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Abstract: Immunoglobulin, which is also called an antibody, is a type of serum protein produced by
B cells that can specifically bind to the corresponding antigen. Immunoglobulin is closely related
to many diseases and plays a key role in medical and biological circles. Therefore, the use of
effective methods to improve the accuracy of immunoglobulin classification is of great significance
for disease research. In this paper, the CC–PSSM and monoTriKGap methods were selected to
extract the immunoglobulin features, MRMD1.0 and MRMD2.0 were used to reduce the feature
dimension, and the effect of discriminating the two–dimensional key features identified by the
single dimension reduction method from the mixed two–dimensional key features was used to
distinguish the immunoglobulins. The data results indicated that monoTrikGap (k = 1) can accurately
predict 99.5614% of immunoglobulins under 5-fold cross–validation. In addition, CC–PSSM is the
best method for identifying mixed two–dimensional key features and can distinguish 92.1053% of
immunoglobulins. The above proves that the method used in this paper is reliable for predicting
immunoglobulin and identifying key features.

Keywords: immunoglobulin; profile–based cross covariance; monoTriKGap; MRMD

1. Introduction

Immunoglobulin, also known as an antibody, is a serum protein present in humans.
When the immune system of the body encounters invasion, B cells are stimulated, depend-
ing on the degree of invasion, to produce different numbers of globins that can specifically
bind to the corresponding antigen and provide immune functions. Immunoglobulins,
therefore, play a key role in protecting the human body from internal and external threats
and help maintain the stability of the immune system and self–tolerance [1]. Immunoglob-
ulins are closely related to disease treatment and have been used for a long time in the
study of multiple autoimmune diseases. For example, treatment with intravenous im-
munoglobulin in patients with systemic sclerosis not only alleviates muscle symptoms
but also ameliorates systemic inflammation in skin disease [2]. Immunoglobulins also
exert a remission effect against different forms of lupus erythematosus skin disease, and,
even when used in the treatment of Behcet’s disease, there is a sustained response over
time without any side effects [3,4]. The in–depth study of immunoglobulins can better
determine the immune mechanism and develop effective drugs to treat diseases [5].

In fact, the detection of immunoglobulins has attracted the attention of researchers.
Marcatili et al. developed a strategy to predict the 3D structure of antibodies [6]. This
strategy only approximately ten minutes on average to build a structural model of the
antibody. This process is fully automated while achieving a very satisfactory level of
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accuracy. In order to identify antigen–specific human monoclonal antibodies, Liu et al.
successfully developed an antibody clone screening strategy based on clone kinetics and
relative frequency [7]. This method can simplify the subsequent experimental screening.
The enzyme–linked immunosorbent assay showed that at least 52% of the putative posi-
tive immunoglobulin heavy chains constituted antigen–specific antibodies. In addition,
Salvo et al. introduced biosensors for detecting the total content of immunoglobulins,
including electrochemical biosensors, optical biosensors, and piezoelectric biosensors [8].
Immunoglobulin optical biosensors are mainly based on surface plasmon resonance de-
tection, but the current limitation is that almost all of them only work in buffer solutions.
These current state-of-the-art technologies do help the study of immunoglobulin, but
biochemical experiments usually need considerable money or time [9,10].

With the proliferation of protein data, we urgently need effective and efficient compu-
tational methods to identify immunoglobulins, and the first step to reveal the function of
immunoglobulins is to accurately identify them [11,12]. Over the past decade, a remarkable
number of machine learning–based techniques for protein sequence analysis have been
developed [13,14]. The amino acid composition is an important factor for protein identifica-
tion. The amino acid composition (ACC) model, as a commonly used feature representation
method, was used to represent the normalized frequency of natural amino acids in peptide
chains [15–18]. Subsequently, the concept of pseudo amino acid composition (PseACC),
also based on the amino acid sequence, was proposed as a widely used method [19–23]. An
improved feature extraction method based on the amino acid composition of pseudo amino
acid composition is better than the feature extraction method of amino acids in the protein
prediction model because, not only the amino acid composition but also the physical and
chemical properties of the correlation between two residues are included [24–27]. Inspired
by the pseudo amino acid composition, a pseudo k–tuple reduced amino acid composition
(PseKRAAC) model was proposed by reducing the computational barriers for complexity
reduction of proteins by reducing the use of amino acid letters [28].

