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Abstract: The district heating (DH) industry is facing an important transformation towards more
efficient networks that utilise significantly lower water temperatures to distribute the heat. This
change requires taking advantage of new technologies, and Machine Learning (ML) is a popular
direction. In the last decade, we have witnessed an extreme growth in the number of published
research papers that focus on applying ML techniques to the DH domain. However, based on our
experience in the field, and an extensive review of the state-of-the-art, we perceive a mismatch
between the most popular research directions, such as forecasting, and the challenges faced by the
DH industry. In this work, we present our findings, explain and demonstrate the key gaps between
the two communities and suggest a road-map ahead towards increasing the impact of ML research
in the DH industry.
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1. Introduction

As the urban space continues to expand, it has become increasingly challenging to
adapt existing solutions for the supply of electricity, heating and cooling, water and waste
management, without major and often prohibitively costly changes to the underlying
infrastructure [1]. The ongoing digitalisation of the energy sector, an otherwise traditional
industry, can be used to address some of these challenges.

The digitalisation of the district heating (DH) sector offers opportunities such as new
incentives for lowering peak energy consumption [1,2]; optimisation of indoor climate (e.g.,
temperature levels in homes); optimisation of energy production; and around-the-clock
monitoring of substations and the underlying network [3]. Visions such as smart cities,
smart grids and 5th Generation District Heating (5GDH) [1,4] are largely driven by the
opportunities created by digitalisation under the umbrella term of Industry 4.0 [5,6]. A
recurring theme with Industry 4.0 is the use of data intensive methods, often under the
label of Machine Learning (ML) [7,8], to gain useful insights from data. It comes in the
form of incentives, better indoor climate, optimisation of energy supply and so on, out of
otherwise unwieldy data.

The approaches towards applying ML in the DH sector are, however, often quite
unstructured and experimental, particularly due to the lack of a structured way of collecting
and sharing relevant data or benchmarking ML models. In this article, we attempt to report
on the current landscape of ML as applied to DH networks and to discuss possibilities and
challenges from the perspectives of the district heating industry and research. Thus, the
article is designed as a position paper at the intersection of ML and DH stakeholders.
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ML focuses on computational techniques for learning intrinsic relationships, from
structured and unstructured data, resulting in models that generalise these relationships
for the purpose of analysing new but previously unseen data. The value created by data-
intensive methods such as ML inherently depends on the quality of data employed and
the data collection cost. While data collection has traditionally been a costly endeavour,
developments in sensor technology and networking have lowered such costs with the
help of technology such as Internet of Things (IoT) [9]. Data about utilities, such as water,
electricity and heating, although often collected for billing, can and are being employed
to create additional value, e.g., detecting deviating and sub-optimal behaviours of DH
substations [10].

District heating is a technology for distributing heat generated in a centralised location,
through a system of insulated pipes, for residential and commercial heating requirements,
such as space heating and domestic hot water production. DH has been used in a large
scale for more than 100 years [11]. The oldest generation of district heating (1st Generation
District Heating or 1GDH) made use of steam distribution systems. The second generation,
2GDH, distributes pressurised hot water (between 80 °C and 150 °C) in hollow concrete
ducts and is common in many cities in Europe. In the third generation, 3GDH, pre-insulated
pipes, buried in the ground, were developed. Pre-assembled substations were introduced,
gradually with more advanced control and automation. 4GDH [12] is distributing hot water
at minimum temperature levels, usually around 60 °C (minimum level to prevent spread
of legionella bacteria). Currently, ambient loops are being investigated, with neutral distri-
bution temperatures (15–60 °C) in combination with decentralised heat pumps to boost the
temperature in buildings. This concept is sometimes referred to as 5GDH [4]. Although
today all generations of DH are still in operation, most existing DH systems have under-
gone transformations in the form of generational adaptations throughout their lifetimes.
New advances in technology have characterised the transition between these generations.
For example, the 3G to 4G transition was enabled by an information and communication
technology layer and associated smart energy infrastructure (https://www.energyville.
be/en/press/expert-talk-digital-district-heating-networks-why-digital)(accessed on 15
May 2021). In addition, each transformation stage has consistently lowered temperature
levels in the networks. As a result, the heat loss is consistently reduced, and new oppor-
tunities are created for integrating many low-temperature sustainable energy heat sources.
Solar energy, urban waste heat from subways and similar energy sources are often used
together in combination with heat pumps to reach desired temperatures. However, with
lower temperatures, the system becomes increasingly sensitive to the performance of each
part, such as heat exchangers, which then have to operate across correspondingly lower
temperature differences.

Densely populated environments are accelerating urban sprawl, causing a major con-
strain on older DH networks, initially dimensioned to operate in a limited geographic area.
For DH networks to remain effective, they need to adapt to such expansions while, at the
same time, meeting new requirements, e.g., higher expected standards of service, decarbon-
isation, etc. Such adaptations can be supported through numerous innovative technologies,
including early detection of faults or increased efficiency of operations. Digitalisation and
data driven approaches, such as ML, offer opportunities for improving many aspects of
DH operations. With newer generations (4GDH and 5GDH), it is increasingly possible to
collect data that can be used to increase heat energy utilisation, with better indoor climate,
while optimising production and monitoring capabilities. This article sets an ambitious
goal to contribute towards advancing our understanding of how ML algorithms can be
employed to address the most relevant issues limiting the adaptation of DH to increasingly
stricter requirements in society.

Motivation and Objective

Our objective was to understand and discuss to what extent the current state-of-the-art
ML has addressed the key problems in the DH industry. Knowledge about how advances
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in ML have addressed relevant problems in DH is essential to determine any (mis)matches
between these two fields. Such knowledge will help establish an anchor for future ML
and DH research. By employing a literature review and expert insights, the article aims to
serve as a reference to the current state-of-the-art, while identifying gaps, challenges and
future opportunities.

With a market share of 50% in Nordic countries (with limited use of fossil fuel sources),
2–10% in Western European countries (with still a high reliance on fossil fuel sources) or 55%
in northern China or Korea and stream systems in the US, it can be expected that adapting
old generations of DH systems alongside newer generations will remain a challenge well
into the future. The difficulty of adapting generations of DH to meet new demands requires
both policy instruments, as well as innovative solutions made available through research.
For example, the European Union (EU) is promoting policies related to decarbonisation
of heating and thermal processes [13,14], which forms a key incentive towards utilising
alternative fuel sources. ML is mainly driven by the ability to collect and store a vast amount
of data and the increasingly available low cost cloud-based computational resources. It has
rapidly been adopted in many process industries, but also other areas with easy access to
structured data, such as road traffic and health care sectors, and increasingly for processing
unstructured datasets, such as images and documents. ML offers several opportunities for
problems related to monitoring of operations and optimisation. However, it has become
increasingly clear that advances in DH-related ML research have a disproportionate focus
on some problem areas, specifically forecasting [15–18], while missing out on several
interesting problems, e.g., substation heat transfer, occupancy comfort, etc.

