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Abstract: Medical image quality is crucial to obtaining reliable diagnostics. Most quality controls
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patients and do not reflect directly the quality perceived by radiologists. The purpose of this work
is to develop a method that classifies the image quality perceived by radiologists in MR images.

i The focus was set on lumbar images as they are widely used with different challenges. Three
Quality Assessment to Emulate

Experts’ Perception in Lumbar MRI neuroradiologists evaluated the image quality of a dataset that included T;-weighting images in axial

Using Machine Learning. Appl. Sci. and sagittal orientation, and sagittal T,-weighting. In parallel, we introduced the computational

2021, 11, 6616. https://doi.org/ assessment using a wide range of features extracted from the images, then fed them into a classifier
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P P 1. Introduction

iations.
Many medical diagnoses nowadays rely on medical images and thus depend on the

quality of the acquired images. It is then of prime importance to monitor regularly the qual-
ity of these images [1]. Currently, most of the quality controls are conducted in the context
of the equipment maintenance, using phantoms that usually consist of geometrical shapes
filled with materials emulating biological properties, in highly standardized measures [2].
Yet the image of a phantom does not reflect perfectly the quality and complexity of images
obtained from a real and alive human body, and this type of quality control could not be
conditions of the Creative Commons  SUfficient. During a patient examination, problems can occur inherently for the patient
Attribution (CC BY) license (https://  (motion, difficulties linked to the patient body mass index, etc.), due to the acquisition
creativecommons.org/ licenses /by / protocol that might not be optimal or due to the general state of the system that could
40/). need additional maintenance. If the image quality is affected by some specific patient
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characteristics, not much can be done. However, if the image quality is affected by an
under-optimal acquisition protocol or by the equipment state, one might need to take some
time to analyze the issue and to make the corresponding adjustments.

Besides quality control realized with phantoms, image quality checking can be divided
into two categories: a subjective assessment based on human judgment, and objective
assessment, which is computed with mathematical algorithms on the resulting images [1].
A subjective assessment gives the results that are closest to the expert appreciation—in our
case, a radiologist interpreting a medical image—but it consumes the highly valued time of
an expert and, therefore, it is not practical to implement as a regular image quality control.
An example can be found in [3], where a set of anatomical criteria for MR images of knee
joints is proposed based on expert criteria. On the other hand, the objective assessment
can be divided into two main categories: considering a comparison with respect to a
reference image or considering no reference at all [4-6]. Image quality assessment based on
a reference image is very useful when working on problems such as lossy compression, but
in the context of medical image acquisition, usually, no reference is available. No reference
image quality assessment (NR-IQA) is a challenging task, mainly based on strategies such
as signal-to-noise ratio (SNR) estimation, entropy or different families of mathematical
measures that are far-off from the human perception itself [7-15].

Several works have explored the possibility of modeling natural images [16], and
the estimation of natural scenes statistic features [17]. Yet medical images are not purely
natural scenes. An interesting solution has been proposed in the last few years, to evaluate
the image quality not directly from the acquired images but through the evaluation of the
result of an automatic processing pipeline [18-20]. This can be done, however, for a specific
subset of applications, such as anatomical brain images, where a processing pipeline is
consolidated. Image quality assessment has also been applied through the evaluation of
diagnostic performance using the receiver operating characteristic curve (ROC) [21].

The purpose of this work is to propose a method to classify the image quality perceived
by radiologists in magnetic resonance (MR) images. To be more specific, the focus was
set on MR lumbar images, as they are one of the most common images acquired on MRI
presenting quality issues, according to our local radiologists. We aim at qualifying the MR
lumbar image quality emulating the expert perception. In a future step, this evaluation
of “good” or “bad” quality images reflecting what radiologists would judge, could then
be obtained automatically at the moment of image acquisition and serve as a “traffic light”
indication. A recurrent “bad” quality image would support actions to re-evaluate either
the acquisition protocol, or the magnet maintenance or further analysis of what would
cause reduced image quality.