The above methods focus mainly on the feature representation of protein sequences.
To discriminate between immunoglobulins and non immunoglobulins, Tang et al. subse-
quently proposed a prediction model based on a support vector machine for the combi-
nation of pseudo amino acid composition and nine physical and chemical properties of
amino acids [29]. However, this model passed 105 features, and jackknife experimental
results indicated that 96.3% of the immunoglobulins could be correctly predicted, a result
that awaits further improvement. How key features are additionally exploited to recognize
immunoglobulins remains to be investigated.

In this paper, two feature representation methods, profile–based cross covariance
(CC–PSSM) [30] and monoTriKGap [31] were selected to explore the accurate prediction
problems of immunoglobulins. With the application of MRMD1.0 and MRMD2.0 feature se-
lection techniques, feature dimension screening of two–dimensional key features achieved
a high identification effect. The results showed that the best feature subset generated by
the monoTriKGap feature extraction method was able to correctly predict 99.6% of the
immunoglobulins by the support vector machine(SVM) classifier [32] based on sequential
minimal optimization. The CC–PSSM feature extraction method was better able to identify
key features discriminating immunoglobulins, and the identified two–dimensional mixed
key features were validated by the multilayer perceptron classifier and could correctly
identify 92.1% of the immunoglobulins. In addition, the performance of different feature
extraction methods under different classifiers is compared, which proves that the method
in this paper is reliable for immunoglobulin research.

2. Materials and Methods

The main steps and processes of this paper are presented in Figure 1. The steps are
summarized as follows:

1. Building datasets;
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2. CC–PSSM and monoTriKGap were selected as feature representation methods to
obtain feature sets;

3. MRMD1.0 and MRMD2.0 feature selection methods were selected to acquire two–
dimensional key features and two–dimensional mixed key features, respectively;

4. Three classifiers, Naïve Bayes, SVM, and multilayer perceptron, were selected for
k–fold cross–validation to predict immunoglobulins.
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Figure 1. The overall framework of immunoglobulin prediction and key feature recognition. First, the dataset was
established, and, next, the protein sequence was represented by CC–PSSM and monoTriKGap. Then, the work was divided
into two parts: identifying key features and predicting and evaluating. In the above steps, MRMD1.0, MRMD2.0, and
MRMD1.0+2.0 were used to obtain key features, and k–fold cross–validation was performed under Naïve Bayes, multilayer
perceptron, and SVM classifiers (k = 5).

This paper shows that these three classifiers chosen in the text work better than the
others through comparison. Meanwhile, the independent test set shows that the model in
this paper has good generalization performance.

2.1. Dataset Construction

In this part, we will introduce the establishment of benchmark data. Since im-
munoglobulins are often found on or outside the cell membrane, to ensure proper discrimi-
nation, we picked a certain number of immunoglobulins both at the cell membrane and
extracellularly. Immunoglobulin and non immunoglobulin sequences were downloaded
from the UniProt [33] database. To establish a benchmark dataset, the following steps were
taken. Protein sequences containing the nonstandard amino acid characters “B”, “J”, “O”,
“X”, “U” and “Z” were first deleted. Second, to avoid overfitting caused by homologous
bias and to reduce redundancy, the CD–Hit program [34,35] was selected to set a 60%
sequence identity cutoff to remove highly similar sequences. Finally, if a certain protein
sequence was a subsequence of other proteins, it was also removed. Considering that
we needed to avoid the influence of the expression of different protein sequences on the
predicted effects, we selected only human, mouse, and rat samples.

After filtering, immunoglobulin dataset samples are represented by I+, non im-
munoglobulin dataset samples by I−, and the benchmark dataset is a combination of
I+ and I−

I = I+ ∪ I− (1)

The I+ dataset includes 109 positive samples, and the I− dataset includes 119 negative
samples. Therefore, the benchmark dataset consists of 228 protein sequences, and the
detailed information is shown in Table 1. These can be downloaded for free from https:
//github.com/gongxiaodou/Immunoglobulin (accessed on 21 July 2021). To further
validate the accuracy of the method in this paper for immunoglobulin prediction and the
reliability of key feature identification, we used two datasets for independent testing.

https://github.com/gongxiaodou/Immunoglobulin
https://github.com/gongxiaodou/Immunoglobulin
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Table 1. Distribution of sample sequence lengths in immunoglobulin and non immunoglobu-
lin datasets.