By comparing and contrasting knowledge synthesised from the above two fields, we
propose a road-map for research in ML and DH, anchored on identified gaps in the current
state-of-the-art. Similar recent efforts identified vital underlying factors influencing thermal
load pattern forecasting in DH networks, alongside the most efficient ML algorithms
applied for District Heating and Cooling (DHC) load/demand forecasting [19]. In the
current article, we further look at problems of interest from the perspective of the industry
and we propose a road-map for increasing the impact of ML applications in DH.

2. District Heating Networks

DH as a technology is designed to operate for decades, although the environment in
which those systems operate often evolves faster than expected with changes in population.
All major DH systems in Europe were built in the period of 1950–1980, and designed for
a 20–30 year economic lifetime, although today many of these remain in operation. With
continued urbanisation accelerating the urban sprawl, these networks need to be adapted to
meet additional and growing demands. This primarily concerns higher expected standards
of service, generally achieved through improved monitoring, planning (lowered need for
overcapacity) and other forms of optimisation.

The process of delivering heat involves several sub-processes that together constitute
the DH value chain:

1. Supply (production) of heat from, e.g., Combined Heat and Power (CHP) plants,
boilers or recovery of surplus heat;

2. Distribution of heat;
3. Transfer of heat to customer (substation, mostly owned by customer);
4. Consumption of heat at residential homes, offices, public buildings and indus-

tries/firms.

For each of the processes in the value chain, the heating networks need to adapt to
overcome several challenges, originating from a number of trends, such as:

A shift from monopolies to a competitive market. DH has been monopolised (similar
to power and water distribution) in most countries but is gradually deregulated and
exposed to competition. The transition toward a competitive DH market is well underway
and will only become more serious in the future. DH, as a technology, is desired by the EU,
but the question is whether DH companies will be able to prevail and flourish in the rapid
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shift towards electrification that will intensify competition, e.g., with heat pumps. Such
a competitive market will result in vertical and horizontal competition between different
actors at different levels of the value chain.

A shift from a local, centralised to distributed heat supply. A transition from mono-
polies to competitive markets will also result in more decentralised DH networks. Large
central plants will gradually be replaced by decentralised heat sources involving multiple
actors. To meet the increasing demand created by the urban sprawl, distributed supply
networks will be a better alternative compared to centralised supply.

Cross-sector city collaboration, between city planning, construction and the infra-
structure utilities (heating, cooling, water, sewage water, fibre optic and electric power),
will need to be improved to share investment costs, thus adding new actors and further
decentralisation of DH systems. Such distributed and decentralised supply networks will
create new opportunities for incentives as a result of competition.

A shift from infrastructure centric to a process and service centric industry. A de-
centralised and competitive DH network will empower customers by offering them the
possibility to select their heat provider. As such, the DH network will have to shift focus
from infrastructure centric to a processes and service centric industry. The traditional front-
end of DH has been the border of the customer property, which means that the substation
is owned by the customer. From efficiency and operation points of view, this division of
ownership has caused excessive pumping of hot water (and more heat losses), due to poor
performance of the substations and the secondary heat system of the customers. In tradi-
tional DH operations, the inefficiency cost has partially been neglected. In the adoption
of 4GDH, with lower temperatures, this inefficiency is intolerable. In parallel, the DH
companies must come closer to their customers and offer them new services (generating
new revenues and reducing costs). The challenge of Capital Expenditures (CAPEX) is often
neglected in the extremely infrastructure intensive DH industry [20] and by the academic
community. Large production plants are expensive but will gradually be phased out when
the 4GDH and 5GDH are phased in.

A shift from high temperature infrastructure to low temperature infrastructure. Re-
duction of temperatures in DH supply and distribution is important to meet one of the
major challenges to DH decarbonisation. Lower temperatures allow for capturing more
surplus heat, making DH more circular. Surplus heat can substitute the use of primary
energy, fossil fuels and renewable energy. Lower network temperatures will also result
in less heat losses. Furthermore, decentralised systems will generally reduce the distance
between the energy production and consumption, thus providing an opportunity to reduce
heat losses even further.

2.1. Operational Challenges in Adapting District Heating Networks

From the Machine Learning perspective, there are two broad directions in which data-
driven techniques can support the DH management and lead to more efficient operations:

1. Control—as a material flow process, a large portion of DH systems rely on improving
control mechanisms at various points in the value chain. Optimal control comes down
to the determination of the best control signals for the four levels of control in DH
networks [11], as shown in Figure 1. Inadequate incentives and control strategies
often result in wasteful energy supply margins.

2. Analytics—insufficient use of analytic tools for evaluating the result from a combina-
tion of control strategies leads to lack of information about the true performance of
the DH system. By improving the use of analytics, more comprehensive situation
assessment can be used in planning and feedback to the control units, akin to model
predictive control systems.
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Figure 1. Typically, the control of heat consumption and heat production in DH networks is achieved
by means of 4 independent, non-interacting control actions. Loop #1 controls the heat consumed by
the individual buildings, #2 controls the individual flow rate of the DH water being consumed. By
aggregating individual building consumption, numbers #1 and #2) also determine the heat demand
and flow rate in the entire network. At the production side, #3 controls the pressure levels in the
network and #4 controls the supply temperature of the network to fulfill the heat demand and flow
rates from the buildings [21].

Control strategies involve active interaction in the operation of the network in real-time,
such as modifying the flow rates, the temperature levels or the power flows, depicted in
Figure 1, to meet a certain objective for either a subsystem, the global network or even the
energy system level. Analytics, on the other hand, involve off-line supervision of the network
behaviour. There is no active real-time intervention in the network operation, but monitoring
and interpreting the overall behaviour of the network provides knowledge and insights useful
to optimise the efficiency, sustainability or profitability of the network. We present some
specific inefficiencies that are common at various phases in the value chain as follows:

2.1.1. Heat Supply

In this phase, heat energy is produced from CHP plants, boilers, geothermal, solar or
recovery of surplus heat. In the production process, a number of control challenges need to
be addressed:

1. Unit commitment, e.g., choice of boilers to switch on. This relates to the sequence of
production units to start or stop, where each one can also be controlled continuously
within their own limits. In a CHP system, units could also include heat supply
generated from solar cells whereby their output production is uncertain. Further,
the amount of energy stored in the systems (thermal inertia) needs to be taken into
consideration to fully understand the heat supply capacity. To be able to solve these
problems in a good way, the heat load should be predicted, as well as the production
for each of the supply units in a CHP system. Short-term heat load forecasting is
therefore very important, since, without knowing how the heat demand of a network
will evolve in the coming hours, it is impossible to select which units are the most
efficient ones to switch on. In case large CHP units or heat pumps are present, which
trade their power on the intra-day or reserve power markets, forecasting of the power
price is also important.