The main contribution of this work is to show the feasibility of the emulation of the
experts’ perception on medical image quality based on feature extraction using machine
learning. The proposed method was divided into two parts: in the first part, three neuro-
radiologists (NR) evaluated the image quality of dataset that included different types of
lumbar MR images commonly used in clinical practice. In the second part, we introduced
the computational assessment using a wide range of features extracted from the images,
then fed into a classifier system. The machine is trained to learn the classification made
by the experts, based on the features extracted from the images. The feasibility of this
method, of automatic labeling of image quality, is evaluated here in three different cases
of MR lumbar images, of T;-weighting acquisitions in axial and sagittal orientation and
T>-weighting in sagittal orientation.

The article is structured as follows. In Section 2 we present the processing pipeline,
where we explain how the medical exams were obtained and evaluated by experts, and how
we implement the machine learning techniques for image quality assessment of medical
images by means of no-reference features. The main results are given in Section 3. We
discuss these results and the limitations of our proposal in Section 4. In Section 5 we give
some concluding remarks and we outline some future works.
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2. Methods and Materials

A Global processing pipeline is schematized in Figure 1 and undertaken for each
one of the three image types independently. On the one hand, each exam is evaluated
separately by three neuro-radiologists in their regular settings for image visualization,
each one blind to the evaluation of the other NR, according to a previous list of criteria
agreed on and detailed in Section 2.2. According to its average evaluation between the
three NR, the exam is classified as “good image quality” if its Mean Opinion Score (MOS)
is greater than or equal to 3, corresponding to the qualifiers regular, good or excellent
in the subjective evaluation, or as “deficient image quality” otherwise, corresponding to
the use of qualifiers bad or poor in the subjective evaluation. On another hand, a list of
features is the extracted features from the images, as detailed in Section 2.3. These features
are fed to a classifier. Five systems were tested: Linear Discriminant Analysis (LDA),
Quadratic Linear Analysis (QDA), Support Vector Machine (SVM), Logistic Regression
(LogReg) and Multilayer Perceptron (MLP). We will refer to the evaluation by experts as the
“subjective evaluation”, and to the evaluation by machine learning from extracted feature as
the “objective evaluation”. Ethical approval by our local Ethics Committee was obtained.

Image

Learning set: 75 images

NR NR:>
LWMOS: wMOS:z

Expert evaluation
According to details in table 1 Feature extraction

NR; According to details in table 2

WMOSJ

Y_

average wMOS

l

Classification
If average wMOS = 3, then good quality
If average wMOS < 3, then poor quality

Machine learning

Using features extracted
to learn image quality class

Validation
ML applied on Image
Testing set: 20 images

Figure 1. Representation of the workflow used for each image type: T;-weighted sagittal and axial and T,-weighted sagittal.

Details in text.

2.1. Data Set

The development of the MR lumbar images data set involved 95 exams from dif-
ferent origins: our local hospital contributed with 41 exams and 12 exams from a public
database SpineWeb (We have used images from the dataset 1 available at http://spineweb.
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digitalimaginggroup.ca/Index.php?n=Main.Datasets. accessed on 31 October 2017). More-
over, 42 exams were generated by modifying other original exams to count on a wider
range of image quality variations. The modification includes one or a combination of
the following:

¢ Noise addition, with a standard deviation ranging from 0.001 to 0.8

e  Contrast manipulation using power transform with gamma values ranging from 0.7
to 1.15

e Convolution with Gaussian kernel, with the kernel used from 3 x 3 to 6 x 6.

All image modifications were developed in Matlab (MathWorks, Natick, MA, USA).
Each exam includes 3 types of images: T;-weighting in axial and sagittal slices and T>-
weighting in sagittal slices. Each image type was analyzed separately.

