
applied  
sciences

Article

Detection Model of Occluded Object Based on YOLO Using
Hard-Example Mining and Augmentation Policy Optimization

Seong-Eun Ryu and Kyung-Yong Chung *

����������
�������

Citation: Ryu, S.-E.; Chung, K.-Y.

Detection Model of Occluded Object

Based on YOLO Using Hard-Example

Mining and Augmentation Policy

Optimization. Appl. Sci. 2021, 11,

7093. https://doi.org/10.3390/

app11157093

Academic Editors: Sławomir

Nowaczyk, Mohamed-Rafik

Bouguelia and Hadi Fanaee

Received: 18 June 2021

Accepted: 28 July 2021

Published: 31 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Division of AI Computer Science and Engineering, Kyonggi University, Suwon-Si 16227, Gyeonggi-do, Korea;
fbtjddms777@kyonggi.ac.kr
* Correspondence: dragonhci@gmail.com

Abstract: A study on object detection utilizing deep learning is in continuous progress to promptly
and accurately determine the surrounding situation in the driving environment. Existing studies
have tried to improve object detection performance considering occlusion through various processes.
However, recent studies use R-CNN-based deep learning to provide high accuracy at slow speeds,
so there are limitations to real-time. In addition, since such previous studies never took into con-
sideration the data imbalance problem of the objects of interest in the model training process, it
is necessary to make additional improvements. Accordingly, we proposed a detection model of
occluded object based on YOLO using hard-example mining and augmentation policy optimization.
The proposed procedures were as follows: diverse augmentation policies were applied to the base
model in sequence and the optimized policy suitable for training data were strategically selected
through the gradient-based performance improvement rate. Then, in the model learning process,
the occluded objects and the objects likely to induce a false-positive detection were extracted, and
fine-tuning using transfer learning was conducted. As a result of the performance evaluation, the
model proposed in this study showed an mAP@0.5 value of 90.49% and an F1-score value of 90%.
It showed that this model detected occluded objects more stably and significantly enhanced the
self-driving object detection accuracy compared with existing model.

Keywords: self-driving; data mining; occlusion detection; data augmentation; transfer learning;
model optimization

1. Introduction

As the limitations of the means of transportation are significantly decreased due to
the progress achieved by road traffic technology, the number of modern people who own a
vehicle continues to increase, and this leads to diverse traffic problems. Of such problems,
the increasing number of car accidents causes strong social risk burden to transportation
users, and causes massive social and economic losses at the national level [1]. The causes of
car accidents are divided into drivers, vehicles and roads. According to the statistical data
analyzing car accidents, driver-related causes such as negligent driving, fatigue and poor
driving account for more than 90% of the total number of car accidents [2]. Recently, as
one of the solutions for reducing the number of car accidents caused by drivers’ negligent
driving, many studies on self-driving are being conducted. A self-driving vehicle refers to
‘a vehicle that recognizes the surrounding environment and travels without an operation of
a user’ [3]. According to NHTSA, it is forecasted that 90% of the car accidents occurring due
to driver negligence will be prevented when self-driving vehicles are commercialized [4].