2. Supply temperature levels and pressure heads. Apart from the control of the units
to be switched, the control of supply temperature to the network, as well as the
control of the pressure head in the network, can introduce inefficiencies into the DH
system. Typically, these controls are static and rule-based. The set point of the supply
temperature is, e.g., often determined based on the (moving average of the historic)
outdoor temperature and a heating curve. The pressure head is often determined
by measurements on critical locations in the network. These rule-based controllers
guarantee the heat delivery to the costumers; however, they do not optimise towards
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economical or ecological parameters. Rather than adopting a rule-based approach, a
more dynamic control of the supply temperature and pressure head can help optimise
setting temperature levels and controlling pressure heads.

2.1.2. Heat Distribution

The distribution side consists of the piping network, booster pump installations,
thermal storage systems and heat transfer stations between primary and secondary net-
works. All of these can create inefficiencies in a DH network. The distribution side is often
a black spot for DH network operators, since only limited data are collected. Furthermore,
as long as there are no heat transfer stations, thermal storage or booster pump stations
present, as often is the case for small and medium-sized networks, no control points are
present in the distribution networks. In that case, optimal control of the distribution side is
not relevant. In case one or more of the mentioned installations are present, the control can
be optimised in the same way as described in the production side section. Furthermore, as
an advanced form of thermal energy storage, the temperature in the supply pipes of the
network could be temporary increased at times, resulting in the use of the network pipes
themselves as thermal energy storage.

Analytics is seen as more important in the distribution side. Detection of leakages or
insulation faults in the piping system remain a major source of inefficiencies and will gain
importance over time. Simulation-based analysis can be used to detect malfunctioning com-
ponents in the network, whereby measured behaviour is compared to simulated behaviour,
and an alarm is raised once the difference exceeds a certain threshold. Since each network
has its own topology, it is very complicated to build a simulation model for each individual
network, especially for large networks. ML could have great potential in this field, by building
automated, black- or grey-box data-based simulation models as an alternative.

2.1.3. Heat Transfer

In the building substations, the flow rate from the DH network is controlled both to
power the building’s space heating circuit and the domestic hot water production circuit.
This is typically done by means of a traditional PI-controller which makes sure that the
supply temperatures in those circuits meet their set points. The set points, in turn, are often
calculated based on a heating curve together with an outside temperature measurement
(space heating circuit) or is a fixed value (domestic hot water circuit). This heat transfer
process often results in inefficiencies if not properly managed.

Optimal control in building substations is often referred to as Demand Side Manage-
ment (DSM). By switching from the rule-based heating curve to a more advanced control,
the flow rate (and as a result, also the heating power) to the building can be temporary
reduced or increased. Since buildings contain a lot of thermal mass (concrete, furniture,
etc.), this can be done up to a few hours, without thermostats or tenants noticing. This is
a powerful tool, since it actually uses the buildings as short-term thermal energy storage.
By doing this in a coordinated way between the buildings connected, it is possible to shift
the demand profile of a DH network to a desired shape. Since DH networks are demand
driven, the production will follow this demand profile.

When it comes to analytics, it should be emphasised that a substation consists of a
large number of components (heat exchangers, valves, pumps, control units, etc.), and that
those components can always fail, often without the consumer or the DH network operator
noticing it. A study [21] claims that three quarter of the substations work sub-optimally.
The result of these errors always is a bad cooling of the DH water in the substation, and
therefore a higher return temperature back to the network than necessary. Such faults in
substations constitute an important source of inefficiencies and this has led to increased
interest in fault detection.
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2.1.4. Heat Consumption

Behind the substation in the building are the installations for space heating and
domestic hot water provision. These are (often like the substations) typically not owned
by the DH network operator. However, for the optimal operation of the DH network,
they are very important, since they determine the water flow rate, return temperature
and power consumption necessary to minimise DH inefficiencies. The ability to influence
secondary-side behaviour, e.g., thermostatic radiator valves, thermostat clock schemes and
night setback modes, balancing of heating supply circuits, control of Domestic Hot Water
(DHW) storage vessel, etc., could result in strategies for reducing inefficiencies.

Additionally, at the consumption side, analytics is important. Indeed, malfunctioning
installations on the secondary side of the substations cause high return temperatures to the
substations, which are then transferred to the heating network. Therefore, supervision of
the building installation itself should be considered to detect unwanted bypasses, malfunc-
tioning thermostatic radiator valves, unbalanced hydraulic circuits, etc. User behaviour
is another major source of uncertainties. The ability to make user-friendly visualisation
applications, or advanced applications like natural language generation can offer a strategy
for minimising such inefficiencies.

3. Method

With the aim of understanding to what extent current state-of-the-art ML has ad-
dressed relevant problems in DH, this research article was developed as follows: (1)
workshops to create domain insights, (2) surveys and literature review to refine ideas
from those workshops and to establish an inventory of existing knowledge, (3) analysis
of information acquired and (4) a road-map proposal building on identified knowledge
together with expert opinions. Figure 2 provides a summary of the iterative process and
how each iteration was validated.

Figure 2. Method outline indicating iterations through which the article was developed and how each
iteration was validated. Each iteration involved closed collaboration between DH and ML researchers.

1. Brainstorming in workshops to better understand the problem area.
This article employed brainstorming, a technique that is common in the idea gen-
eration phase of several scientific endeavours [22]. Through a series of workshops
under the umbrella theme of data analytics for DH, discussions between experts from
different R&D projects, as well as DH industrial experts, it became clear that even
with a common aim, there were discrepancies in the approaches adopted by most ML
experts from the expectations of the DH community, e.g., different expectations on
the type and quality of data to be collected from DH networks. The interdisciplinary
nature of the workshop participants with different competences exposed the different
expectations related to data analytics and DH.