2.2. Subjective Evaluation

Three neuro-radiologists, with from 6 to 26 years of professional experience, partic-
ipated in this study. First, the DELPHI method was used among these three experts to
establish the image evaluation criteria and the relative weightings of these criteria [22-24],
as shown in Table 1. To obtain such a list, we proceeded as follows: a list of criteria of
what was relevant in the image quality was obtained first by an external observation of
the radiologists” method of reviewing each type of image, while they were verbally ex-
pressing their observations. This list was then submitted as a questionnaire to the each NR.
Agreement on which criterion to use was obtained. Once the list of criteria was defined,
agreement was easily obtained by the three NR on their respective weight. Each criterion is
evaluated using a Likert scale, with scores corresponding to: 1—bad, 2—poor, 3—regular,
4—good, 5—excellent. According to this scale and the weight of each criterion, each exam
obtains one grade per NR, and then a weighted Mean Opinion Score (wWMOS) is calculated
by averaging the scores given by the three NR.

Table 1. List of criteria used for the subjective image quality evaluation, elaborated by three neuro-
radiologists, using the DELPHI method. Weighted Mean Opinion Score (WMOS) was calculated
using the weights listed in the second column of this table. A higher criterion weight implies a greater
importance for this specific criterion.

Exam Type Criterion Weight Criterion
Sagittal Ty 2/50 Visualization of vertebral bodies
2/50 Visualization of spinal cone
3/50 Visualization of facet joints
2/50 Signal from bone marrow
5/50 Overall evaluation
Sagittal T, 3/50 Signal homogeneity in vertebral bodies
1/50 Visualization of the entrance of basivertebral
venous plexuses
3/50 Contrast between vertebral body and
intervertebral disc
3/50 Spinal cone visualization
3/50 Homogeneity of spinal cord signal
5/50 Distinction between spinal roots
5/50 Overall evaluation
Axial Ty 1/50 Similarity of signal between muscles:
paravertebral and psoas
5/50 Definition of the edge of the intervertebral
discs
1/50 Visualization of fascias or grooves of
subcutaneous fat
1/50 Root path through epidural fat

5/50 Overall evaluation



http://spineweb.digitalimaginggroup.ca/Index.php?n=Main.Datasets
http://spineweb.digitalimaginggroup.ca/Index.php?n=Main.Datasets

Appl. Sci. 2021, 11, 6616

50f15

2.3. Objective Evaluation

Image feature extraction was undertaken in Matlab, in a semi-automatic way. Some
features were evaluated on a Region Of Interest (ROI), others over the entire slice. The
ROIs were positioned manually within vertebral bodies, intervertebral discs, fatty tissues,
psoas, and paravertebral muscle in three different slices located in the center of the acquired
volume. Image manipulation was conducted by engineers, blinded to the process and
results of the “subjective evaluation”. The dataset is composed of three different cases
of MR lumbar images, of T;-weighting acquisitions in axial and sagittal orientation and
T-weighting in sagittal orientation. Three different slices were obtained for each exam
modality. On the one hand, for the sagittal exams (T} and T;), 26 features were extracted
from each of the three different slices, obtaining a total of 78 variables. From these features,
12 of them were computed from the whole image and 14 from several ROIs (8 SNR, 2 CNR,
3 Uniformity, and 1 Image Sharpness in fat). Moreover, for the axial exams, 16 features
were extracted from each of the three different slices, obtaining 48 variables. From these
features, 12 of them were computed from the whole image and four from several ROIs
(2SNR, 1 CNR, and 1 Image Sharpness in fat).

Some features were selected to depict different characteristics known to influence
image perception, such as spatial resolution or presence of noise; other features correspond
to a mathematical description of the image not directly related to human perception. Some
of the features are sensitive to spatial resolution, such as pixel dimension, slice thickness,
or quantification of “image sharpness” relative to the presence of borders within the image.
Other features are sensitive to the presence of noise or signal homogeneity, such as signal-
to-noise ratio (SNR),contrast-to-noise ratio (CNR), or “uniformity” of the signal within an
ROL Some features are sensitive to the presence of artifacts: we used the index proposed
by Wang et al. [25], and also quantification of the ratio of the energy present in the signal in
the foreground and the background. In the case of aliasing artifacts, the background energy
is altered. The Wang index is a no-reference image quality metric made initially to measure
distortions caused by JPEG compression on natural images. This measure is explored
here for its utility in the noise and intensity non-uniformity detection. It is used in its
implementation made public by their authors (https://github.com/dcatteeu/JpegQuality.
accessed on 20 July 2019).

