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Featured Application: Digital histology for tumoral tissues discrimination.

Abstract: Histology is the diagnosis gold standard. Conventional biopsy presents artifacts, delays,
or human bias. Digital histology includes automation and improved diagnosis. It digitalizes mi-
croscopic images of histological samples and analyzes similar parameters. The present approach
proposes the novel use of phase contrast in clinical digital histology to improve diagnosis. The use of
label-free fresh tissue slices prevents processing artifacts and reduces processing time. Phase contrast
parameters are implemented and calculated: the external scale, the fractal dimension, the anisotropy
factor, the scattering coefficient, and the refractive index variance. Images of healthy and tumoral
samples of liver, colon, and kidney are employed. A total of 252 images with 10×, 20×, and 40×
magnifications are measured. Discrimination significance between healthy and tumoral tissues
is assessed statistically with ANOVA (p-value < 0.005). The analysis is made for each tissue type
and for different magnifications. It shows a dependence on tissue type and image magnification.
The p-value of the most significant parameters is below 10−5. Liver and colon tissues present a
great overlap in significant phase contrast parameters. The 10× fractal dimension is significant for
all tissue types under analysis. These results are promising for the use of phase contrast in digital
histology clinical praxis.

Keywords: digital histology; phase contrast imaging; biomarkers; biomedical optics; fractal analysis

1. Introduction

Histopathology is the gold standard for diagnosis. Current methods are based on
direct microscopic observation of stained tissue slices by the pathologist [1]. Conven-
tional biopsy is particularly indicated for tumoral tissue discrimination, even in early
stages. The procedure presents several limitations, including artifacts generated by tissue
processing, delays in the diagnosis caused by manual screening, or errors provoked by
the pathologist bias [1]. Digital histology contributes to the automation of the procedure
and to improved diagnosis by means of more objective parameters. Digital histology is
implemented by digitalizing microscopic intensity images of conventional biopsy sam-
ples. Afterwards, advanced image analysis algorithms can be applied, including pattern
recognition or color enhancement [2]. Three-dimensional (3D) reconstructions can be made
from a series of consecutive 2D samples. Fluorescence biomarkers can be also detected and
delimited on the sample image. Several biomarkers can be processed on the same image,
for instance in a multiplexed image [2]. Digital histology allows a deeper analysis of biopsy
samples, including numerical analysis, and it facilitates sharing the images among centers
by telepathology [2]. However, it is based on conventional histological samples, so the
artifacts of histological processing are still present, and sample processing time is high.
Furthermore, usually, applied image analysis techniques analyze similar information as
that seen by pathologists [1,2].
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Label-free imaging could further improve digital histology analysis. It would prevent
processing artifacts and reduce processing time. One of the problems is that biological
tissues do not provide sufficient intrinsic contrast to distinguish the structures of interest,
and staining is needed. Biological tissues are also intrinsically highly turbid, due to strong
variations of refractive index. This fact complicates the observation of internal structures
without physical sectioning. Optical scattering plays a significant role in light–tissue
interactions. Light scattering techniques have been widely used for label-free diagnosis
with different setups [3]. Some of the techniques include optical sectioning, such as Optical
Coherence Tomography [4,5]. The problem with optical sectioning is the lack of images
with very high resolution: below 1 micron. Microscopic observations allow practically
diffraction-limited resolution. The use of several intrinsic contrast parameters has also been
proposed, such as polarimetry [6,7], fluorescence [8,9], or spectroscopy [10–13]. However,
the contrast of these techniques is usually limited and requires extrinsic biomarkers in the
case of fluorescence.