As described, self-driving technology is an innovative technology that effectively
reduces the number of car accidents and contributes to reducing traffic congestions and
traffic rule violations. Currently, surrounding object recognition and detection are active
studies, being essential technologies for commercializing self-driving. Lian, J. et al. [5]
proposed a model based on the attention feature fusion method to enhance the detection
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accuracy of small objects that are difficult to detect in traffic scenes. Such a model is
advantageous in that it uses local and global scales to design the multi-scale channel
attention block(MS-CAB) and intensively and easily recognize small objects. However,
the used model was limited in that it was designed without taking into consideration
occluded objects that may occur in a road environment. In addition, the model was
problematic in that the data imbalance of the classes of interest to be detected was not
taken into consideration in the model training process. In the real-life object detection
process, the occlusion phenomenon where a part of an object is occluded by particular
blocks frequently occurs. This serves as the main cause that increases the false-negative
that decreases detection rate and degrades the overall detection performance [6]. In a
road driving environment, a situation where a crosswalk object is undetected because it
is occluded by cars or pedestrians in front is a representative example of the occlusion
phenomenon that frequently occurs in the actual self-driving process. In another study on
road driving detection, Huang, X. et al. [7] proposed a real-time detection and tracking
model utilizing traffic image data based on the integrated two-stream convolutional neural
network. This model utilizes the space stream network for object detection and the motion
features for multi-object tracking to allow stable real-time object detection. However,
it was still problematic in that occluded objects were not taken into consideration. In
addition, since the data set used in the involved study did not take into consideration
hard-negative data that induce model performance degradation, it was necessary to make
additional improvements. In a road surrounding environment, diverse hard-negative
examples that make it likely to incorrectly detect negative examples as positive examples
exist. This increases the false-positive detection rate of a detection model and has a negative
influence on the overall detection performance [8]. As described, the pre-existing studies
on object detection were examined, and it was confirmed that the studies conducted by
Lian, J. et al. [5], Fan, B. B. et al. [9], and Lee, S. W. et al. [10] took into consideration
the hard-negative data, but were limited in that they did not take into consideration the
hard-positive data and data imbalanced caused by the occlusion phenomenon. In addition,
the pre-existing studies conducted by Huang, X. et al. [7], Ke, X. et al. [11], and Ha, J.
et al. [12] took into consideration the data imbalance, but were limited in that they did not
take into consideration the occluded objects and hard-negative objects.

Accordingly, in this study, to bring solutions to the limitations described above, a
detection model of occluded objects based on YOLO using hard-example mining and
augmentation policy optimization was proposed. The proposed procedures are as follows:
in the detection modeling process, the hard-positive objects occurring due to the occlusion
phenomenon and the hard-negative objects that are likely to be incorrectly detected as
objects of interest were extracted using the boundary feature vector according to the
confidence threshold. The pre-existing learning model was additionally re-trained on the
extracted feature vector through transfer learning. In addition, to overcome diverse types
of data imbalance problems that may occur in the actual detection process, augmentation
policies suitable for the learning model were strategically selected, and the model pre-
processing optimization was conducted.

2. Related Work
2.1. Object Detection Technology Using Deep Learning

Object detection is one of the core technologies of computer vision utilized in various
fields such as medicine, traffic, and health care. Object detection technology is an automated
technology that separates and identifies the objects of interest from the background of an
image [13]. Different from object recognition technology, which simply identifies particular
objects, this technology identifies the location information of the involved objects and
identifies various types of objects in one image as well as their location information.
Current studies relating to object detection technology tend to focus on approaches using
deep learning [13]. Deep learning algorithms such as the CNN(Convolutional Neural
Network) enables a more prompt and accurate detection of the objects of interest.
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Object detection algorithms using deep learning can be divided into two: one-stage
detectors and two-stage detectors. One-stage detectors are detection models that promptly
detect objects through the size-determined bounding box, and the size of the involved
bounding box is strategically selected for application to most environments [14]. Represen-
tative one-stage detectors are the YOLO, SSD, and RetinaNet models, and these models
enable prompt detection through simultaneously operating the region proposal and object
distinction. Although such models are suitable for real-time detection, they are limited in
that their accuracy is relatively low [14]. Two-stage detectors are models that operate the
region proposal and object distinction in sequence, and such models selectively explores the
regions likely to include the objects of interest through the RPN(Region Proposal Network).
Representative two-stage detectors are the Faster-RCNN and R-FCN models. Although
such models provide comparatively high accuracy, they are limited in that their real-time
object detection processing speed is low [15]. Since the YOLO(You Only Look Once) model,
the base model used in this study, has a structure of a single neural network, it is simply
configured and promptly learns the surrounding information. In addition, it divides one
image into grid cells and utilizes the features of the overall image from each cell. Figure 1
shows the process of the YOLO model detecting the objects of interest on the input image.
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Figure 1. YOLO process to detect objects of interest for input images.