Less “intuitive” characteristics were also included so that another approach of image
description is taken into account, different from the one trying to quantify parameters that
could explain human perception directly, such as contrast or spatial resolution. In this
category, we find measures of entropy, spatial, and spectral flatness. Image representations
based on histograms are quite popular, and entropy is among the most widely used.
Image distortions have been observed to affect the histograms of pixel intensities [26].
The histogram-based Shannon entropy could be an indicator of noise and intensity non-
uniformity. An unpredictable image, i.e., nonredundant, in the spatial domain, will tend to
have a white or flat looking spectrum. Conversely, predictable images will possess colored
spectra; that is, their spectral shapes exhibit peaks. The spectral flatness measure is widely
used to quantify signal information and compressibility [27]. A complementary quantity
has been proposed, spatial flatness, which quantifies image shape [28].

The features extracted from the images are detailed in Table 2. S represents the pixel
intensity, S; represents the average of intensities in region i. I represents the image and
I, a vector created from the image columns. B is the number of intensity levels present
in the image, and py an estimation of the probability of occurrence of the k' gray level. F
represents the Fourier transform of the image and VS, the gradient evaluated in pixel
(#,v). Ny and Ny, represent matrix size in x and y direction, respectively, and N,;, stands
for the number of pixels present within a specific ROI or foreground or background. The
foreground was separated from background first by user interaction, identifying a pixel
from each region, then contrast was enhanced by histogram manipulation and equalization,
a Wiener filter was applied, and a unique threshold was identified by the Otsu method.
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Table 2. List of features extracted for the objective image quality evaluation. Variables are explained in the main text.

Feature Definition Apply to
Slice thickness From DICOM metadata Whole image
Pixel dimension From DICOM metadata Whole image
Brightness Average intensity Whole image
Image CNR max (1) — min(I) Whole image
Relative CNR Ié"‘?gﬂ Whole image
rightness
Signal to Noise Ratio SNR; Si | 5%z -t In sagittal exams: applied on
three different ROIs in vertebral bodies,
in fatty tissues and two intervertebral
discs. In axial exams: applied on
ROl in psoas and paravertebral
muscles and one in fatty tissues.
Contrast to Noise Ratio CNR;; (S -3)) [0%s] -1 In sagittal exams: applied
on vertebral bodies vs. disc,
and vertebral body and disc vs. fat.
In axial exams: applied on fatty tissues
vs. psoas and paravertebral muscles.
U=1- A4D: \where i . i i
Uniformity U In sagittal exams: applied on ROIs in

AAD _ ZNPW Si=Si three
prx
vertebral bodies

Foreground Background Energy Ratio 7 where E = ZN pix $2 within

Whole i
FBER foreground and background resp. e Tmage
Wang Index See [25] for details Whole image
1 VSW i
Image Sharpness NN Zu ) Zv |5 Suzz Whole image
. Same as Image Sharpness, but applied in L
Image Sharpness in fat ROT within fat ROI within fat
Shannon Entropy —YB | prlog(py) Whole image
Entropy Power SpectralFlatness * o 1)317 T (§ Whole image
NN,
#
Spatial Flatness ( T L (k \2> W Whole image
o Do ? (o)
1
Spectral Flatness ( 1) [F (K )\2) Nty Whole image