In this work, we propose a novel approach that consists of exploiting the high vari-
ation of refractive index of biological tissues for diagnosis while maintaining very high
resolution. We propose to employ label-free fresh tissue slices and phase contrast imaging
for biological sample analysis. This approach allows first to eliminate artifacts that may
appear in the fixation and staining stages of conventional biopsy procedures. Those pro-
cedures can be avoided due to the intrinsic refractive index variance that phase contrast
exploits. It also reduces the sample processing time. Phase contrast imaging provides
novel tissue characteristics that are particularly relevant in morphostructural changes,
which are typical in tumoral tissues. This technique could complement or even serve as
the main basis for disease diagnosis [14]. The present approach is based on Quantitative
Phase Imaging (QPI) techniques [15]. The power spectral density of the optical beam is
modeled by a Von Karman spectrum that depends on both the optical beam and biological
tissue parameters [16]. Several parameters of the biological tissue are obtained by phase
imaging processing, such as the external scale, the fractal dimension, the anisotropy factor,
the scattering coefficient, or the refractive index variance [17–21]. The outer scale and the
fractal dimension are obtained by modeling histological images using fractals. Refractive
index variance depends on the gradient of the histological images. The anisotropy factor
and scattering coefficient are related by the scattering-phase theorem to the intensity gradi-
ent of the phase contrast image. Samples of healthy and tumoral liver, colon, and kidney
are extracted and analyzed. Phase images are obtained, and phase contrast parameters
are implemented and calculated. A statistical analysis is made in order to evaluate the
significance in the difference of the parameters for healthy and tumoral tissues as a function
of tissue type. The present approach can be easily implemented in clinical praxis by using
phase contrast microscopy and dedicated software on fresh samples.

2. Materials and Methods

This section describes the materials and methods employed in the work. It includes
the description of the histological samples, the phase contrast microscope, and the phase-
sensitive biomarkers that will be used.

2.1. Histological Samples

Fresh samples of healthy and tumoral tissues from conventional biopsies made rou-
tinely on patients were obtained, following ethical guidelines of the biobank at the Marqués
de Valdecilla University Hospital. Biological samples of liver, colon, and kidney were
employed. Samples were frozen and sliced by a microtome, with a thickness of less than
6 µm. No fixing or staining procedures were applied to the samples, as these processes
could alter tissue properties, particularly refractive index. Samples were collected on
treated microscopy glass slides. Samples were maintained at 4 ◦C for three hours before
measurement by phase contrast microscopy.
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2.2. Phase Contrast Microscopy

Phase contrast microscopy (PCM) presents advantages over conventional microscopy.
It allows label-free, noninvasive imaging of live cells [15]. The image field is the superposi-
tion of fields originating at the specimen. For coherent illumination, the image field U can
be decomposed into its spatial average U0 and fluctuating component, U1(x, y):

U(x, y) = U0 + [U(x, y)−U0] = U0 + U1(x, y). (1)

Taking the Fourier transform of Equation (1):

Ũ
(
kx, ky

)
= δ(0, 0) + Ũ1

(
kx, ky

)
. (2)

The average field U0 is the unscattered field, which is focused on axis by the objective,
while U1 corresponds to the scattered, high-frequency component. The decomposition
in Equation (1) describes the image field as the interference between the scattered and
unscattered components. The intensity image corresponds to an interferogram in the
spatial domain,

I(x, y) = |U0|2 + |U1(x, y)|2 + 2|U0||U1(x, y)| cos[∆φ(x, y)] (3)

where ∆φ is the phase difference between the scattered and unscattered fields. Although in
the case of optically thin specimens, this phase ∆φ exhibits small variations, the intensity
is very sensitive to ∆φ changes around ∆φ = π/2. Shifting the phase of the unscattered
light by π/2 provides an increased intensity contrast. This can be accomplished by a phase
contrast filter with the transfer function a.eiα. Applying the function over a phase object of
unit amplitude, for small φ, and choosing α = ±π/2, we obtain [15]:

I(x, y) = a2 ± 2aφ(x, y). (4)

According to this expression, the unscattered light produces a linear intensity with respect
to φ. The attenuation factor can be employed to further improve contrast.

A phase contrast microscopy setup was employed. Samples were placed on a motor-
ized stage for automatic spatial sweeping. Phase contrast was implemented by an external
phase ring combined with several phase contrast objectives with magnifications of 10×,
20×, and 40× (Nikon 10× Plan Fluor 0.30NA Ph1 DLL, 20× SPlan Fluor ELWD 0.45 NA
ph1 ADM, and 40× SPlan Fluor ELWD 0.60 NA ph2 ADM). Images were recorded with a
CCD camera (Orca-R2, Hamamatsu) and stored in gray-scale 12-bit format.

2.3. Phase Contrast Parameters

The distribution of refractive index in a general turbulent medium requires a statistical
description of the propagating beam. In this case, no temporal variation is expected, as we
are dealing with turbid biological samples. Consequently, the analysis of phase contrast
parameters must be based on the theory of random processes.