2. Inventory of existing knowledge. Problem areas identified in step 1, above, were
further expanded though a review of relevant literature in the area, but also through
consultative discussions with DH experts. For instance, we draw inspiration from
work done in the Digital road-map for district heating and cooling (https://www.euroheat.

https://www.euroheat.org/wp-content/uploads/2018/05/Digital-Roadmap_final.pdf
https://www.euroheat.org/wp-content/uploads/2018/05/Digital-Roadmap_final.pdf
https://www.euroheat.org/wp-content/uploads/2018/05/Digital-Roadmap_final.pdf
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org/wp-content/uploads/2018/05/Digital-Roadmap_final.pdf accessed on 15 May
2021) to identify interesting problem areas in DH. To understand how ML research has
developed in the area of DH, a state-of-the-art literature review was completed [23].
To identify the most relevant research, a search was conducted using the phrase
“Machine Learning and District Heating” with the help of Harzing’s Publish or Perish
software [24].
In line with the clear trend of recent growth in the field, the search was limited to the
last 10 years (2010 to 2021) during which most of the research in the area has been
reported (see Figure 3).
Initially, 1000 articles were selected. These were pre-screened by reading through the
title and in some cases the abstract of each article when the title was unclear. We cross-
validated against each others perception to minimise the selection bias. The result
was a selection of 179 relevant articles. By relying on a meta-search resource such as
Harzing’s Publish or Perish, the most relevant research articles could be indexed from
a variety of databases. The search was limited to “Machine Learning and District
Heating” because the authors came to the conclusion that no relevant article will
exclude such keywords even if some may also include Artificial Intelligence.

3. An analysis of existing knowledge to determine the extent to which various DH
relevant problems have been addressed by ML research.
Other literature reviews were analysed to determine whether they provided enough
of an overview of how ML has been applied in the field of DH. However, we perceived
that the identified review studies left room for focusing on the discrepancies between
relevant industrial challenges in DH and the state-of-the-art applications of ML. Still,
they were invaluable in shaping our understanding of the current state-of-the-art in
ML applications and district heating. Relevant information was extracted from the
selected articles in a way that allowed for identification of major themes in terms
of the problem area addressed. We make use of relevant review articles together
with our own experiences, when determining how different DH problems have been
addressed by existing ML research.

4. Proposed road-map for DH and ML. Finally, we have identified several mismatches by
comparing the trends in scientific articles, culminating from the above steps, against
knowledge from DH experts and our own experiences (see Section 5). Building on
those identified (mis)matches, we propose a road-map for ML in DH (see Section 6).

Figure 3. Number of published articles addressing "Machine Learning and District Heating" over the
last 10 years (2010–2021).

4. Machine Learning Applied to District Heating

Understanding how advances in ML have addressed the key problems in DH can
help to determine any (mis)matches between these two fields, i.e., whether ML research
efforts are directed towards the most relevant problem areas in the DH industry. As ML
technology continues to advance and the cost of data collection continues to decrease, it
is no surprise that the previous decade has witnessed a surge in research efforts aimed at

https://www.euroheat.org/wp-content/uploads/2018/05/Digital-Roadmap_final.pdf
https://www.euroheat.org/wp-content/uploads/2018/05/Digital-Roadmap_final.pdf
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applying ML in DH. As a consequence, there has been several review studies aimed at
understanding the overall landscape of this new research focus.

Slow improvement in DH technology through newer generations promises to result in
better data collection opportunities, e.g., high resolution data instead of today’s—at best—
1 h or 15 min intervals. These opportunities can enable DH systems to satisfy the demands
of today’s society, e.g., supplying DH at low temperatures while optimising the indoor
climate. Improving building energy performance, reducing costs, satisfying regulatory
constraints, meeting sustainability goals, etc., are some of the challenges addressed by
published ML research [15,25]. A synthesis of how ML has been applied in DH begins in
this section with an overview of previous review studies to highlight current knowledge,
knowledge gaps and possible future directions. This is followed by an analysis of articles
focusing on ML and DH published in the 2010–2021 period.

4.1. Highlights of Existing Literature Reviews

To understand existing literature reviews in this area, we provide an overview of the
knowledge gaps identified in various studies, the types of ML models reported, datasets
employed and building characteristics (features) studied. Most research articles on the
application of ML in DH have occurred in the last 10 years [7,15,18]. Each of the review
studies addressed different research gaps, considered research articles over different time
periods and considered various building types.

Some choose to cover the full breadth of ML methods, while others limit the scope of
the ML models included [7,26]. Knowledge gaps addressed by previous review studies
include: (1) lack of an overview of building performance models, in general [7,26], and the
lack of data driven approaches for building performance, in particular [15,25], (2) lack of
comprehensive studies of ML in urban building energy performance [7], (3) lack of ML
performance and accuracy assessment on DH problems [16] and (4) lack of open datasets
for benchmarking algorithms [15]. Other review studies highlight the need to compare the
forecasting performance of common ML algorithms such as Artificial Neural Networks
(ANN), Support Vector Machine (SVM) or Gaussian-Based Regression (GBR) [7,18]. An-
other gap is the lack of discussion of the key strengths and weaknesses of “white-box”
models, “black-box” models, but also hybrid models, with focus on building modelling
and energy performance prediction [26].

Many review studies have synthesised and reported on the different types of ML
models applied in the energy sector as a whole. Examples include a study of the application
of ANN, SVM, GBR and clustering methods when analysing building energy performance
as a whole [8]. A similar review [7] came up with the conclusion that ANN, Support
Vector Regression (SVR), Genetic Algorithm (GA) and Random Forest (RF) were common
methods applied to individual buildings. Reviews have also focused on specific methods,
such as deep learning [18] and ANN [17].

To improve prediction accuracy, there is increasing interest in using hybrid methods,
e.g., ANN and SVM [8,15]. None of the reviews found a single overall best model although
SVM was reported to perform relatively better compared to ANN and regression-based
methods, yet the most used method for building energy prediction remains ANN [16].

Review studies have found no evidence to suggest that a given ML model is superior
for a specific problem domain, but rather, the suitability of every model is determined
by the choice of features and size of data [8]. Feature selection is difficult because the
desired features rarely align with available data. For example, most ML forecasting models
do not incorporate building space functionality, occupancy and humidity, due to lack of
data even though this could be a useful feature [7,16]. As a result of the type of data and
models used, predictions are often limited to short term [16,25]. In general, reviews have
found it difficult to establish an overview of the dataset employed due to a lack of detailed
information about the dataset from various studies. In addition, there is lack of testbeds
and automated and streamlined data-processing for building energy prediction [15].



Appl. Sci. 2021, 11, 6112 10 of 20

Model accuracy has been a difficult topic in the reviews due to the lack of a common
set of criteria through which ML models can be compared in the domain of building energy
forecasting [7]. Still, many articles make attempts to validate their findings by comparing
performance with other algorithms on similar tasks [15,17].

Following the analysis of the scope of various review articles, we can now state that
ML research for DH is dominated by energy demand forecasting [7,8,15,19,25]. Follow-
ing the analysis of the scope of various articles, we do not know of any review that has
looked into the relevance of ML research problems from the perspective of the DH industry.
Thus, the current study does not only aim to understand what problem areas have been
addressed as in Ntakolia et al. [19], but dares to further make an assessment of the relevance
of such problems.