Sequence Length
(Amino Acids)

Immunoglobulin Dataset Non Immunoglobulin Dataset

Human Mouse Rat Human Mouse Rat

<400 26 11 3 16 31 3
400–700 22 12 2 8 24 2

>700 20 10 3 5 28 2

2.2. Feature Extraction
2.2.1. Profile–Based Cross Covariance (CC–PSSM)

The CC–PSSM feature representation method is based on the position–specific scoring
matrix (PSSM) [36,37] as a feature. Each immunoglobulin sequence runs PSI–BLAST [38]
through NCBI’s NR database for local information comparison to obtain PSSM matrix
information. The element Sji in the PSSM matrix represents the substitution score of the
amino acid i at the sequence position j. The twenty kinds of natural amino acids are
composed of a set {A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V}.

Each protein sequence containing D residues can be represented as

R = R1R2R3R4 . . . RD (2)

where Rj(j = 1, 2, 3 . . . D) represents the position j of the residue in the protein sequence
sample R.

CC–PSSM [39] transforms PSSM matrices of different sizes into vectors of the same
length. CC [40] was used to calculate the different properties of the two residues separated
along with the sequence lag. The formula was calculated as follows

CC(i1, i2, LG) =
D−LG

∑
j=1

(Sj,i1−Si1)(Sj+LG,i2 − Si2)/D− LG (3)

where i1 i2 represents two different amino acids, Si1 , Si2 represents the mean of substitution
scores for amino acids i1 and i2 along the sequence, and D represents the length of the
protein sequence. Calculated in this way, the PSSM matrix resulting from each protein
sequence alignment will be transformed into a vector of length 380 ∗ lag, and lag is the
maximum value of LG (LG = 1, 2 . . . , lag). In this study, we set the maximum lag number
to 2. When LG = 1, the extracted features such as “CC(A,R,1)”, “CC(A,N,1)”, “CC(A,D,1)”,
etc., are transformed into a vector of length 380. When LG = 2, the extracted features such
as “CC(A,R,2)”, “CC(A,N,2)”, “CC(A,D,2)”, etc., are transformed into a 380–length vector.
Therefore, each protein sample was finally computationally transformed into a vector of
length 760. The demonstration process is shown in Figure 2.
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and non immunoglobulin sequences as input. (b) Sequence alignment of the input data through the PSI–BLAST database.
(c) The first 20 columns of alignment information were intercepted to obtain the PSSM matrix corresponding to each protein.
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obtained. (e) Then each PSSM matrix was calculated with the CC when LG = 2, and the eigenvector of length 380 is obtained.
Finally, when lag = 2, each protein sample will be converted into a vector of length 760 after calculation.

2.2.2. monoTriKGap

The monoTriKGap feature extraction method was used in this article, which stems
from PyFeat. This method has been widely used in the prediction of proteins and other
biologies [41–43]. PyFeat differs from the previous adoption of Kmer [44] frequency by
setting the important parameter KGap. The kmer frequency has always been a principal
method for extracting the local characteristics. However, as the length of K, the subsequence
continues to increase, and the number of features also increases sharply. For proteins,
there is a surge quantity of features produced due to the higher number of amino acids.
Thus, monoTriKGap uses KGap parameters to address this limitation [45,46]. In the
monoTriKGap model, the parameter KGap can be set to 1, 2, or 3.