The most relevant statistical characteristics are the first two moments of the refractive
index spatial distribution: the mean value

n0

(→
r
)
=
〈

n (
→
r )
〉

M
(5)

and its covariance function

Bn

(→
r1,
→
r2

)
=
〈[

n
(→

r1

)
− n0

(→
r1

)][
n
(→

r2

)
− n0

(→
r2

)]〉
M

. (6)

In a field propagating through a weakly scattering medium, the associated dispersion
relation can be expressed as
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〈k2〉 = n2
0β2

0

(
1 +

σ2
n

n2
0

)
(7)

where 〈k2〉 is the second-order moment of the wavevector, 〈k2〉 = 〈k2
x〉 + 〈k2

y〉 + 〈k2
z〉,

with angular brackets denoting ensemble averaging, n0 is the average refractive index, β0 is
the wavenumber in vacuum, and β0 = ω/c, and σ2

n is the spatial variance of the refractive
index. The refractive index variance of a transparent sample can be calculated from the
measured phase contrast image as [18]

σ2
n =

1
β2

0
〈|∇φ|2〉. (8)

Equation (8) shows that the refractive index variance can be extracted from the mean
gradient intensity of the phase contrast images. The scattering coefficient (µs) can be also
estimated as a phase contrast parameter. It can be calculated using the scattering-phase
theorem [17]

µs =
〈∆∅2(r)〉r

L
(9)

where 〈∆∅2(r)〉 denotes the spatial variance of the phase and L is the thickness of the
tissue sample.

The anisotropy factor can be calculated, as biological tissues are intrinsically highly
scattering media. The estimation employs the scattering-phase theorem and can be imple-
mented by

g = 1− 1
2k2

0

〈|∇[∅(r)]|2〉r
〈∆∅2(r)〉2r

(10)

where k0 is the incident wave vector and ∇[∅(r)] is the phase gradient.
Optical turbulence is usually explained by the presence of irregularities in the refrac-

tive index: the so-called “turbulent eddies” [16]. They are due to fluctuations in various
physical properties, such as temperature, pressure, and inhomogeneous concentration of
species. Different parts of the sample can be mixed by external or internal factors, such as
cell growth or fluid transfer. This fact provokes energy transfer among eddies of different
sizes. The largest possible size of an eddy is defined as the outer scale L0 of turbulence.
Larger eddies break down into smaller ones until their size reaches the lower limit and en-
ergy dissipates. In order to study these characteristics in histological samples, the spectrum
of index inhomogeneities is fitted to the equation [22]

Φ(κ) =
4πσ2

n L2
0(m− 1)(

1 + κ2L2
0
)m (11)

which is a Von Karman spectrum, with the exception of the exponent m, that can assume
values other than 4/3. m is approximately equal to one-half of the measured slope in
the range of power-law scaling. Its magnitude is related to the fractal dimension of a
two-dimensional surface, d f = 4−m.

The spatial distribution of the main components of biological tissues has been shown
to present self-similarity [23]. This facilitates the potential use of fractal analysis in these
structures [24]. The goal is to identify spatial statistical regularities that could be described
by power laws. The fractal dimension defines the stability characteristics of an image
regarding scale transformations. The fractal dimension of an image can be estimated by
several techniques: box-counting, correlation, sandbox, or even Fourier spectrum [25].
The box counting method consists of a grid with boxes of size ε superimposed on an image.
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The number of boxes containing any part of the figure is recorded as N(ε). The procedure
is repeated for different sizes of ε, and the fractal dimension d f is calculated as

d f = −
log[N(ε)]

log(ε)
. (12)

d f is usually calculated from the negative value of the slope of the linear regression of
log[N(ε)] on log(ε), following

log[N(ε)] = −d f log(ε). (13)

3. Results

The previously described procedure is applied to histological images of kidney, colon,
and liver. Sixteen samples of healthy and tumoral tissues of each type are employed.
The next sections show the results of the image acquisition, calculation of parameters,
and statistical analysis.