Ny N; 2
N(Ny Z . y‘Fv(k)I

2.4. Machine Learning

In the process for classifying exams into “good” or “deficient” it was decided to
apply five techniques of machine learning that are well known and widely used in the
state of the art. Linear Discriminant Analysis (LDA) and Quadratic Discriminant Analysis
(QDA) are classifiers with a linear or quadratic decision limit, respectively, generated from
adjusting the conditional densities of the data classes using the Bayes rule [29]. Another
of the most used algorithms is the Support Vector Machine (SVM) technique. The SVM
is a supervised learning classifier utilized for the prediction of class labels. It transforms
features into a higher dimension space, where it implements the optimal hyperplane that
describes the classes. The hyperplane work is based on the maximum margin between
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itself and those nearest to it. The nearest set of points are called support vectors [30].
Another method is Logistic regression (LogReg), a statistical approach for predicting binary
classes. The outcome or target variable is dichotomous in nature, and the model computes
the probability of an event occurrence using a logit function [31]. Finally, the Multi layer
perceptron (MLP) is a supplement of the feed forward neural network, and consists of three
types of layers: the input layer (it receives the input signal to be processed), output layer
(It performs the task) and hidden layer (the true computational engine of the MLP). Similar
to a feed forward network, in an MLP the data flow in the forward direction from input to
output layer and the neurons are trained with the back propagation learning algorithm.
MLPs are designed to approximate any continuous function and can solve problems which
are not linearly separable. The major use cases of MLP are pattern classification, recognition,
prediction and approximation [32]. These five algorithms (LDA, QDA, SVM, LogReg and
MLP) were implemented in python 3.6 using the ScikitLearn toolbox in version 0.16.1 [33].

In order to reduce the dimensionality of the input data, the Principal Component
Analysis (PCA) technique is applied, which decomposes the data set into a series of
orthogonal components that explain a desired amount of variance. In the case of the
proposed data set, the amount of features obtained in objective evaluation was reduced
applying PCA, the variance was solved by 99%, and 12 principal components were reported.
For LDA it is used as a singular value decomposition (SVD) solver which is not based on
the calculation of the covariance matrix; instead, it performs a polar decomposition from a
square matrix m * 1 to any other matrix. SVM was implemented using a radio basal kernel
(RBF) which is described by ¢y (x,1) = exp(—y||x — I||?); this causes many dimensions
to be created in the dataset and makes it linearly separable. The hyperparameters were
selected using a Grid Search Cross Validation.

To avoid overfitting and validate the model, we carried out the simulation study with
a 10-fold cross-validation scheme. The averages of the accuracy, precision, recall, F1-score
and area under curve (AUC) for testing were estimated for each of the machine learning
models. Moreover, the Kappa Index was estimated as the Agreement coefficient.

3. Results

Typical images of “bad” and “good” quality as defined by the experts are shown in
Figure 2. The examples aim to emphasize that, even if the difference between a clearly
good and a clearly bad image is easy to assess, the subtleties of the in-between range are
more difficult to distinguish. Figure 3 presents the distribution of the image quality of
our three data sets evaluated by the experts: each of the data sets presents an equilibrated
quantity of “good” and “bad” quality images. Axial images are globally better evaluated
than sagittal images by all experts.
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Figure 2. Examples of images from (left column) sagittal Ty, (center column) sagittal T, (right column) axial T;, with (first
row) high quality according to the experts (weighted Mean Opinion Scores (WMOS) between 4.3 and 4.7), (second row)
average quality (WMOS between 3.1 and 3.2) and (third row) low quality (WMOS between 2.7 and 2.8). The examples shown
here were not manipulated by us to modify their quality.
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Sagital T1

Sagital T2

Axial T1

1 2
average weighted MOS
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Figure 3. Average weighted Mean Opinion Scores (WMOS) histogram distributions in our three data types, obtained from

the experts’ evaluation. From left to right: sagittal T}-, sagittal T,- and axial T;-weighted images.