4.2. Review of Recent Research Articles

Among the papers we have reviewed, the vast majority focused on forecasting energy
demand. More specifically, among the 179 articles we studied, 137 addressed a concrete
DH challenge, most commonly proposing new ML solutions (the rest consisted primarily
of surveys and position papers, or papers outside the scope of this discussion). A stunning
98 of them considered forecasting to be this challenge, making it 72% of the field. The
second most popular category was anomaly detection, with only 9 papers. In the spirit
of focusing on gaps rather than the obvious, we will not discuss forecasting further here,
especially given that—as indicated above—several reviews of DH forecasting have already
been published. Instead, we will focus on more unique papers addressing the less popular
areas, since we believe they deserve increased visibility. Thus, Figure 4 offers a clearer
picture that would have been difficult to observe if forecasting studies were included. In
Figure 4, the studies have been categorised according to the DH value chain, with the size
of each bubble suggesting the extent to which the problem has been addressed for the
given category.

The second most popular emerging research topic in DH is anomaly and fault de-
tection. Many of the studies, as shown in Figure 4, utilise primary-side billing data from
substations. Different from other tasks, methods for anomaly detection show significant
variability depending on the specific cases that they are applied to [27]. While some meth-
ods are developed in unsupervised fashion, there are also techniques using supervised
Machine Learning that require ground-truth knowledge of the faults. Evaluation of differ-
ent methods also vary based on their characteristics and the nature of the datasets used.

Abghari et al. [10] proposed a higher order mining approach to identify faulty substa-
tions. Their method consists of sequential pattern mining on raw data, clustering analysis
and Minimum Spanning Tree (MST) construction on the extracted patterns. The dataset
used in this study consists of hourly average measurements from 82 buildings located in
Southern Sweden. Another method in [28] utilises clustering and association analysis to
identify substations with abnormal operations. Clustering is used to find distinct operating
patterns, while association analysis is used to learn substation operating rules. They applied
their method on consumption data from the primary side of a DH system located in China.
On the other hand, the work in [29] proposes a two-level fault detection and isolation
scheme with Convolutional Neural Networks (CNNs). They use simulated data labelled
with different fault scenarios to evaluate the performance of their model. Bode et al. [30]
also leveraged supervised ML and trained different classifiers with real-world and syn-
thetically generated data containing ground-truth faults. In their analysis, they applied
and compared Logistic Regression (LR), k-Nearest-Neighbour (kNN), Classification and
Regression Tree (CART), Random Forest (RF), Naive Bayes Classifier (NB), Support Vector
Machine (SVM) and Multi-layer Perceptron.
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Figure 4. Bubble plot of different problems and ML studies after removing forecasting. White spots
in this diagram indicate that we could not find any relevant study for the problem stated on the
vertical axis. The size of the bubble (normalised for each category) is proportionate to the number of
studies identified in each category of the DH value chain.

Leakage detection can be seen as a specific case of anomaly detection which aims
to detect water leakages in DH pipes. The majority of the works addressing this task try
to locate leakage faults using infrared images of the areas where the underground pipes
are located. These approaches mainly use supervised ML methods trained with these
images to classify leakages. For example, ref. [31] applies and compares traditional ML
algorithms such as LR, RF and SVM and a deep learning-based CNN model to automatically
classify leakage faults on infrared images, captured by an Unmanned Aerial Vehicle (UAV).
Similarly, [32] uses RF and [33] uses different linear and non-linear classifiers such as Linear
Discriminant Analysis (LDA), linear SVM, RF and AdaBoost. Different from other methods,
the work in [34] uses the measurements from flow meters and pressure sensors instead of
images to detect leakages. They implement a hydraulic simulation model to simulate all
possible leakage faults in DH networks, and train an XGBoost classifier with data including
flow and pressure readings and simulated faults.

Having in-depth knowledge of the customers and a better understanding of their heat
use is important for effective district heating operation and management. Especially for the
consumption side, analysing how customers consume heat helps to implement new control
strategies, personalise demand management for specific customer groups and empower
consumers to optimise their behaviours. However, properly segmenting customer groups
and discovering their typical and atypical consumption patterns is a complex task, espe-
cially for DH systems involving many customers with different characteristics. Therefore,
data-driven methods using different Machine Learning techniques to automatically cluster
various customers and their consumption behaviours attracted many efforts recently.

Calikus et al. [35] proposed an approach to automatically cluster customers and extract
heat load patterns. They have represented each customer’s consumption behaviour as
a weekly aggregation over four different seasons and used k-shape clustering to cluster
these weekly consumption profiles. They extract the most common shape in each cluster as
well as atypical patterns that do not show similarity with any groups. They have applied
their work on data collected from two district heating networks in southern Sweden and
included 2200 substations in total. Another work in [36] has done clustering analysis on
residential buildings in Denmark. They have used daily heat consumption to represent
the behaviour in each building and applied k-means clustering. Their analysis involves
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primary side consumption data of 8000 single family houses. Although majority of the
works have used the classical and widely used approach k-means, there are some works
that have chosen alternative methods such as Partitioning Around Medoids (PAM) [37],
Gaussian Mixture Models (GMM) [38] and Nearest-Neighbour clustering [39].

Since clustering is an unsupervised Machine Learning task, it is often difficult to
properly evaluate whether the clusters found are actually meaningful. Most of works use
internal clustering evaluation measures such as Silhouette Coefficient [35,40], Bayesian
Information Criterion (BIC) [36,38], Davies–Bouldin Index [40], Dunn Index [37] and so on
to evaluate their approach and also to determine the appropriate number of clusters. Other
works involve visual analysis of computed clusters to demonstrate the cluster quality and
interpret the characteristics of the discovered consumption patterns. For example, [35]
incorporates a visual inspection step, in which a domain expert assigns corresponding
control strategy based on the characteristics of each cluster.

There are also a few even more unique papers, addressing other tasks in DH using
Machine Learning. For example, De Somer et al. [41] proposed a reinforcement learning-
based approach for optimal scheduling of the heating cycles of the domestic hot water.
In another work [42], a prediction model of secondary supply temperature is built using
indoor temperature and building thermal inertia to achieve more refined control. On
the other hand, Potočnik et al. [43] focuses on assessing the quality and condition of
valves installed in district heating systems. A method for classification of valve sounds is
proposed, based on acoustic features and Machine Learning models.

5. Gaps between Industrial District Heating Needs and Current Machine
Learning Research

This section describes the (mis)match between current ML research and key challenges
faced by the DH industry. It builds to a large extent on the academic and industrial
experience of the authors, and is consequently somewhat subjective. Regardless, we
believe that presenting this perspective is going to be valuable in making ML applications
more effective in DH.