3.1. Phase Contrast Images

Each histological sample is imaged by the previously described phase contrast mi-
croscopy setup. Images are obtained with 10× (866 × 660 µm; pixel size 0.64 µm), 20×
(433 × 330 µm; pixel size 0.3225 µm), and 40× (219 × 167 µm; pixel size 0.1632 µm) mag-
nifications. Special attention is given to pixel saturation and field of view. A total of
252 images were acquired. Figures 1–3 show images of healthy and tumoral liver, colon,
and kidney, respectively, at 10×, 20×, and 40×.
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Figure 1. Histological images of healthy and tumoral liver tissue with different magnifications: (a) 
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Figure 1. Histological images of healthy and tumoral liver tissue with different magnifications:
(a) 10× healthy; (b) 10× tumoral; (c) 20× healthy; (d) 20× tumoral; (e) 40× healthy; (f) 40× tumoral.
Hepatic cells and bile ducts can be appreciated. Tumoral images (b,d,f) show a general tendency to
structural disorder.
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Figure 2. Histological images of healthy and tumoral colon tissue with different magnifications: (a) 10× healthy; (b) 10× 
tumoral; (c) 20× healthy; (d) 20× tumoral; (e) 40× healthy; (f) 40× tumoral. Healthy images (a,c,e) show intestinal glands, 
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moral. Healthy images (a,c,e) show intestinal glands, while tumoral images (b,d,f) show disordered
structures as a consequence of the pathology.
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Figure 3. Histological images of healthy and tumoral kidney tissue with different magnifications:
(a) 10× healthy; (b) 10× tumoral; (c) 20× healthy; (d) 20× tumoral; (e) 40× healthy; (f) 40× tumoral.
Healthy images (a,c,e) show ordered structures, among others tubular structures, as corresponds to
nephrons, glomeruli, and renal ducts. Tumoral images (b,d,f) show a more homogeneous appearance,
as a consequence of tumor growth.

Clear differences can be appreciated in these images, particularly regarding tissue
structure, as expected. Phase information shows increased contrast in these fresh specimens.
They would appear almost transparent under conventional microscopy. It is difficult to
assess the pathological state from the direct observation of the images, particularly in
Figure 1c,d, or in Figure 3a,b. The previously shown phase contrast parameters are
calculated in the next section in order to solve this issue automatically.

3.2. Phase Contrast Parameters Calculation

The phase contrast parameters previously introduced and described in Section 2.3
are implemented in Matlab® and applied to the images. The results of the calculation
are shown in Tables 1–3, depending on tissue type. The mean and standard deviation
of each phase contrast parameter is obtained. The results are grouped by magnification
factor, with the aim of healthy and tumoral tissues discrimination. For instance, in Table 1
for liver samples, refractive index variance is a better differentiation parameter for 10×
magnification, compared to 20× and 40×. Similarly, the scattering coefficient difference is
more significant for 20×magnification in comparison with the results at 10× and 40×.

Table 1. Results of phase contrast parameters for liver samples, at different magnifications, shown as
mean ± standard deviation.

Sample RIV 1 SC 2

[rad2/mm] AF 3 FD 4 OS 5 [µm]

10× healthy 0.0339 ± 0.0045 26.27± 11.02 0.97307 ± 0.08658 2.192± 0.214 81.72± 11.91
10× tumor 0.0269 ± 0.0060 24.91± 20.25 0.99527 ± 0.00531 2.572± 0.349 88.27± 10.73

20× healthy 0.0261 ± 0.0098 73.36± 33.04 0.99906 ± 0.00017 2.312± 0.372 40.24 ± 4.71
20× tumor 0.0229 ± 0.0048 23.64± 21.03 0.99433 ± 0.00713 2.472± 0.181 40.63 ± 7.72

40× healthy 0.0190 ± 0.0071 33.44± 21.59 0.99887 ± 0.00039 2.893± 0.155 25.84 ± 3.77
40× tumor 0.0205 ± 0.0045 57.04± 40.94 0.99894 ± 0.00070 2.876± 0.212 22.87 ± 5.52

1 RIV = Refractive Index Variance. 2 SC = Scattering Coefficient. 3 AF = Anisotropy Factor. 4 FD = Fractal
Dimension. 5 OS = Outer Scale.
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Table 2. Results of phase contrast parameters for colon samples, at different magnification, shown as
mean ± standard deviation.