The important point is that, while generating the full feature set, monoTriKGap
chooses the AdaBoost classification model [47] to reduce the redundant features to generate
the best feature set. Utilizing this model not only reduces the feature dimensionality but
also guarantees robustness under high–dimensional feature multicollinearity. In this study,
to reduce data sparsity, KGap was set at 1. When KGap = 1, the characteristic shape is
X_XXX, where X is the twenty natural amino acids, denoted as

X = {A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R, S, T, V, W, Y} (4)
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Features such as “A_AAA”, “A_AAC”, etc., are generated. The full dataset generated
by the monoTriKGap model at this time had 160,000 features and was automatically
optimized by AdaBoost to generate the best feature set containing 212 more discriminative
features. When KGap = 1, taking the sequence “EAHAAALAACAAAYHYYWLECYRYYY”
as an example, the feature dataset generation is demonstrated in Figure 3.
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1 was set, and the character was represented as X_XXX, where X represents 20 kinds of natural amino acids. By calculating
the frequency of occurrence of each feature X_XXX, the feature value was obtained.

2.3. Classifier

To further accurately predict whether the protein sequence is an immunoglobulin, this
classification problem is regarded as a dichotomy problem [48,49]. Three classifiers were
employed in this paper to select those that could predict immunoglobulins more accurately
by comparison. The three classifiers used were Naïve Bayes, SVM, and multilayer perceptron.

Naïve Bayes (NB) [50,51], as a Bayesian probabilistic classifier, is assumed to be
independent and equal across features for classification. The independence of samples from
each other is not affected by either and does not cause interference with the classification
results. Based on this characteristic, the feature classification of samples avoids the linear
influence, so that it is also easy to implement, has fast running speed, and is noise insensitive
in high–dimensional features, which is beneficial for applications. As a supervised machine
learning method, the support vector machine can solve both classification and regression
problems. This paper is a binary classification problem, the basic idea of which is to
separate samples of different categories by finding a separation hyperplane. In order to
reduce the amount of computation and memory, John C. Platt proposed sequential minimal
optimization [52,53] based on support vector machines (SVMs) [54–56]. This is widely
used because it decomposes the large quadratic programming (QP) problem that SVMs
need to solve into a series of minimum possible QP problems, avoiding time–consuming
iterative optimization of in–house QPs. The choice of kernel function for support vector
machines is very important. On the same dataset, different kernel function algorithms
may have different prediction effects. In general, appropriate kernel functions can improve
the prediction accuracy of the model, such as linear kernel function, polynomial kernel
function, and radial basis function (RBF). The multilayer perceptron (MLP) [57] is a simple
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artificial neural network, in which neurons are connected between adjacent layers and there
is no connection between neurons in each layer. It maps the input dataset to the output
set in a feedforward manner, and the output of each node is a weighted unit followed by
a nonlinear activation function to distinguish nonlinearly separable data. The multilayer
perceptron is usually trained using backpropagation. Previously, the MLP results for
solving classification problems have been well verified.

2.4. Key Feature Recognition

In the feature extraction subsection, several hundred features were extracted by CC–
PSSM and monoTriKGap methods. However, there was redundancy between these features.
This section introduces the identification of two–dimensional key features by means of
MRMD1.0 and MRMD2.0 feature selection techniques, reaching the experimental effect of
predicting immunoglobulins with fewer characteristics.

The feature selection method of MRMD1.0 [58,59] is decided in two main parts:
one is the correlation between the characteristic and the instance class standard, and the
Pearson correlation coefficient is used to calculate the correlation between the characteristic
and the class standard. The other part is the redundancy among characteristics. This
method makes use of three distance functions: Euclidean distance, cosine distance, and the
Tanimoto coefficient, to calculate the complexity among characteristics. A larger Pearson
correlation coefficient indicates that the features are more closely related to the class
scale, and a larger distance indicates less redundancy among the characteristics. Finally,
MRMD1.0 generates feature subset ranking information with strong correlation to class
labels and low redundancy between features. Here, we selected the first two features as the
two–dimensional key features identified by MRMD1.0 based on the ranking information.

MRMD2.0 [60], as a currently commonly used feature ranking and dimension re-
duction tool, contains seven means of feature ranking: MRMR, LASSO, ANOVA, and
MRMD [61]. MRMD2.0 utilizes the PageRank algorithm technique to calculate a directed
graph score for each feature, ranking features according to score. Meanwhile, users can
also custom–select feature numbers, yielding the optimal feature subset with maximum
relevance and minimum redundancy balanced. Here, we chose to screen 2 optimal features
as the key features for immunoglobulin recognition.

