decrease of Ff from 23.24 MPa to 18.96 MPa. Conversely, the Ff
increased from 18.96 MPa to 19.88 MPa, and then 21.37 MPa, when the silica aerogel content
was increased from 1 wt.%, to 2 wt.%, and then to 3 wt.%, respectively. Subsequently, the Ff
decreased from 21.37 MPa, to 18.63 MPa, and then to the lowest Ff of 17.64 MPa when the
silica aerogel content was increased from 3 wt.%, to 4 wt.%, and then to the highest silica
aerogel content of 5 wt.%, which is due to the high φ of the silica aerogel that resulted in its
lower mechanical performance as mentioned in Wucherer et al. [60], and also the impact of
further adding silica aerogel that tends to reaggregate instead of spreading homogeneously
throughout the HDPE-kapok fiber matrix [61], leading to a decrease in the interaction
between the surface area of the silica aerogel with the HDPE and kapok fiber as highlighted
in Mazlan et al. [62], and, as a consequence, caused the sample to be more brittle due to
ineffective stress transfer. Although k greatly decreased with the incorporation of silica
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aerogel in the composite insulation, the silica aerogel content of 3 wt.% is recommended to
formulate a composite insulation that concurrently possesses low k with reasonably high
Ft and Ff.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 20 
 

 
Figure 9. Flexural strength (Ff) and thermal conductivity (k) for the composite insulation samples. 

Unlike tensile strength tests where stress is distributed along the sample, the stress 
in flexural strength test is more restricted to the region of the applied load. Figure 10 com-
pares the Ft and Ff profiles of the composite insulation samples with varying silica aerogel 
content. Notwithstanding the minor difference between the gradient of the declines of Ft 
and Ff when the silica aerogel content was increased from 0 wt.% to 1 wt.%, where the 
decline of Ft was sharper than that of Ff, profiles of Ft and Ff exhibited similar trends and 
is in agreement with the findings in Shahroze et al. [63], hence validating the consistency 
in the preparation of corresponding samples that were employed to perform the tensile 
and flexural strength tests. 

0.00

0.05

0.10

0.15

0.20

0.25

15

16

17

18

19

20

21

22

23

24

25

0 1 2 3 4 5

k 
(W

/m
K

)

F f
 (M

Pa
)

Silica Aerogel Content (wt.%)

Flexural Strength Thermal Conductivity

Figure 9. Flexural strength (Ff) and thermal conductivity (k) for the composite insulation samples.

Unlike tensile strength tests where stress is distributed along the sample, the stress
in flexural strength test is more restricted to the region of the applied load. Figure 10
compares the Ft and Ff profiles of the composite insulation samples with varying silica
aerogel content. Notwithstanding the minor difference between the gradient of the declines
of Ft and Ff when the silica aerogel content was increased from 0 wt.% to 1 wt.%, where the
decline of Ft was sharper than that of Ff, profiles of Ft and Ff exhibited similar trends and is
in agreement with the findings in Shahroze et al. [63], hence validating the consistency in
the preparation of corresponding samples that were employed to perform the tensile and
flexural strength tests.

3.5. Thermal-Energy Performance of BIM with Pitched Roof

Figures 11–13 reveal the direct, diffused and global solar radiation fluxes that the BIM
were subjected to throughout the Typical Meteorological Year (TMY) at the location of Shah
Alam, Malaysia, as previously adopted in Farhan et al. [38]. The highest fluxes recorded
throughout the TMY for the direct, diffused, and global solar radiation were 965 W/m2,
540 W/m2, and 1120 W/m2, respectively.
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Figure 10. Flexural strength (Ff) and tensile strength (Ft) for the composite insulation materials.
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Figure 11. Direct solar radiation flux throughout the Typical Meteorological Year (TMY) at the location of the BIM.
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Figure 12. Diffused solar radiation flux throughout the TMY at the location of the BIM.
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Figure 13. Global solar radiation flux throughout the TMY at the location of the BIM.