Agreement between neuro-radiologists about the image quality is rated from fair to
substantial in the different types of data sets, as detailed in Table 3. Better agreement in
quality image evaluation is found in Sagittal T, data sets, with Kappa values of 0.56 + 0.08
over all cases, while the worst agreement is found in the axial T; data set, with Kappa values
of 0.38 & 0.22. NR; and NR; present the closest agreement in image quality evaluation,
even though Kappa values reach only 0.63 £ 0.03, underlining that excellent experts’
agreement is not easy to achieve. Agreement between NR; and NR;3 is even lower, only
0.35 % 0.12.

Table 3. Kappa index of agreement between neuro-radiologists (NR). The column on the right and
the bottom line indicate mean + standard deviation. We considered as “substantial” agreement
kappa indices between 0.61 and 0.8, as “moderate” agreement values between 0.41 and 0.60 and as
“fair” agreement values between 0.21 and 0.40.

NR1 VS. NRZ NR1 VS. NR3 NRZ VS. NR3
Sagittal T} 0.66 0.39 0.34 0.46 £0.17
Sagittal T, 0.60 0.62 0.47 0.56 £+ 0.08
Axial Ty 0.63 0.29 0.23 0.38 £0.22
0.63 £ 0.03 043 +£0.17 0.35 +£0.12

Figure 4 shows correlation coefficients between MOS and each feature used in the
objective quality assessment. Most correlation coefficients calculated in the case of Axial
T; images are close to 0, showing that no clear linear relation between MOS and each
feature separately exists that could by itself identify “good” or “bad” quality images. A
very similar trend is observed in the case of Sagittal T, images. Considering Sagittal T;
images, a few correlation coefficients rise to a magnitude of 0.6, uniformity measured in
the vertebra or spectral flatness, but this correlation is not strong enough to explain the
classification obtained by subjective assessment.
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Figure 4. Correlation coefficients calculated between wMOS and each of the different features extracted, applied to the

three image types.

Table 4. Metrics of classifier models with respect to subjective Mean Opinion Score (MOS) attributed

by experts.

Metric Image LDA QDA LogReg SVM MLP
Sagittal Tq 0.740 0.713 0.721 0.763 0.731

Accuracy Sagittal T, 0.713 0.632 0.689 0.772 0.649
Axial Ty 0.767 0.634 0.747 0.726 0.726

Sagittal Tq 0.731 0.467 0.518 0.673 0.635

Precision Sagittal T, 0.769 0.686 0.717 0.737 0.686
Axial Tq 0.717 0.537 0.700 0.622 0.670

Sagittal T} 0.625 0.275 0.583 0.817 0.692

Recall Sagittal T 0.675 0.515 0.600 0.890 0.605
Axial T; 0.775 0.642 0.725 0.750 0.675

Sagittal Tq 0.631 0.340 0.535 0.719 0.646

F1 score Sagittal T, 0.705 0.553 0.640 0.797 0.735
Axial Ty 0.725 0.578 0.693 0.674 0.648

Sagittal T; 0.727 0.777 0.746 0.792 0.801

AUCROC  Sagittal T, 0.710 0.716 0.763 0.759 0.735
Axial T 0.791 0.740 0.780 0.747 0.792

Classification performance metrics obtained for the five ML models are described in
Table 4. In general, the SVM showed superior performance in most cases, followed by LDA
and MLP. Furthermore, it can be observed that QDA showed the lowest performance. The
SVM achieved an accuracy of over 73% in all cases, it reached 77% in Sagittal T, as well as
a recall of 89% for this same image. On the other hand, the reported AUC reflects a good

discriminatory precision by showing values higher than 70%.

The agreement between each neuro-radiologist and the classification by SVM, being
the best learning case, was evaluated and is displayed in Table 5. Agreement in all cases
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was moderate, showing the best results between SVM and NR;. The exam type that showed
the best agreement between expert, Sagittal T, showed one of the best agreements between
SVM and NR, 0.48 + 0.05. Conversely, Axial T images, which showed the lowest kappa
index between NR, are also the ones that present the lowest kappa index between SVM
and neuro-radiologist, of 0.37 £ 0.04. In comparison with what is shown in Table 4, results
are slightly improved for LDA, but no significant change is seen in SVM (data not shown).