2.5. Performance Evaluation

To further estimate the classification performance of our selected feature set and
two–dimensional key features, the TP rate (TPR), FP rate (FPR) [62], precision [63–66],
Matthews correlation coefficient (MCC) [67], and accuracy (ACC) [68–71] were calculated
and compared to obtain the best immunoglobulin accurate prediction and key feature
identification method. Individual performance metrics were calculated as follows

TPR = TP
TP+FN

FPR = FP
FP+TN

precision = TP
TP+FP

MCC = TP∗TN−FP∗FN√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

ACC = TP+TN
TP+FP+TN+FN

(5)

TP indicates the amount of exactly forecasted immunoglobulin samples, and FN indi-
cates the amount of exactly forecasted non immunoglobulin samples [72]. TPR represents
the ratio of correctly forecasted immunoglobulins, and FPR represents the ratio of inexactly
forecasted non immunoglobulins. Precision indicates the rate of correctly classifying posi-
tive datasets. MCC indicates the correlation between the actual and forecasted classification.
ACC indicates the ratio of exactly classified datasets.
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3. Results and Discussion
3.1. Comparison of Different Feature Extraction and Classification Methods

According to the previous article, this study compared the prediction effects of the
three classifiers: Naïve Bayes, SVM, and multilayer perceptron. Among them, the pa-
rameters of the three classifiers adopted the default parameters built in the algorithm.
The default kernel function of SVM was linear kernel function, and the value of penalty
coefficient was C = 1.0. The topology of the multilayer perceptron was selected as a simple
3–layer network, including an input layer, a hidden layer, and an output layer, using the
Sigmoid function as the activation function. CC–PSSM and monoTrikGap feature extraction
methods were compared with previous research results, and we tested the accuracy of
the classification of the immunoglobulin dataset through 5–fold cross validation [73]. The
predictions obtained from the 760 features extracted by the CC–PSSM method, and the
212 best feature subsets generated by the monoTriKGap method with the three different
classifiers mentioned above, are presented in Table 2, and the contrasts of ACC values are
presented in Figure 4.

Table 2. Compare the results of different feature methods under different classifiers.

Method Classifier TPR FPR Precision MCC auROC ACC

CC–PSSM
NB 0.930 0.072 0.930 0.860 0.951 0.9298

MLP 0.961 0.041 0.961 0.921 0.994 0.9605
SVM 0.952 0.050 0.952 0.904 0.951 0.9517

monoTriKGap
NB 0.921 0.081 0.921 0.842 0.951 0.9211

MLP 0.987 0.013 0.987 0.974 0.997 0.9868
SVM 0.996 0.004 0.996 0.991 0.996 0.9956

Tang et al. [29] SVM 0.963 0.025 \ \ 0.994 0.9690
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The data in Table 2 show that for the CC–PSSM feature extraction method, the ACC
values of the multilayer perceptron classifier are higher than those of Naïve Bayes and
SVM. Using multilayer perceptron to predict the immunoglobulin TPR value, the value
reached 0.961, the FPR value reached 0.041, the MCC value reached 0.921, and the ACC
value reached 96.0526%. The ROC curve area was 0.994. Compared with the Naïve Bayes
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classifier, the ACC value increased by 3.1%. For the monoTriKGap feature extraction
method, the TPR, precision, ACC, and other values of the SVM classifier were higher
than the values of Naïve Bayes and multilayer perceptron. Using SVM to predict the
immunoglobulin TPR value reached 0.996, the FPR value reached 0.004, the MCC value
reached 0.991, and the ACC value reached 99.5614%. The ROC curve area was 0.996.
Compared with the Naïve Bayes classifier, the ACC value increased by 7.5%.

Through comparison and analysis, the study found that the SVM classification re-
sult of the best feature subset extracted by monoTriKGap improved compared with the
multilayer perceptron classification result of the feature subset extracted by CC–PSSM
and the prediction model proposed by Tang et al. [29]. This shows that employing the
monoTriKGap feature extraction method to generate the best feature subset and SVM can
achieve a higher prediction effect, which is most conducive to the accurate prediction of
immunoglobulins.