Sample RIV 1 SC 2

[rad2/mm] AF 3 FD 4 OS 5 [µm]

10× healthy 0.0299 ± 0.0053 22.55 ± 9.67 0.98495 ± 0.06128 2.358± 0.242 87.41± 15.99
10× tumor 0.0247 ± 0.0053 20.96± 15.37 0.99612 ± 0.00395 2.609± 0.266 84.35± 11.26

20× healthy 0.0228 ± 0.0078 56.21± 30.09 0.99877 ± 0.00207 2.476± 0.324 45.98 ± 8.89
20× tumor 0.0234 ± 0.0043 31.05± 28.51 0.99503 ± 0.00594 2.490± 0.218 42.67± 10.53

40× healthy 0.0182 ± 0.0051 47.01± 25.30 0.99911 ± 0.00068 2.998± 0.162 29.55 ± 5.82
40× tumor 0.0195 ± 0.0037 42.68± 35.75 0.99853 ± 0.00124 3.003± 0.207 25.28 ± 5.53

1 RIV = Refractive Index Variance. 2 SC = Scattering Coefficient. 3 AF = Anisotropy Factor. 4 FD = Fractal
Dimension. 5 OS = Outer Scale.

Table 3. Results of phase contrast parameters for kidney samples, at different magnification, shown as
mean ± standard deviation.

Sample RIV 1 SC 2

[rad2/mm] AF 3 FD 4 OS 5 [µm]

10× healthy 0.0244 ± 0.0019 28.35 ± 5.13 0.99821 ± 0.00021 2.722± 0.104 118.89 ±
48.99

10× tumor 0.0246 ± 0.0022 15.85 ± 9.81 0.99602 ± 0.00141 2.528± 0.097 97.87± 19.89
20× healthy 0.0200 ± 0.0015 51.38± 25.40 0.99808 ± 0.00340 2.764± 0.079 51.46 ± 9.13
20× tumor 0.0202 ± 0.0042 31.47± 26.54 0.99808 ± 0.00152 2.576± 0.113 45.84± 10.41

40× healthy 0.0156 ± 0.0008 30.65± 31.55 0.99617 ± 0.00572 3.256± 0.089 34.25 ± 5.05
40× tumor 0.0174 ± 0.0019 38.56± 14.45 0.99927 ± 0.00022 3.253± 0.147 29.92 ± 6.47

1 RIV = Refractive Index Variance. 2 SC = Scattering Coefficient. 3 AF = Anisotropy Factor. 4 FD = Fractal
Dimension. 5 OS = Outer Scale.

Similar comparisons can be established for the other parameters. For instance,
the anisotropy factor is quite similar between healthy and tumoral tissues for all types,
even for different magnifications. Although there are promising parameters for healthy
and tumoral tissue automatic classification [26,27], a deeper quantitative statistical analysis
is needed. This analysis appears in the next section.

3.3. Statistical Analysis

The previous results are statistically analyzed. First, a boxplot analysis is made for
each parameter as a function of tissue type and magnification. Selected results are shown
in Figures 4 and 5. These figures show the median (red line), the distance between the
first Q1 and third Q3 quartiles (blue box), and the distance between the maximum and
minimum (dotted line). Figure 4 shows results for fractal dimension of liver tissue at 40×,
Figure 4a, and refractive index variance of kidney tissue at 20×, Figure 4b. In both cases,
practically the entire range of variation of the healthy tissues is comprised in the variation
range of the tumoral samples. As a consequence, measurements from both samples would
be difficult to differentiate. Figure 5 represents the refractive index variance of colon tissue
at 10×, Figure 5a, and scattering coefficient of liver tissue at 20×, Figure 5b. In the former,
there could be still a margin to potentially differentiate between the tissues, although there
is a significant overlap. This process would be much easier in the latter case, Figure 5b,
where there is practically no overlapping between both sample types. Consequently,
the differentiation procedure would be easier.
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(SC) of liver tissue at 20×.

The previous boxplot analyses show the potentiality of some examples of phase
contrast parameters for healthy and tumoral tissue discrimination. However, a deeper
analysis is needed to study the significance of the parameters. An ANOVA statistical
analysis is performed to analyze the significance of the potential average values of the
parameters. The analysis is made for two different groups of healthy and tumoral tissues
as a function of magnification. Tables 4–6 show the results of the ANOVA analysis for
each tissue type. The results include the Snedecor F and p-values for each phase contrast
parameter and magnification. The statistical test checks the hypothesis of equal means
of the parameters. Therefore, there will be significant differences for large F values and
correspondingly small p-values.

Table 4. Results of the ANOVA analysis for phase contrast parameters when comparing healthy and
tumoral liver samples, for different magnifications.