As shown in Figure 1, the YOLO model divides the input image into the M*N grids
and performs the end-to-end learning based on each grid cell. At this point, the bounding
box and class probability within the image are deemed single regression problems [16].
This is the process of looking at the overall image once by calculating each class probability
for diverse bounding boxes through the single convolutional network, and the types
and location information of the objects of interest are promptly estimated through such
process [17]. In the model learning process, the learned image is divided into the M*N
grid cells, and the confidence score of each cell are processed in parallel to efficiently
calculate the confidence score of a particular class [18]. Through this series of prediction
processes, the objects of interest to be detected by the involved model are expressed on
the result image according to the class. In a study on object detection using YOLO, Jeon,
S. et al. [19] proposed a real-time road driving lane detection system by extracting the
features of lanes based on the YOLO model for road lane detection. This model uses the
Jetson Nano Developer Kit(single board computer) and CSI-camera to collect and learn
the driving data in various situations. In the involved study, the model performances
were compared, and it was confirmed that the performance of the model using YOLO
was relatively higher than that of the other neural network models. However, since the
occlusion phenomenon caused by particular block objects was not taken into consideration
in the learning process for modeling, the model was limited in that its accuracy varied
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depending on the surrounding environmental factors. Accordingly, in this study, although
the same YOLO model was used as the base model, an optimized model stably applicable
to diverse driving environments through hard-example mining was proposed.

2.2. Limitations and Study Trends of Object Detection during Self-Driving

The core technologies of self-driving are divided into the recognition, determination,
and control phases [20]. In the recognition phase, the multiple sensors within the self-
driving vehicle are utilized to precisely identify the near and far objects. Once the objects
are recognized, in the determination phase, a high-quality self-driving mechanism is
implemented through the human-level surrounding environment identification and road
driving learning processes. In the final control phase, the control system of the self-driving
vehicle is operated based on the recognition and determination results, and actions suitable
for that particular situation are taken. At this point, in the process of understanding the road
traffic situation and surrounding facilities, object detection technology using deep learning
is applied. The recognition process using object detection during self-driving results in
different actions on the road depending on the performance differences [21]. This is a really
important process, since it has a direct influence on road safety. Accordingly, a number
of studies are being actively conducted to improve the object recognition and detection
performances. Aslani, S. et al. [22] proposed an optic flow estimation algorithm based
object detection and tracking process by taking into consideration the moving direction and
size of the feature points of objects among frames in the image input phase. This model uses
a median filter to effectively remove diverse types of noises in a traffic situation. However,
since the involved study is a process based on the image sequence of static camera images, it
is difficult to detect the prompt changes made in a continuously and dynamically changing
self-driving environment. In addition, since the occluded objects were not taken into
consideration in the process of detecting, filtering and dividing the objects of interest from
the static image sequence, the model was limited in that the detection performance may be
significantly degraded when the objects of interest are partially occluded by other objects.
In the process of using the median filter, occlusion objects are likely to be judged as noise,
and there is a point to be improved that occlusion objects do not properly detect them as
objects of interest. During real-life road driving, the occlusion phenomenon frequently
occurs and serves as the main factor that degrades the object detection performance. Figure
2a,b are road driving images included in the IARA data set and in the GOPRO data set,
respectively, and shows examples of the occlusion phenomenon [23,24].
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Figure 2. Occlusion by various road driving environments.