Then, we compared the performance of SVM under three kinds of kernel functions
(linear kernel function, quadratic polynomial kernel function, and radial basis kernel
function), as shown in Table 3.

Table 3. The prediction results of the best feature subset of monoTriKGap under different kernel
functions of support vector machine.

Kernel Function TPR FPR Precision MCC auROC ACC

liner kernel 0.996 0.004 0.996 0.991 0.996 0.9956
polynomial kernel 0.864 0.138 0.864 0.728 0.863 0.8640

RBF 0.746 0.277 0.821 0.554 0.734 0.7456

It can be seen from Table 3 that when using the best feature subset of monoTriKGap,
the prediction effect of the linear kernel function was better than the other two kernel
functions. The linear kernel function used to predict the accuracy of immunoglobulin
reached 99.56%, the MCC value reached 0.991, and the precision value reached 0.996. The
ACC value was 13.16% higher than the polynomial kernel function and 25% higher than
the radial basis kernel function. Therefore, this paper adopted the linear kernel function as
the kernel function of the support vector machine.

3.2. Key Feature Analysis

This study introduced the use of MRMD1.0 and MRMD2.0 for two–dimensional key
feature recognition. Key feature recognition and analysis were performed on the feature
subsets extracted based on CC–PSSM and monoTriKGap, respectively.

First, based on the 760 features extracted by CC–PSSM, MRMD1.0 was used to reduce
the dimensionality, and the first two features were selected according to the ranking
information to be CC(P, D, 2) and CC(E, R, 1) as the first group two–dimensional key
features. Second, MRMD2.0 was used to reduce the dimensionality of the original feature
set; the number of generated features was set to two, and the two matched features were
CC(D, T, 2) and CC(H, C, 1) as the second group of two–dimensional key features. Then, the
key features of the first two groups were combined in any two pairs to generate four sets
of 2–dimensional feature combinations that were different from the first two groups. The
feature combined with the largest classification index ACC value, namely CC(E, R, 1) and
CC(D, T, 2), were selected as the two–dimensional key features of MRMD1.0 and MRMD2.0.

Based on the 212 best features extracted by monoTriKGap, the above steps were also
performed. The first two–dimensional key features, including D_DDD and H_HHD, were
obtained through MRMD1.0. Through MRMD2.0, the second set of two–dimensional key
features, including F_HHV and D_HHF, were obtained. By comparing the ACC values
of four sets of two–dimensional hybrid features in any combination, we obtained the
hybrid two–dimensional key features of MRMD1.0 and MRMD2.0, including H_HHD
and F_HHV.
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To analyse the ability of each group of key features to distinguish immunoglobu-
lins, the classification performance of the three groups of key features of CC–PSSM and
monoTriKGap was evaluated. Three classifiers of Naïve Bayes, SVM, and multilayer percep-
tron classifiers were used under 5–fold cross validation. The results of the two–dimensional
key feature analysis are shown in Table 4.

Table 4. Classification results of different two–dimensional key feature recognition methods.

Method Selection Classifier TPR FPR Precision MCC auROC ACC

MRMD1.0
NB 0.890 0.113 0.892 0.781 0.950 0.8904

MLP 0.904 0.101 0.908 0.810 0.946 0.9035
SVM 0.868 0.139 0.877 0.744 0.865 0.8684

CC–PSSM MRMD2.0
NB 0.846 0.158 0.849 0.694 0.875 0.8465

MLP 0.825 0.177 0.825 0.648 0.877 0.8246
SVM 0.803 0.202 0.804 0.605 0.801 0.8026

MRMD
1.0+2.0

NB 0.886 0.121 0.895 0.780 0.955 0.8859
MLP 0.921 0.081 0.921 0.842 0.934 0.9211
SVM 0.895 0.112 0.902 0.796 0.891 0.8947

MRMD1.0
NB 0.535 0.439 0.576 0.119 0.563 0.5351

MLP 0.526 0.461 0.537 0.068 0.505 0.5263
SVM 0.531 0.509 0.562 0.052 0.511 0.5307

MonoTriKGap MRMD2.0
NB 0.491 0.500 0.496 –0.009 0.514 0.4804

MLP 0.491 0.499 0.497 –0.008 0.501 0.4912
SVM 0.522 0.522 0.522 0.000 0.500 0.5219

MRMD
1.0+2.0

NB 0.539 0.442 0.561 0.108 0.572 0.5395
MLP 0.522 0.454 0.550 0.081 0.514 0.5219
SVM 0.522 0.522 0.522 0.000 0.500 0.5219