Parameter Magnification F p-Value

Anisotropy factor 10× 0.9166 0.3472
20× 6.1786 0.0197
40× 0.1183 0.7336

Scattering coefficient 10× 0.0481 0.8282
20× 22.5541 0.000065172
40× 3.6385 0.0676

Fractal dimension 10× 11.9962 0.0019
20× 2.0859 0.1606
40× 0.0548 0.8168

Outer scale 10× 2.2382 0.1472
20× 0.0262 0.8726
40× 2.4244 0.1331

Refractive index variance 10× 12.1175 0.0018
20× 1.2167 0.2801
40× 0.3927 0.5363
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Table 5. Results of the ANOVA analysis for phase contrast parameters when comparing healthy and
tumoral colon samples, for different magnifications.

Parameter Magnification F p-Value

Anisotropy factor 10× 0.9263 0.3401
20× 9.8824 0.0027
40× 4.6820 0.0349

Scattering coefficient 10× 0.2152 0.6446
20× 10.3137 0.0022
40× 0.2728 0.6036

Fractal dimension 10× 13.5217 0.00054414
20× 0.0378 0.8466
40× 0.0107 0.9181

Outer scale 10× 0.6673 0.4176
20× 1.5712 0.2155
40× 7.4722 0.0086

Refractive index variance 10× 13.0546 0.00066435
20× 0.1451 0.7047
40× 1.2440 0.2696

Table 6. Results of the ANOVA analysis for phase contrast parameters when comparing healthy and
tumoral kidney samples, for different magnifications.

Parameter Magnification F p-Value

Anisotropy factor 10× 33.0444 0.0000047223
20× 0.00000087686 0.9993
40× 4.1214 0.0527

Scattering coefficient 10× 17.8232 0.00026167
20× 4.1114 0.0530
40× 0.7272 0.4016

Fractal dimension 10× 25.8860 0.000026657
20× 25.5593 0.000029020
40× 0.0058 0.9399

Outer scale 10× 2.2104 0.1491
20× 2.2326 0.1476
40× 3.8885 0.0593

Refractive index variance 10× 0.0780 0.7822
20× 0.0322 0.8590
40× 9.9905 0.0040

4. Discussion

The results shown in the previous sections allow an estimation of the diagnostic
potentiality of the novel phase contrast parameters proposed. The main difference between
conventional or digital histology is based on the collection of phase information of the
optical signal and the subsequent implementation of phase contrast parameters. This fact
allows the use of fresh tissue slices that do not require fixation or staining, unlike conven-
tional samples. This procedure decreases artifacts and processing time. Phase contrast
images were obtained with a phase microscopy setup. Potentially relevant structures can
be appreciated in Figures 1–3. They correspond to liver, colon, and kidney, either healthy
or tumoral, and with different magnifications at 10×, 20×, and 40×. Each image was
processed to calculate the proposed phase contrast parameters: anisotropy factor, scatter-
ing coefficient, fractal dimension, outer scale, and refractive index variance. These results
are shown in Tables 1–3, for each tissue type, state, and magnification, and for selected
cases in Figures 4 and 5. These results are a first approach to discrimination significance.
For instance, in the case of liver at 10× (Table 1), refractive index variance and fractal
dimension seem to have potentially usable differences. On the contrary, scattering coeffi-
cient, anisotropy of scattering, or outer scale do not seem to be useful, as they have values



Appl. Sci. 2021, 11, 6142 12 of 14

that overlap healthy and tumoral samples. The differences seem to be relevant for the
scattering coefficient parameter in Table 1 for 20× compared with the rest of the phase
contrast parameters. It is difficult to establish an a priori good differentiation parameter in
the case of 40×magnification. These tendencies indicate that the validity of the parameters
depends on the magnification factor. It is an expected result, considering that almost all
the parameters are spatially sensitive. A similar analysis can be made in Table 2, which is
devoted to colon tissues, or for Table 3, which contains kidney samples. A dependency on
magnification and phase contrast parameters can be qualitatively stated. Figure 4 shows
the cases of fractal dimension of liver tissue at 40x and refractive index variance of kidney
tissue at 20×. There is practically no area free from overlapping, so differentiation is
expected to be complex. On the contrary, Figure 5 shows a refractive index variance of
colon tissue at 10× and scattering coefficient of liver tissue at 20×. In these examples,
areas of no overlapping exist. This fact enormously facilitates the differentiation.