Table 5. Kappa index of agreement between SVM results and each neuro-radiologist (NR).

SVM vs. NRq SVM vs. NR; SVM vs. NR3

Sagittal T} 0.53 0.37 0.56 0.49 £0.10

Sagittal T, 0.52 0.49 0.42 0.48 £ 0.05

Axial Ty 0.38 0.41 0.33 0.37 + 0.04
0.48 £ 0.08 0.42 £ 0.06 0.44 £ 0.12

4. Discussion

The agreement that is observed between the three radiologists, in Table 3, vary from
fair to substantial. Even though it is usually easy to be in agreement to establish a diagnosis,
to reach agreement on subjective quality perception led to more discussions. Two examples
can be found in [34,35], where agreement among experts was moderate in subjective
determination of glaucomatous visual field profession, and in subjective evaluation of
sublingual microcirculation images, respectively. In our understanding, the observed
differences in subjective evaluations could reflect the different manners that the neuro-
radiologists use in their interactions with the images. Each of them was trained in a different
school, some began practicing neurosurgery before neuro-radiology which might reflect
different subjective expectation on image quality. The training radiologists receive has
been shown to influence their behavior in reading images [36]. Differences in perceptions
also could come from their differences in experience, such as [36,37] emphasize. In our
understanding, the differences in subjective perceptions seen in this work reflect the reality
of the existence of a range of experts evaluations. The system proposed here includes the
variety of experts perceptions, in a way that would be more potentially more robust and
more generalizable in future works, than one that reflects only the subjective evaluation of
one expert, be it the most experienced perception or not.

The experts’ perception of image quality is emulated with good accuracy, 75.3 £ 2.4%
on average in the testing condition, using the Support Vector Machine. A wide range of
features was extracted either from the entire image or from specific user-defined ROI in
relation to lumbar anatomy. Features include characteristics known to influence image
perception, such as signal to noise ratio or spatial resolution, but other less “intuitive”
parameters were also taken into account such as spectral flatness or entropy. The image
quality evaluation obtained from the non-linear combination of these characteristics, shown
in Table 4, is in better agreement with the experts’ view than each of the features taken
individually, as depicted in Figure 4. Comparing the results obtained with the literature is
complex since there is no similar model based on the same set of image type and machine
learning technique used. However, it can be mentioned that the performance obtained
is lower than reported by Nakanishi et al. [38], who evaluated the efficacy of a fully
automated method for assessing the image quality (IQ) of coronary computed tomography
angiography (CCTA), obtaining an AUC of 0.96 and a kappa index for the agreement
between automated and visual IQ assessment of 0.67. Similarly, the performance obtained
is lower than that reported by Kiistner et al. [39], who proposed a new machine-learning-
based reference-free MR image quality assessment framework, including the concept
of active learning and applying classifiers such as SVM and Deep Neural Networks.
Although these authors report a high percentage of accuracy (93.7%), they did not perform
an evaluation of concordance with experts, making this comparison difficult. However,
performance results were closer to reported by Pizarro et al. [40], who applied an SVM
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algorithm in the quality assessment of structural brain images, using global and region
of interest (ROI) automated image quality features developed in-house and obtaining an
accuracy of 80%. On the other hand, on natural images, correlation coefficients between
subjective vs. predictive MOS have been obtained close to 80% [41]. When using reference
images, correlation coefficients published are close to 95% [17] or 96% [42], using sparse
representation and kernel ridge regression. Yet their implementation was applied to
natural images, with the possibility of estimation of visual information fidelity. It would
be interesting to apply these methodologies described in the state of the art to the lumbar
MRI data set and compare their performance with the algorithm proposed in this research.
However, some conditions prevent its realization. For example, in the case of the algorithm
proposed by Kiistner et al., it involved a Deep Learning model in its classifiers, which
cannot be applied in our work due to the limited database. On the other hand, Nakanishi
et al. proposed an automated estimation using specific features of CCTA, and the novelty
of this method is largely in obtaining these features prior to the application of the Machine
Learning model. Since the characteristics obtained in lumbar MRI are different, the method
proposed by Nakanishi to our work does not have much scalability. Finally, Pizarro et
al. present a model very similar to the one developed in our research since they use the
MRI image, extract its main characteristics and use the SVM as a classifier. Beyond the
type of image used, a key step that differs between the two methods is the dimensionality
reduction performed with the PCA in our work, so we consider it unnecessary to replicate
what was developed by these authors.