Figure 14 reveals the annual cooling load and energy savings of the indoor environ-
ment of the BIM at varying roof configurations of C, R, R100, R200, and R300. The annual
cooling load of C was 2.6671 MWh, and it was marginally reduced to 2.6488 MWh when
the 20-mm silica-aerogel-incorporated composite cement paste was applied as render on
the roof-top surface to form R, hence generating an annual energy savings of 0.6909%.
Furthermore, when a 100-mm thick silica-aerogel-incorporated composite insulation board
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was installed below the roof tiles of R to form R100, a sharp drop in the annual cooling
load to 2.3903 MWh, with an annual energy savings of 11.5801% relative to C, was ob-
served. Additional increments to the thickness of the insulation board to 200 mm, and
then 300 mm, resulted in further reductions in the annual cooling load to 2.3491 MWh,
and then 2.3319 MWh, with annual energy savings of, relative to C, 13.5371%, and then
14.3745%, respectively. The highest gradients, based on their absolute values, in the decline
in the annual cooling load, and the rise in the annual energy savings, were observed when
the 100-mm thick insulation board was installed to R. Therefore, the application of the
20-mm cement render, coupled with the installation of the 100-mm thick insulation board,
is recommended as the optimum roof configuration.
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Figure 14. Annual cooling load and energy savings of the BIM at varying roof configurations.

4. Conclusions

The installation of a novel silica-aerogel-incorporated composite insulation board in
the roof, coupled with the application of silica-aerogel-incorporated composite cement paste
as render on the roof-top surface, was studied to explore the prospect of adopting nano-
porous silica-aerogel-incorporated composite materials in thermal-energy-efficient pitched
roof assemblies in the tropical region. A morphology study on a silica aerogel sample
revealed that the sample had no definite form and a porous structure. Characterization
of the sample revealed that the sample was moderately amorphous, with silica gel as
the main constituent, where the SiO2 content was the highest, which was 74.48%. Then,
50 mm × 50 mm × 50 mm cement paste cubes were prepared with OPC and free water,
where a control sample without silica aerogel and four silica-aerogel-incorporated samples
with varying silica aerogel content were prepared. Composite insulation samples were
prepared with HDPE and kapok fiber, where a control sample without silica aerogel and
five silica-aerogel-incorporated samples with varying silica aerogel content were prepared.
For optimization of thermal and strength performances, the silica aerogel contents of
4 wt.% and 3 wt.% were selected for the cement render and insulation board, respectively. A
simulation study performed on a BIM with a pitched roof to project annual cooling load and
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energy savings of its indoor environment revealed that the application of 20-mm cement
render, coupled with the installation of a 100-mm thick insulation board, is recommended
as the optimum roof configuration.
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Nomenclature

Abbreviations
ASTM American Society for Testing Materials
BIM Building Information Model
BS EN British/European Standard
CFD Computational Fluid Dynamics
HDPE High-Density Polyethylene
IES<VE> Integrated Environmental Solutions <Virtual Environment>
OPC Ordinary Portland Cement
SEM Scanning Electron Microscope
TMY Typical Meteorological Year
UTM Universal Testing Machine
XRD X-Ray Diffraction
XRF X-Ray Fluorescence
Chemical Formulae
Al2O3 Aluminium Oxide
CaO Calcium Oxide
Fe2O3 Iron (III) Oxide
MgO Magnesium Oxide
MnO Manganese (II) Oxide
Na2O Sodium Oxide
Na2SO4 Sodium Sulfate
SiO2 Silicon Dioxide
TiO2 Titanium (IV) Oxide
Notations
A Cross-sectional area
C Conventional BIM roof configuration without render and insulation
Fc Compressive strength
Ff Flexural strength
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Ft Tensile strength
k Thermal conductivity
Pc Maximum compressive load before failure
R BIM roof configuration with render but without insulation
R100 BIM roof configuration with render with 100-mm thick insulation
R200 BIM roof configuration with render with 200-mm thick insulation
R300 BIM roof configuration with render with 300-mm thick insulation
Wb Buoyant mass of saturated samples in water
Wd Oven-dry mass of samples in air
Ws Saturated surface-dry mass of the samples in air
φ Permeable porosity
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