Although these analyses provide qualitative results, a deeper statistical analysis is
made by using ANOVA, in order to better assess the potentiality of the phase contrast
parameters. The results are shown in Tables 4–6, for the different samples of interest,
liver, colon, and kidney. In these tables, a high Snedecor F value or, equivalently, a low
p-value indicate that healthy and tumoral groups are statistically significant to the degree
expressed by the p-value. The criterion of a p-value less than 0.005 is established to
be considered statistically significant. With this criterion, for the liver case in Table 4,
the scattering coefficient at 20×, the fractal dimension at 10×, and the refractive index
variance at 10× would be significant. Particularly in the case of the scattering coefficient at
20×, the significance would be greater. Interestingly, there are not significant parameters at
40×magnification for this tissue type, and two out of three belong to the 10×magnification.
This fact stresses the relevance of the magnification factor of the images. This factor is
intuitively related with the proposed phase contrast parameters, as they rely on spatially
varying structures that are altered at different magnifications. In the case of colon samples,
as shown in Table 5, the significant phase contrast parameters would be the anisotropy
factor at 20×, the scattering coefficient at 20×, the fractal dimension at 10×, the outer scale
at 40×, and the refractive index variance at 10×. Interestingly, these parameters are the
same as those that affected liver tissue, but adding the anisotropy factor at 20× and the
outer scale at 40×. Nevertheless, the best significance results are for the fractal dimension
at 10× and the refractive index variance at 10×. These parameters do not coincide with
the previous maximum significance parameter for liver tissue, which was the scattering
coefficient at 20×. This fact implies that there is a tissue type dependency in the selection
of the optimum phase contrast parameter. According to the morphostructural differences
of Figures 1–3, it is also an expected result. In the case of kidney, statistically significant
parameters are the anisotropy factor at 10×, scattering coefficient at 10×, fractal dimensions
at 10× and 20×, and refractive index variance at 40×. When compared with colon, there is
a coincidence in the case of fractal dimension at 10×, which was also present in liver.
The other significant parameters are different, with changes in magnification with respect
to colon, and lack of significance of the outer scale. Again, the rationale has to do with the
structural difference of each tissue type and its relationship with the magnification factor.

These results show a promising applicability of phase contrast parameters in digi-
tal histology on fresh tissue samples. In particular, for the tissue samples under analysis,
there is a coincidence of significance in the fractal dimension at 10×magnification. Other pa-
rameters, such as scattering coefficient at 20× or refractive index variance at 10×, present
significance in at least two tissue types. The results show that the clinical application of
these parameters for a general cohort of biological samples would probably require the
consideration of combined magnifications and parameters in a sophisticated classification
algorithm. The fact that the samples are fresh could be on one side an advantage, as sample
processing is eliminated and the procedure is faster. On the other side, it would be a
difficult conservation that could only be done by congelation. Artifacts provoked in the
fixation and staining phases are completely avoided. Novel diagnostic information of



Appl. Sci. 2021, 11, 6142 13 of 14

the samples is extracted, as phase data are discarded in conventional or digital histology.
The potentiality of these novel parameters has been demonstrated. The implementation
of the present approach in clinical praxis would require phase contrast microscopy and
phase image analysis. The main procedure for fresh tissue samples would be the same as
in conventional analysis, thus facilitating adoption.

5. Conclusions

In this work, phase contrast parameters have been proposed for the digital histology
of phase contrast images of fresh biological tissue slices. Health and tumoral liver, colon,
and kidney biological samples have been collected, sliced, and imaged by a phase contrast
microscopy setup at 10×, 20×, and 40×magnifications. Phase contrast parameters have
been implemented and applied to the resulting images by image processing. These results
have been statistically analyzed both qualitatively and quantitatively. The results of the
analysis show a dependency of the significance with tissue type, magnification, and phase
contrast parameter. However, the fractal dimension at 10× is significant in all the consid-
ered cases, and the scattering coefficient at 20× or refractive index variance at 10× are
relevant in two-thirds of the samples.

This work has demonstrated the potentiality of phase contrast parameters for digital
histology. This allows the future consideration of combined classification algorithms,
as long as they provide an increase in diagnostic speed and accuracy over conventional or
digital histology.
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