Figure 2a shows the occlusion phenomenon where it is difficult to detect the crosswalk,
because it is occluded by the vehicles in front. Figure 2b shows the occlusion phenomenon
where the crosswalk located at the center is occluded by the shadow of the vehicles
in front. In addition, due to the limited size of the image input from the self-driving
vehicle, the crosswalk located to the right is cut and only partially shown, making it an
occluded object that is difficult to detect. As described, in a self-driving situation, there
is a problem that occluded objects that are difficult to detect occur depending on diverse
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road environmental conditions such as climate and traffic volume. Ning, C. et al. [25]
released a pedestrian detection survey to consider occlusion. The results of the survey
show that modern method-based algorithms using deep learning are more powerful than
conventional method-based detection algorithms that manually select pedestrian features.
Nevertheless, existing deep learning-based object detection algorithms to solve occlusion
problems have several issues to improve. The first is the training data problem, which,
when the amount of data is small, does not provide a good detection effect with current
algorithms. This can be overcome by optimizing data augmentation to increase the amount
and quality of training data. The second is the problem of accuracy and speed, and in most
detection algorithms, detection accuracy and detection speed have a trade-off relationship,
so it is important to design an efficient algorithm with both accuracy and detection speed
depending on its application. Kulkarni, R. et al. [26] proposed a faster R-CNN-based object
detection model using transfer learning. This modeling method based on pre-trained
transfer learning reduces the time complexity required to develop a neural network model.
However, because a faster R-CNN, a two-stage detector, is used as the base model, the
method is limited in that the real-time object detection processing speed is relatively low.
In addition, since the data pre-processing optimization is not taken into consideration
in the model learning process for detecting the objects of interest, additional challenges
relating to that problem remain. Among the most common data imbalance problems is the
foreground-to-background imbalance problem, which refers to the presence of extreme
imbalances between the number of positive examples and negative examples. This causes
over-fitting and is a major factor in reducing detection accuracy. Therefore, various top-
down and bottom-up approaches must be considered to improve this. As described, a
number of self-driving related studies are being continuously conducted to detect the
objects of interest under diverse environments and conditions.

3. Detection Model of Occluded Object Based on YOLO Using Hard-Example Mining
and Augmentation Policy Optimization

In this study, a detection model of occluded object based on YOLO using hard-example
mining and augmentation policy optimization was proposed to detect objects that occlude
a crosswalk on a real-time basis. The proposed model has a structure of a three-phase
process. Figure 3 shows the process configuration diagram of a YOLO-based occlusion
object detection model. As shown in Figure 3, the first phase is the augmentation policy
optimization phase. As far as the training data for occluded object detection are concerned,
the self-driving image dataset provided from the IARA(Intelligent Robotic Autonomous
Automobile) and GOPRO was collected [23,24]. The above dataset includes diverse objects
that appear in a road driving environment. It also contains high-quality image datasets
that include various times, spaces, and climate environments. In this study, the involved
data were used to create a model that detects objects that occlude a crosswalk. Nine
augmentation policies were applied to the collected data to create new training data. The
augmentation policies consisted of MixUp, CutOut, CutMix, Mosaic, Blurring, Brightness,
Contrast, Hue, and GrayScale [27]. These policies were applied to the base YOLO model
learning in sequence, and extracted the bounding box regression value of the objects of
interest calculated based on the IoU(Intersection over Union) index. The actual ground
truth value and predicted regression value were compared, and only the policies having
a positive influence on occluded crosswalk object detection were accepted through the
gradient-based residual.
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In the second phase, the pre-existing training data and the data to which the opti-
mized augmentation policy is applied were used to extract the hard-positive example and
hard-negative example groups through hard-example mining. Through hard-example
mining, the data increasing the false-negative detection rate and false-positive detection
rate based on the feature vector were extracted from the confidence score and bounding
box parameters. As far as the hard-positive data increasing the false-negative detection
rate are concerned, the reclassification of the objects of interest was performed. As far as
the hard-negative data increasing the false-positive detection rate are concerned, the Bbox
information of the false-positive objects was updated and applied to the detection model.
In the final phase, a neural network is configured based on the YOLOv4 model, a one-stage
detector, to detect the objects that occlude a crosswalk. The augmentation policies applied
through the previous phases were optimized, and fine-tuning was conducted through
hard-example re-leaning. This is the process of applying transfer learning to the pre-trained
detection model, and has a positive influence on occluded object detection. The occluded
crosswalk was detected based on the object classification and bounding box regression
values predicted through the detection generator.