The research results in Table 4 show that after the features extracted by CC–PSSM
reduce the dimensionality, the mixed two–dimensional key features of MRMD1.0 and
MRMD2.0 have better classification performance than the single–obtained two–dimensional
key features. The ACC value of mixed two–dimensional key features using the multilayer
perceptron classifier was 92.1053% higher than the ACC value of the single group of
two–dimensional key features, which were 90.3509% and 84.6491%, respectively. At this
time, the TPR was 0.921, the FPR was 0.081, the MCC was 0.842, and the ROC curve area
was 0.934. Similarly, after the features extracted by monoTriKGap reduced the dimen-
sionality, the classification performance of the mixed two–dimensional key features was
also better than the classification performance of a single group of two–dimensional key
features. At this time, MRMD1.0 and MRMD2.0 mixed two–dimensional key features
using a Naïve Bayes classifier to achieve the ACC value of 53.9474%. Most importantly,
the mixed two–dimensional key features of the CC–PSSM feature extraction method were
better than monoTriKGap, which proves that the CC–PSSM feature extraction method
could better identify the key features to distinguish immunoglobulins. Figure 5 shows the
scatter plot of the 2–dimensional mixed features recognized by CC–PSSM to distinguish
immunoglobulins from non immunoglobulins.
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3.3. Compared with Other Classifiers

For a fair comparison, we further studied the performance of the other three classifiers
on the same benchmark dataset, namely k–Nearest Neighbor (KNN) [74], C4.5 [75], and
random forest (RF) [76,77]. The parameters of the classifier were set to default values. The
basic idea of KNN is that there are always k most similar samples in the feature space. If
most of the samples belong to a certain category, the sample also belongs to this category.
Here, we set the value of k in our model to be 3. The C4.5 algorithm, as a classification
decision tree algorithm [78] that uses the information gain rate to select node attributes, is
pruned in the tree construction and the generated classification rules are easy to understand.
Here we set the default confidence factor for pruning c = 0.25.

The previous study showed that monoTriKGap had a better predictive ability for
immunoglobulin under the SVM classifier. Next, we used the best 212 feature subsets
extracted by monoTriKGap for performance evaluation under KNN, C4.5, and RF. The
comparison results are recorded in Table 5. The data in Table 5 further verifies that the
monoTrikGap feature extraction method generated the best feature subset using the SVM
classifier, had a high predictive effect, and could accurately distinguish between non
immunoglobulins and immunoglobulins.

Table 5. Comparison of features extracted by monoTriKGap under other classifiers.

Method Classifier TPR FPR Precision MCC auROC ACC

monoTriKGap

SVM 0.996 0.004 0.996 0.991 0.996 0.9956
KNN 0.732 0.288 0.787 0.510 0.831 0.7325
C4.5 0.833 0.169 0.833 0.666 0.838 0.8333
RF 0.969 0.034 0.971 0.940 0.988 0.9693

For the recognition of key features, through the previous research, we obtained that
the mixed two–dimensional key features of the CC–PSSM feature extraction method had
better recognition capabilities by the multilayer perceptron classifier. Next, the mixed
two–dimensional key features of CC(E, R, 1) and CC(D, T, 2) were used to explore the
classification performance under KNN, C4.5, and RF. The comparison results are recorded
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in Table 6. The data in Table 6 shows that the original classifier we used does have better
performance than other methods.

Table 6. MRMD1.0+MRMD2.0 recognizes the comparison of the two–dimensional key features
represented by CC–PSSM under other classifiers.