By far, the most common application of ML to DH is energy consumption fore-
casting [7,8,15,19,25]. This can be used for planning production, but without additional
capabilities such as demand side control, the usefulness of detailed consumption forecast-
ing is limited. Other, arguably more important, DH challenges are largely ignored. A
possible explanation for this discrepancy is the availability of primary side energy, volume
and sometimes temperature data, already collected by the DH operator for billing and
monitoring purposes. Consequently, research has focused on what can be done with the
readily available data. The situation is likely to remain until standardised IoT solutions
become more prevalent.

5.1. Benefits of Demand Forecasting

Accurate forecasting of the demand, however, only brings value to the extent that
it can be used to improve (or optimise) network operations. The most commonly cited
idea is reducing resource consumption through modulated production, based on predicted
demand. Given that most networks tend to use a combination of different energy sources
and fuels, from intermittent energy sources over CHPs, heat pumps to coal and oil boilers,
forecasting has the potential to allow greater production flexibility. Renewable energy sources
can be used whenever available, and fossil fuels only as the last resort. However, there
still needs to be sufficient safety margins to guarantee that the heat is available on demand.
In this context, there are clear diminishing returns related to precision of the forecasting,
while imposing critical constraints on the robustness (i.e., significant under-estimations of the
demand can render any given solution completely infeasible). These practical considerations
are seldom addressed in the literature of ML as applied to the field of DH.

The long lead times from production to the heat being available at a given point
in the heat network, which can sometimes be several hours, pose another constraint for
planning. District heating is, in this regard, quite different from many other domains, even
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ones superficially very similar, like electric grids. It has been shown that such long-term
effects can be difficult to estimate purely from the primary side data. Instead, a promising
direction is to investigate and perform peak shaving by modulating demand and reduce
the use of more expensive or non-renewable fuels. The customer side demand could be
explicitly lowered in periods where no cheap and sustainable energy is available, and
increased when there is an abundance of it. This, in turn, requires integrating with the
corresponding heating systems as well as indoor temperature sensors to guard against
control actions jeopardising the indoor climate. While there are a number of commercial
solutions available, the heterogeneous nature of buildings, and the range of possible
objective functions, makes this difficult.

Finally, on the even more long-term perspective, accurate forecasting can provide a
significant benefit for infrastructure planning. It amounts to using better-understood, and
hence “narrower” safety margins. However, in the papers we have reviewed, there is no
indication of any ML-driven analysis targeting these aspects.

5.2. Cost–Benefit Analysis

The disconnection between the ML demand forecasting research and the business
of running a heat network is clearly seen in the choice of metrics used by forecasting
papers. Almost all used metrics (the most common being Root Mean Square Error (RMSE)
and Mean Absolute Percentage Error (MAPE)) are symmetric, i.e., they penalise over-
estimations and under-estimations equally. However, from a DH perspective, there is a
considerable difference between the two errors. Over-estimation of the demand leads to
some amount of energy waste, while under-estimation makes the district heating network
fail at its primary function, i.e., to provide sufficient heat to the customers. The latter
situation is unacceptable and the forecasting must take this into account. To be able to trim
the margins of production, one would need to understand the statistical distribution of
demand and how it evolves over time, with some degree of confidence. Hence, there is
room for research on facilitating a cost–benefit analysis of provisioning the network, the
suitable choice of metrics and forecast methods taking the refined metrics into account. In
the review, we have found no study comprehensively addressing this issue. Ultimately,
the goal is to minimise the operation costs of the network as a whole, while ensuring heat
delivery to all the customers according the contracts. Clearly, while accurate demand
forecasting is an important piece in this puzzle, these potential benefits will not be realised
without using the forecasts to control the network. In our literature review, few papers
have made this connection. From that perspective, the forecasting itself is severely over-
researched, often without the exact purpose mentioned, or with it being expressed only
vaguely. At the same time, many other important aspects are ignored. At a high level, a
DH network control algorithm is supposed to, for a specified time horizon, decide on the
optimal values for all relevant parameters. The most important of those are the operation
for different heat sources (which ones to start, and which to shutdown). However, it also
includes supply water temperature and pressure, as well as possible differential pressures
for pumping stations. This guarantees the timely arrival of a sufficient amount of heat
to every customer, with reasonable safety margins, both in terms of energy and time.
Automatically controlling the complete network would require dedicated hardware on-site,
or excellent footing with the company supplying the Building Management Systems (BMS)
or substation controllers.

Today, doing it at scale is still expensive and complicated, but many different actors in the
market, which include the BMS companies, are feeling the pressure to stay relevant and thus
might become more approachable. For example, an optimal bottom-up control of an entire
DH grid from many independent BMSs is an interesting long-term goal worth pursuing.

While it is relatively easy for a research group to negotiate with a heat provider for access
to (anonymised) primary side data, gaining access to a large number of indoor temperature
readings often requires a considerable effort in the form of negotiating with building owners,
mounting adequate sensors and actuators throughout the buildings, connecting everything
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to the internet, managing privacy consideration, etc. This will hopefully improve with more
streamlined IoT solutions, but today, it still presents a serious obstacle.

Another aspect is the challenge to decide on an objective function for model predictive
control. In simulations, this is often simplified into keeping the indoor temperature at, for
example, 21 ± 1 °C, but the indoor temperatures can vary much more depending on time
of year, time of day, weather and social behaviours. While there are standards providing
guidance on thermal comfort assessment, such as EN ISO 7730 or ANSI/ASHRAE Standard
55, it is unclear how to valuate indoor climate changing over time, and more research is
needed. At the same time, these difficulties are not a sufficient reason to limit the research
progress to the degree we see today. It is worth noting that many larger building owners
have already been involved in less streamlined research efforts, and can be reluctant to
participate in yet another experiment. ML researchers must substantially address the
business case upfront, rather than as an afterthought. In a sense, the community has used
up a lot of “initial trust”, and needs to make up for that in the future.

5.3. Practical Considerations

The key practical consideration is that the primary side measurements for substations
are used for billing purposes and thus tend to be available for research. Any other informa-
tion, from failure histories to network measurement data and network topology, is harder
to get a hold of. The access to certain data will likely improve with ongoing digitisation
efforts, but the topology (at least in Sweden) is classified as part of the critical infrastructure,
which effectively prevents it from being freely shared for research purposes. This opens up
for ML research into reconstructing the topology to an adequate degree, at least sufficiently
in determining the time lags throughout the network, without compromising the safety and
security. It could be, for example, based on primary side temperatures and measurements
from the heat plant, using variations in temperature to chart the network, etc.

Interesting work is recently appearing in the context of using ML for condition monit-
oring and predictive maintenance of different parts of network infrastructure [19,44,45].
Continuously monitoring the operation of complex systems, such as a DH network, is a
suitable task for ML as models can typically be trained on acceptable system characteristics.
Predicting faults and optimising productivity can be done as long as suitable methods
work without extensive human supervision: without requiring the designer to think of all
possible faults beforehand; able to do the best possible with limited data, without the need
for dedicated new sensors; scaling up to “one more system and component” and multiple
variants; and finally, adapting to changes over time and remaining relevant throughout the
lifetime of the system. However, development and especially evaluation of predictive main-
tenance and fault detection is severely hindered by the lack of ground-truth information
about the failures and repairs.