3.1. Collection and Pre-Processing of Road Driving Image Data

In this study, to configure an occluded crosswalk detection model, the self-driving
dataset [23] collected from a self-driving vehicle known as IARA(Intelligent Robotic Au-
tonomous Automobile) and the road driving image dataset [24] recorded using a GOPRO
camera were used at the same time. IARA is a self-driving vehicle being developed at
the LCAD of Universidade Federal do Espírito Santo. The involved vehicle consisted of
a number of sensors. However, in this study, the learning images only consisted of the
data collected from the camera for self-driving for image-based object detection. The IARA
dataset included consecutive images consisting of general road driving images recorded
during the daytime and road driving images recorded during the nighttime on weekdays.
It consists of more than 35,000 images of day and night data and uses images with and
without crosswalks. Among them, 12,748 images include crosswalks. The GOPRO dataset
consisted of images recorded at 29.97 FPS using a GoPRO HERO 3 camera in Espírito Santo,
Brazil. The involved images were divided into 29 sequences. Of the 29 sequences, 23 se-
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quence images included the driving images of the vehicle passing through a crosswalk, and
the remaining 6 sequence images consisted of the driving images of the vehicle not passing
through a crosswalk. The dataset also consists of 11,070 daytime image data, of which 3964
images contain crosswalks. The two datasets are combined to use approximately 46,000
road images, of which 16,712 crosswalks are included. This study was aimed at designing
a model capable of detecting the crosswalk objects to which the occlusion phenomenon is
applied and not detecting objects that may be incorrectly detected as crosswalk objects at
the same time. Accordingly, the sequence images that included a crosswalk were used as
the training data of the detection model, and the sequence images that did not include a
crosswalk were used as the data for hard-negative extraction and as the validation data.
Figure 4 shows the pre-processing of road driving data for occlusion object detection.
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As shown in Figure 4, input raw images represent a total of 35,625 frame-unit input
raw images acquired from road driving images in diverse environments. The original
resolution of the involved images is 1920 × 1080 pixels. Since high-resolution images
increases the complexity of the model algorithm for detecting the objects of interest and
decreases the learning efficiency, in this study, the resolution was adjusted to 640 × 360.
After the pixel pre-processing, the location of the ground truth bounding box of the
crosswalk object was defined through the class labeling process of the objects of interest.
This is an essential process for one-stage detector-based YOLO model training. In the final
stage of pre-processing, the overall dataset is divided at a ratio of 8:2, and the training
dataset for crosswalk occlusion detection and the test dataset were configured. Then, the
training data were divided at a ratio of 3:1, and the training data for object detection neural
network learning and the validation data used for evaluating the conformity of the model
in training were configured.

3.2. Augmentation Policy Optimization for Data Imbalance Problem Solving

The foreground-to-background imbalance problem that normally occurs in the process
of detecting objects of interest in a road driving environment has a negative influence on
the final detection performance [28]. This is caused by the intense imbalance between the
number of positive examples serving as objects of interest and the number of negative
examples serving as background objects, and causes overfitting. In this study, to prevent
the data imbalance problem and overfitting, augmentation policies suitable for the learning
model were strategically selected. In addition, the model pre-processing was optimized
by adjusting the activation function and anchor box hyper parameters. Table 1 shows
the augmentation policies applicable to learning for object detection, and also shows the
detailed description of such policies [27]. Augmentation policy optimization is a process
of strategically selecting policies that have a positive influence on the performance of
learning data from among diverse policies such as MixUp, CutOut, CutMix, Mosaic,
Blurring, Brightness, Contrast, Hue, and GrayScale and applying the selected policies to
learning [29].
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Table 1. Augmentation policies and description applicable to learning for object detection.

Index Augmentation Policies Detailed Description

1 MixUp A policy that generates new data by randomly sampling
and overlapping two input images.

2 CutOut
A policy that randomly truncates some regions of the
input image so that they are hidden only in the first
layer of the CNN.

3 CutMix A policy that randomly samples two input images to
create new data with a mixture of Ground Truth labels.

4 Mosaic A policy that combines four random-input images into
one training image at a certain rate.

5 Blurring A policy that intentionally adds noise to the input image
to blur the image.

6 Brightness A policy that adjusts the brightness of the input image
to a certain proportion to convert it to dark or bright.