It is interesting to note that the results obtained here were obtained through the
machine learning of the three experts, taking into account more than an individual point
of view. In the case of this application, the agreement between experts was not always
qualified as “excellent”, and the machine must learn different points of view. This is a
common problem faced in machine learning, and the results obtained here show good
performance in general. The human judgment or decision are based in several variables that
may seem reasonable, however there exists many unobserved information that cannot be
captured. Meanwhile, machine learning methods rely only on the available data obtained
from quantifiable features [43—46].

These results are encouraging with respect to the possibility of developing an auto-
mated system that could monitor not only “mathematical image quality” but also image
quality perceived by experts, who are the real final users of medical images. The method
still needs to be fully automatized to avoid human interaction for the positioning of the
Region-Of-Interest in the analysis. These are only preliminary results, as the proposed
method was tested on three types of exams so far, and the number of exams, of sites and
vendors needs to be increased. This would increase the number of observations of “bad
quality” images obtained with no artificial manipulation, and therefore should refine the
capacity of the method proposed here to discriminate between image qualities. One of the
specificities of the images types that were selected here is that they were acquired with
a spine MRI coil, which means that the signal within the images was not homogeneous.
Working with these kinds of images does not represent conditions common to all kinds of
MR images.

There is a discussion on how to define image quality in medical applications. A crisp
definition of good vs. bad quality was used in the present case. The use of a fuzzy definition
of transition between types might bring the behavior of this system closer to that of the
human experts. It is important to emphasize that this system should be apprehended as a
constant monitoring solution and that the interest is not in detecting when one single exam
was of poor quality but when, as a whole, the trend of the MR system is deteriorating from
an image quality point of view.

5. Conclusions

In conclusion, a method is presented here, where feasibility of the emulation of expert
perception of image quality in three types of lumbar MR images is shown. Good accuracy
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is obtained in the set of images used, Sagittal T, Sagittal T, and Axial Ty, of 75 £ 2.4%
on average in the testing condition, using a Support Vector Machine to construct the
classifier. Using a non linear combination of quality features extracted from the images, an
emulation is obtained of the combined views of three different experts, whose agreement on
image quality varies between fair and substantial. Even though the actual implementation
still relies on user interaction to extract certain features from the images, the results are
promising with respect to a potential implementation in monitoring image quality online
with the image acquisition process.

Future works could include further features, such as block kurtosis of DCT coefficients [47],
dominant eigenvalues of the covariance matrix [48] or kernel ridge regression [42] for
instance. Other machine learning techniques, closer to deep neural networks [49], might
also improve the performance of image assessment. The method in its essence can be
applied to other kind of images, while modifying the definition of localization of ROI
in agreement with the organs observed. All other features proposed in Table 2 can be
extracted for different kinds of medical images.

Further work is needed to confirm the observations in other experimental conditions
and to other types of images, using for instance MR images in other anatomical area, or
computed tomography images. The automatic assessment of medical image quality is
probably an issue that will occur more frequently as many artificial intelligence systems
are developed based on large-scale databases, whose quality has been questioned [50].
Moreover, this study could be extended by increasing the number of subjective evaluators
and introducing multi-criteria decision-making techniques [51] to support the variability
among the users.
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