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Featured Application: This study allows power converters to achieve high conversion efficiency
due to the low parasitic inductance of multi-chip integration technology.

Abstract: Half-bridge modules with integrated GaN high electron mobility transistors (HEMTs) and
driver dies were designed and fabricated in this research. Our design uses flip-chip technology
for fabrication, instead of more generally applied wire bonding, to reduce parasitic inductance in
both the driver-gate and drain-source loops. Modules were prepared using both methods and the
double-pulse test was applied to evaluate and compare their switching characteristics. The gate
voltage (Vgs) waveform of the flip-chip module showed no overshoot during the turn-on period, and
a small oscillation during the turn-off period. The probabilities of gate damage and false turn-on
were greatly reduced. The inductance in the drain-source loop of the module was measured to be
3.4 nH. The rise and fall times of the drain voltage (Vds) were 12.9 and 5.8 ns, respectively, with an
overshoot of only 4.8 V during the turn-off period under Vdc = 100 V. These results indicate that the
use of flip-chip technology along with the integration of GaN HEMTs with driver dies can effectively
reduce the parasitic inductance and improve the switching performance of GaN half-bridge modules
compared to wire bonding.

Keywords: GaN HEMT; integrated power module; parasitic inductance; flip-chip; driver die

1. Introduction

In recent years, GaN high electron mobility transistors (HEMTs) have been widely
applied in power electronic converters to improve power density and efficiency, even
under harsh operating environments, thanks to their high breakdown voltage, low on-
resistance, high switching speed, and high temperature capability [1–4]. However, the high
switching speed of GaN HEMT results in a large dv/dt and di/dt, which causes overshoot
and oscillation in the gate voltage (Vgs), drain voltage (Vds), and current (Ids) because of
parasitic inductance in the driver and power loops [5,6].

To reduce parasitic inductance, new packaging methods have been reported, such
as optimized printed circuit board (PCB) layouts [7,8], the optimized interconnection
method [9], hybrid packaging [10,11], and integrating driver chips into modules [12,13].
Despite reduced parasitic inductance, the drivers used were all packaged chips. To further
reduce the inductance between the driver chip output terminal and the GaN HEMT gate, as
well as the inductance in driver grounding, drivers and GaN HEMT dies were integrated
into an 8.00 × 8.00 mm quad flat no-leads (QFN) package by Texas Instruments Incorpo-
rated [14]. On the other hand, it was shown that flip-chip technology can further reduce the
parasitic inductance and make modules more compact than general wire bonding [15,16].
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In this paper, a GaN half-bridge module integrated with HEMTs and driver dies
was fabricated using flip-chip technology. The parasitic inductance of the power loop
was extracted as 3.4 nH. The switching characteristics of the module were evaluated by a
double-pulse test and compared with that of a module that was packaged using the wire
bonding process. The Vgs waveform of the flip-chip module showed no overshoot at the
turn-on period and a small oscillation at the turn-off period, indicating that this method
effectively reduced the probability of gate damage and false turn-on. In addition, the Vds
waveform of the flip-chip module was flat, with almost no overshoot and oscillation. The
fall and rise times of Vds were 12.9 and 5.8 ns, respectively. These results indicate that
an integrated module with dies created using flip-chip technology can obtain superior
switching characteristics.

2. Module Design and Fabrication

The equivalent circuit diagram of the integrated GaN half-bridge module is shown in
Figure 1. Every driver loop includes a driver die, 1 Ω resistor, and 1 µF capacitor. The power
loop of the module consists of GaN enhancement-mode (e-mode) HEMTs with a threshold
voltage (Vth) of 1 V, breakdown voltage (BV) of 650 V, and on-resistance (Ron) of 100 mΩ.
The module uses AlN as the substrate material for decent heat dissipation performance.
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Figure 1. Schematic of the integrated GaN half-bridge module.