These practical obstacles explain the gaps in research quite convincingly, however,
ultimately they run the risk of locking the development in a “local minimum”. The market
hardly looks further than the next quarter. The competition in the DH industry is not
particularly fierce, and therefore limited pressure is there for companies to make high-risk,
high-benefit investment—instead, a stable and conservative approach is common. Thus, it
is important that solutions provide immediate benefits in the current market, or they will
likely be ignored. However, in the long run, such a conservative approach could seriously
hinder achievement of environmental sustainability goals.

Finally, there is of course a number of AI and ML applications that could be used in
the DH, but are in no way specific to it—for example, marketing, customer support and
many others. We have not addressed them here at all, since the scope of this paper is to
focus on specific needs of the DH sector.

5.4. Control and Optimisation

There are convincing indicators (following research and practice) that the single most
useful adaptation of current ML research would be to consider the control and modelling
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problems together. One of the main reasons is because control strategies open the doors to
supervised ML and enable interpretation of results for unsupervised ML, e.g., anomaly
detection. It brings certain challenges, of course, not the least of which is the lack of
data related to the network control (e.g., network structure and current parameters) and
also optimisation criteria. It could be interesting to consider the comparison between
model predictive control systems (that can be built on top of the proposed ML forecasting
methods) against existing classical control systems.

The benefits of linear versus non-linear or deterministic versus stochastic models
should be evaluated, as well as the robustness of different solutions.

The understanding of a trade-off between building a simplified model and solving
the optimisation exactly, versus building a more complex (but also more accurate) model
and only obtaining approximate solution, is lacking.

The next step, then, is the optimising operation of the entire DH network on a global
scale, where the complexity and volatility clearly necessitates employing ML-based tools.
This requires, first, a reliable model of the network, including the pipes, the substations,
customers, heat exchanging equipment, etc. One can differentiate between networks with
constant supply temperature throughout the year, and those where supply temperature
changes throughout the year. Depending on the existing customers and the equipment
base, one might compare variable flow (with constant temperature) to a constant flow
(with variable temperature) and find that one is better suited than the other, given specific
local circumstances. Generally, there is a need to build a network model that is a simplified
version of reality. Realistically, there is no benefit of modelling every pipe and every substa-
tion. One needs to identify “critical objects” spread throughout the network. Assuming an
existing network and including demand-side management already leads to quite complex
optimisation. One can next, of course, also imagine optimising the planning, development
and building of the DH network itself.

Another aspect, seldom addressed in the literature but which constitutes a challenge
in the industry, is how to configure and manage a large heterogeneous system. In the
framework of model predictive control (MPC), it is certainly possible to build one model
per building, however, that comes with each one having their own choice of parameters
for how to solve the corresponding optimisation problem outside the actual mathematical
formulation, e.g., regularisation, scale factors, error tolerance, number of iterations, etc.
Making these kinds of adaptations at scale is challenging. A well-informed and interested
engineer can make a reasonable choice for any given substation; however, it is not possible
for the whole network consisting of thousands of substations, most with only somewhat
reliable data.

As with any other industrial process, the efficiency of the heat generation process itself
is of interest. However, we expect that any such improvements will have to be tailored to
the particulars of the energy plant in question and are better addressed as such, rather than
in the framework of heating networks, which is about the optimal use of the heat.

6. A Road-Map for Machine Learning and District Heating

Applications of ML in DH will create more value if researchers gain broad knowledge
about different limitations in the DH industry. DH will become effective if the right in-
centives are designed to influence the behaviour of the customer, offering a better indoor
climate and utilising low carbon energy sources.

We believe that to achieve the milestone with cost-effective development and applica-
tion of ML in DH, there is a need for a road-map that identifies important goals necessary to
increase the impact of ML solutions in DH, as DH systems become increasingly digitalised.

We identify goals that are largely dependent on developments in society at large, but
specifically match the patterns of development in the DH industry. These goals emerge
from the context of operations of DH (Section 2), current state-of-the-art research in ML
and DH (Section 4) and gaps between these two areas (Section 5). We subsequently discuss
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important barriers that hinder progress on the way towards achieving these goals. Finally,
suggestions are given on how these barriers can be addressed.

6.1. Goals for Machine Learning in District Heating

The extent to which the following goals are achieved will determine how effective ML
is, as an enabling technology, for adapting DH to meet the future challenges.

1. Scalable analytic solutions for large networks with tens of thousands of customers.
2. Tools for modelling building behaviour, and evaluating the quality of such models.
3. Forecasting integrated with optimisation of the DH network components.
4. Incorporating network topology into ML models.
5. Standardised protocols for secondary-side data collection.
6. Commonly accepted evaluation metrics for indoor climate comfort.
7. Providing customers with tools and incentives to control energy use for peak shaving.
8. Development of shared data portals and benchmark datasets with ground-truth data

clearly distinguishing normal operation from data with faults.
9. Around the clock monitoring of the conditions of the DH network combined with

predictive maintenance.
10. Utilising ML to demonstrate the potential of low temperature DH.

6.2. Barriers in the Application of Machine Learning and District Heating

With increasing digitalisation, decarbonisation, advances in sensor technology, low
cost processing and storage in the cloud and advances in ML algorithms, we believe that
the stated goals can be achieved. However, a number of specific barriers need to be taken
into consideration, which also explain why these goals have not been achieved yet. We
have divided the barriers into groups of technical, business and organisational barriers.

Technical barriers. The primary technical challenge is the data availability. Successful
research in ML depends on having sufficient “good” data, i.e., relevant, high quality and at
a sufficient resolution of the purpose it is used for. Access to such good data, however, de-
pends to a large degree on a value stream, from: sensor and measurements, data collection
and communication, data storage and structure, data analytics, presentation of the analysis
to the user and finally the value of the new knowledge to the user. At present day, the ideal
value streams hardly exist. It will take years of systematic iterations of improvements to
reach “good” data. However, ML researchers need to work on demonstrating the benefits
that these efforts will ultimately provide—even if this is a long-term strategy. Until this
initial work is done, no serious efforts on collecting more comprehensive data will begin in
the industry. ML research needs to provide input on the specific needs, and influence the
type of data collected by the DH industry.

In addition, it is not enough that there are data, but this data must be well-understood
and categorised comprehensively. For example, knowledge about what data can be con-
sidered to be fault free, versus data that contain operations with faults, is highly necessary.