Method Selection Classifier TPR FPR Precision MCC auROC ACC

CC–
PSSM

MRMD
1.0 + 2.0

MLP 0.921 0.081 0.921 0.842 0.934 0.9211
KNN 0.895 0.106 0.895 0.789 0.928 0.8947
C4.5 0.904 0.098 0.904 0.807 0.897 0.9035
RF 0.886 0.114 0.886 0.771 0.930 0.8859

3.4. Independent Test Set Evaluation

In order to evaluate the generalization ability of monoTriKGap and CC–PSSM models,
we conducted two independent tests. Each test set had two tasks: one was to evaluate the
generalization ability of monoTriKGap optimal feature subset for accurate prediction of
immunoglobulin under SVM, and the other was to evaluate the generalization ability of
CC–PSSM for recognition of key features of immunoglobulin under MLP.

In the first group, 112 sequences from human and rat data were selected as the training
set, and 116 sequences from mouse data were selected as the test set, including 33 im-
munoglobulins and 83 non immunoglobulins. The second group selected 112 human and
rat sequences in the benchmark dataset as the training set. Thirty–three immunoglobulin
sequences and thirty–three non immunoglobulin sequences from mouse were selected to
form a test set. Details are shown in Table 7.

Table 7. Details for each group of independent test sets.

Training Dataset Independent Dataset

Composition Positive Negative Composition Positive Negative

Group1 human, rat 76 36 mouse 33 83
Group2 human, rat 76 36 mouse 33 33

The 212 optimal feature subsets generated by each group of monoTriKGap were
trained under different classifiers, and the ACC value comparison of the test set is shown in
Figure 6. Figure 6a shows that the first set accurately predicted 87.93% of immunoglobulins
under SVM, which is higher than the accurate values of C4.5, KNN, and RF (72.14%, 77.58%,
and 60.34%, respectively). Figure 6b shows that the second test set accurately predicted
87.88% of immunoglobulins under SVM, and the accuracy values higher than C4.5, KNN
and RF were 77.27%, 69.69%, and 78.78%, respectively. Therefore, the two sets of data show
that monoTriKGap does have a good generalization ability for the accurate prediction of
immunoglobulin.

In addition, 760 features extracted by each group of CC–PSSM were reduced in
dimension by MRMD1.0 and MRMD2.0, and the identified mixed two–dimensional key
features CC(E, R, 1) and CC(D, T, 2) were trained. The ACC values of the test set were
compared and are shown in Figure 7. Figure 7a shows that in the first test set, the multilayer
perceptron classifier correctly predicted 91.07% immunoglobulin, which is 0.9% higher
than the C4.5 algorithm, 7.45% higher than the KNN algorithm, and 13.49% higher than
the RF algorithm. Figure 7b shows that in the second test set, the multilayer perceptron
classifier correctly predicted 90.90% of immunoglobulins, which is 3.03% higher than the
C4.5 algorithm, 10.6% higher than the KNN algorithm, and 13.36% higher than the RF
algorithm. Combined with the two groups of data, it can be concluded that CC–PSSM has
a good generalization ability for key feature recognition. However, in order to ensure the
prediction and recognition ability of the model for immunoglobulins, our future work will
extend the data for further study.
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4. Conclusions

The main work of protein prediction consists of two steps: one step is the selection of
the feature representation method, and the other step is to reduce the feature dimension and
identify key features. As a significant component of the immune system, immunoglobulin
is closely related to various diseases. Accurate prediction of immunoglobulin can be
more beneficial to drug development and disease treatment. This research focuses on the
accurate prediction of immunoglobulin and the recognition of key features. By comparing
the feature representation methods of CC–PSSM and monoTriKGap, the best feature set
generated by monoTriKGap through the AdaBoost classification model is found to be
able to accurately predict 99.5614% of immunoglobulins under the SVM classifier. For the
identification of key features, unlike the past, we considered MRMD1.0 and MRMD2.0 for
key feature screening and consider two–dimensional hybrid key features. The results show
that the features extracted by CC–PSSM are identified by the mixed two–dimensional key,
and 92.1053% of immunoglobulins can be distinguished under the multilayer perceptron
classifier. Therefore, the method used in this article can be used as a powerful means to
study immunoglobulin. In future work, we will collect and expand the dataset, and use
more data to verify the effectiveness of the model. In order to improve the performance
of the SVM algorithm, some important parameters of the algorithm (such as penalty
coefficient C) will be optimized. At the same time, to avoid overfitting, we will consider
adding related regularization tests in our future work.
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