To reduce the trace length of the driver loop and obtain lower inductance, two modules
were fabricated with integrated driver dies. The difference between these two modules is
that the driver loops of the two modules were packaged either by the wire bonding process
or using flip-chip technology. A microscope photograph of the driver loop packaged by
wire bonding is shown in Figure 2a. The diameter of the bonding Au wire was 20 µm. The
capacitor and resistor were interconnected with the substrate by surface mount technology
(SMT) in this module. The distance between the out terminal of the driver and the gate
of the HEMT device was more than 4 mm. As shown in Figure 2b, the driver die in the
other module was packaged by flip-chip technology through gold balls. The diameter of
the gold balls was approximately 60 µm. A capacitor was set on the reverse side of the
substrate by SMT, and a tantalum nitride (TaN) film was used as the gate resistor on the
substrate. The distance between the out terminal of the driver and the gate of the HEMT
was as short as 1.3 mm.
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Figure 2. Microscope photograph of the driver loop (a) packaged by wire bonding technology; (b) packaged by
flip-chip technology.

A microscope photograph of the power loop is shown in Figure 3. In order to reduce
the parasitic inductance of the power loop, the HEMTs were packaged in the module by
flip-chip technology. There were 36 gold balls on the source and drain pads, and two gold
balls on the gate pad. The parasitic inductance of the power loop was extracted using an
Agilent E4980A Precision LCR Meter, which was measured as 3.4 nH. This shows that the
module integration achieved ultra-small parasitic inductance of the power loop.
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3. Switching Characteristics

The switching characteristics of the modules were evaluated using a double-pulse
test circuit with a load inductor of 600 µH. In the test, the high-side input logic signal was
kept at zero to ensure the high-side HEMT was used as a freewheeling channel, while the
double-pulse signal was applied on the low-side HEMT. The Vds and Vgs of the low-side
HEMT were measured using a Tektronix MSO64B oscilloscope.

The Vgs waveforms of these two modules are shown in Figure 4. During the turn-on
period, as the input of Vgs was 6 V, the overshoot of Vgs in the wire-bonding module was
1.24 V, while there was almost no overshoot in the module in the flip-chip package. In
addition, there was strong oscillation in the wire-bonding module in the turn-off period,
whose maximum amplitude was about 1.24 V. This is higher than the Vth of the HEMT
(1 V), meaning that there might be false turn-on operations in the wire-bonding module.
The rise time of Vgs was 13.5 and 12.5 ns for the flip-chip and wire bonding modules,
respectively. The fall time of Vgs was 10.0 and 9.1 ns for the flip-chip and wire bonding
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modules, respectively. These findings indicate that the parasitic inductance of the driver
loop was effectively reduced by the application of flip-chip technology.
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period; (b) turn-off period.

The Vds waveforms of the flip-chip module under a Vdc of 100 V are shown in Figure 5.
The test was carried out under 100 V because the module had no additional insulation
protection and heat sink. The fall time of Vds was 5.8 ns, which corresponds to a dv/dt
of 17.2 V/ns during the turn-on period. The rise time of Vds was 12.9 ns for the module,
with a dv/dt of 7.8 V/ns during the turn-off period. The Vds waveform of the integrated
module was stable after a small overshoot of 4.8 V during the turn-off period.
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To illustrate the advantages of the flip-chip technology, the test results of the integrated
module were compared with that of [8], whose circuit structure is similar to this work. In
reference [8], a GaN half-bridge module was fabricated with integrated drivers by the wire
bonding process. Under the same test conditions of 100V/2.7A, the overshoot of Vds of
the module in [8] was approximately 25V, which is four times larger than the result of this
work. During the turn-off period, the current decreased gradually. Due to the existence
of parasitic inductance in the power loop, a voltage in phase with Vdc was induced on
it, which manifested as overshoot of Vds. This means that the parasitic inductance of
power loop in reference [8] is larger than this work, which indicates advantages of the
flip-chip technology.

4. Conclusions

We designed and fabricated a half-bridge module whose gate driver dies were closely
integrated with the power devices. Both the HEMTs and driver dies were flip-chip bonded
onto the AlN substrate without bonding wires. The parasitic inductance of the power loop
for the module was measured to be 3.4 nH. The switching performance of the module
was evaluated using the double-pulse test. The module showed an ultrasmall overshoot
and oscillation in the Vgs waveform as well as a high switching speed in the Vds. The
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Vds rise and fall times of the module were measured to be 5.8 and 12.9 ns, respectively.
Compared with a module packaged by the wire bonding process, the flip-chip module had
reduced trace length and achieved lower parasitic inductance, showing excellent switching
characteristics. This work is encouraging for the realization of an integration module with
low parasitic inductance and excellent switching performance.
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