Another example is the ownership and access to the data. This can be exemplified with
the “closed substation” barrier. We need substations with open communication protocols,
so that they can be controlled from the outside with the help of third party solutions.
This is necessary to facilitate the district level ML solutions that can be incorporated to
each substation.

Business barriers. The key in this category are barriers for realising customer incentives.
Business models need to create opportunities for tools to incentivise customers to positively
impact their energy use behaviour. In general, purely economical and monetary factors are
not enough to achieve that, and other solutions are needed, e.g., through visualisation. In
addition, energy tariffs rewarding consumers for reducing their return temperature or to
offer the flexibility of their building mass for better control can be implemented.

The second barrier concerns advancements in the DH industry. There are many
obstacles to innovation and change of DH companies and property owners. These indus-
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tries traditionally focused on exploitation (stable conditions and weak competition) and
thus there is little incentive for exploration, to radically develop and improve.

Organisational barriers. The most important barriers arise from the DH ownership
structure. The distributed aspect makes it difficult to create solutions based on “big
picture” optimisations. For example, it would be beneficial if network operators own the
building substations, so that they can control them directly. Similarly, insufficient customer
awareness leads to sub-optimal decisions and configurations. Increasing the awareness of
consumers can give them insight into their energy use, for example through gamification
or similar tools.

Other barriers are due to changing the relation between regulations and fair compet-
ition. As previously described, we do see external influences that will change the stable
conditions and the mode of exploitation; decarbonisation (change of fuels), electrification
(more competition), deregulation (no monopolies). This can drive changed ownership,
most likely leading to less public ownership across different parts of the DH industry.

The final barrier is lack of cross-disciplinary cooperation. The new paradigm of
AI/ML will require new organisational interactions. Successful research will engage teams
of data scientists, domain specific scientists (material, energy, control, etc.) and maybe even
organisational experts (innovation, business process improvements). The research groups
must team up with representatives from tech suppliers, from DH companies and from the
building property industry.

6.3. Suggestions for Different Stakeholders

The current situation affects different stakeholders in different ways, and gives them
different opportunities for advancement. In this section, we present selected suggestions
for each of the five stakeholder groups: DH companies, DH customers (primarily building
owners), the research community, technology suppliers and consultants and policy makers
at local, national and international levels.

In terms of “priority of problems” from the industry, it is important to notice that there
is not one “industry” to begin with. What is important to research or develop depends
on whether one is selling to, or collaborating with, the energy companies (production or
distribution), maintenance firms, building owners, etc. Additionally, DH networks are
not operating in a vacuum. Other solutions, such as heat pumps and ventilation systems,
must be taken into account. Much of the DH industry is still somewhat catching up with
the introduction of heat pumps, which has, in some cases, benefited from using the heat
pump within its optimal range of operation, and only tapping into district heating during
peak demand periods when the heat pump capacity does not suffice any more. That mode
of operation is very clearly economically infeasible for DH operators. How to regulate
these different solutions is an open question, and it is handled very differently in different
countries. Condition monitoring and predictive maintenance will be gaining prominence,
especially techniques that do not look at one substation in isolation, but can analyse the
complete network [46]. It is crucially important in particular for low temperature networks,
which require correctly behaving substations to achieve the desired effect. To a large extent,
it is still an open area for research.

Innovations and improvements would also benefit from a more openness among
DH companies to communicate their challenges and problems. The DH companies and
their customers (property owners) need to better understand the possibilities that come
with digitalisation and machine learning, the opportunities for increasing efficiency and
generating new revenues (digital service design). If DH companies and the building
industry communicate their challenges better, and the research community understands
this context better, the impact of the research will increase.

On the other hand, both the DH companies and their primary customers must put
some effort into better understanding the possibilities that come with new technologies
(digitalisation and machine learning). The opportunities for increasing efficiency and
generating new revenues (digital service design) are vast, but ultimately, nobody else
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can do this work. To survive long-term, they must become aware of the problems and
challenges that will increase in importance in the future. An example direction is working
on better alignment of usefulness and value to the user—there is a lot of talk in DH
companies about customer engagement and dialog; however, very few concrete ideas for
useful services have been proposed in the literature or implemented in practice.

To understand the real problems and to develop solutions, the researchers must form
cross-disciplinary teams. There is also a paradigm shift in research methods. The traditional
researcher (model development) in energy systems as well as in data science could perform
good research from a desktop, on his own. The new research in the era of digitalisation
and ML must be aligned with real data which consequently requires deep interaction with
many actors, and with technology suppliers with the required knowledge and capabilities.

Policies, such as taxes, incentives and regulations on local, national and EU levels also
have a potential to be smarter, focusing more on effectiveness, rather than blunt focus on
energy volumes without considering time and place.

7. Discussion and Conclusions

To remain competitive and relevant, heat network technologies need to progress
towards lower temperatures and greater use of renewable energy sources. The latter
encompasses the reuse of low temperature waste heat and Combined Heat and Power
as well as heat networks serving as a buffer for offloading electric networks integrating
intermittent renewable energy sources, such as wind and solar electric systems. The overall
system is in need of solutions for planning, monitoring, optimisation and control, and ML
is likely part of the answer.

Efforts are being made by academia, leading niche tech suppliers, leading European
heat network operators and IT giants, the latter three by their very nature with better access
to data. This poses a challenge for academic ML, which needs to keep up to date with
industrial advances while competing with publications backed by IT giants.

The aim of this article was to chart and discuss to what extent state-of-the-art ML has
addressed key challenges in the DH industry, to identify discrepancies between the two
fields and to propose a road-map with suitable goals for how to increase the impact of ML
in DH. The shift towards more efficient low temperature networks stands to transform
the industry, but the large costs of infrastructure, to be paid upfront but discounted
over the several decades, constrain the possible solutions. Not only must the system
account for continued urbanisation, but it must also remain cost-effective when subjected
to increasingly stringent requirements with respect to decarbonisation and electrification.
This opens up for rethinking the way DH systems are designed and operated, for example,
the use of distributed heat supplies to address urban growth.

The ongoing digitisation of the DH industry, in combination with today’s increasingly
affordable and capable IoT solutions and cloud-based computational resources, seems ready
for disruption: to use AI, in general, and ML, in particular, to address the challenges faced
by DH, and for the creation of new businesses structured around the same. This explains
part of the extreme growth in the number of research publications focusing on applying
ML techniques to DH. However, based on our experience in the field, and review of the
state-of-the-art, we perceived a mismatch between the most popular research directions,
such as different forms of forecasting, and the challenges faced by DH. Consequently, we
suggested a number of goals, ranging from open source benchmark datasets to methods for
empowering consumers, to increase the impact of ML in DH. The goals involve both technical
and non-technical barriers to be overcome. We hope they will serve as a source of inspiration.
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