7 Contrast A policy that transforms contrast by adjusting contrast
ratio of input images to a certain proportion.

8 Hue A policy that transform hues by adjusting hue ratio of
the input image to a certain proportion.

9 GrayScale A policy that converts input images into black and
white images to avoid considering color information.

This secures additional learning data required for training the deep learning model
and prevents the data imbalance problem and overfitting [30]. In addition, diverse noise
processings applied from the pre-existing data is applied to the model to acquire a more
generalized model. A generalized model allows the detection of objects of interest in diverse
driving environments [31]. However, indiscreetly applying the involved augmentation
policies to learning has a negative influence on the performance of a detection model [32].
Since the optimized policies may also vary depending on the unique features of learning
data, the user designing the detection model is required to make adequate adjustments [33].
Accordingly, in this study, images to which new augmentation policies are applied in
sequence at intervals of 1000 iterations were added to the training data in the model
learning process. This means that after 1000 training sessions, the weights for the learning
model are extracted, adding images with new policies applied to the existing learning data
to the model to continue learning into transfer learning. The policies added in phases went
through the transfer learning of the pre-trained base YOLO model. In the transfer learning
process for crosswalk occlusion detection, the bounding box regression values before and
after applying particular policies were compared, and the residual was extracted. The
residual was calculated based on the mAP used as the object detection performance index.
When the gradient-based residual comparison is made between the location information
of objects of interested predicted in the detection process and the location information
of ground truth, the larger detection performance gradient means that the most recently
applied augmentation policy satisfies the model optimality [34]. Accordingly, a comparison
was made between the pre-existing detection mAP(mean Average Precision) value and
the detection mAP value including the added policies, and the policies for enhancing
the performance of occluded crosswalk object detection were strategically selected. A
gradient-based performance residual comparison was made, and the increase/decrease
in the mAP serving as the objective index was digitized to explore the optimal policy
group. Figure 5 shows the result images of the training data to which augmentation policy
optimization is applied according to the model learning process.
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Figure 5a–c show the augmentation policies for enhancing the performance of oc-
cluded objection detection that showed positive results when applied to the learning model
in this study. Figure 5a CutMix is a policy that replaces a part of one image with a part
of another image to newly configure the learning data, and shows amazing performance
results for being an intuitive idea [35]. Figure 5b Mosaic is a policy that mixes and uses
four learning images, and shows effective performance despite the small number of mini
batches [36]. Figure 5c is a policy that processes the pre-existing color learning images
into black-and-white images, and enables prompt image processing by simply delivering
the luminosity information [37]. The MixUp, CutOut, Blurring, Brightness, Contrast, and
Hue policies other than the three described above were not selected as the policies for
model optimization, since the performance changes were reduced or insignificant in the
transfer learning process. Accordingly, the CutMix, Mosaic, and Grayscale policies that
showed detection performance enhancements through each policy performance evaluation
were accepted and used in the final model learning. In addition, since the output value
representing the detection performance varies depending on which activation function
is used for model neural network configuration, it is very important to use activation
functions suitable for learning [38]. In this study, a robust model suitable for normalization
was developed and the Mish function that prevents overfitting was used as the activation
function. This allows a bit of negative numbers to exist in the output value, and is particular
in that the gradient is more smoothly displayed than that of the pre-existing ReLU series
function. Since this is more advantageous in finding the global optimum value, it has a
positive influence on the mean accuracy [38]. In addition, in the transfer learning process
of the YOLO-based model, the k-means clustering method was applied to the bounding
box of the ground truth included in the learning dataset, and the optimal anchor boxes
suitable for crosswalk detection were found and used for learning. K-means clustering is
an algorithm that aggregates given data into k clusters, minimizing the variance between
each cluster and the distance difference. Generally, the method of using k-means clustering
uses the euclidean method, but when applied to anchor boxes, it is difficult to find optimal
anchor boxes because they rely too much on the center point. To improve this, we apply
IoU(Intersection over Union) to extract anchor boxes. This had a positive influence on the
crosswalk detection performance, since it took into consideration not just the pre-existing
initially set value that simply took into consideration the aspect ratio according to pixels,
but also the image features of the ground truth objects of learning data [39].

3.3. Detection Model of Occluded Object Based on YOLO Using Hard-Example Mining

After configuring the dataset to be used for model learning through the augmentation
policy optimization, a custom learning model was conducted to detect the objects that
occlude a crosswalk. To detect the occluded object on a road, it is necessary to extract
the hard-positive data generated in the model learning process and include them as the
input images of the learning model. An effective method to decrease the false-negative
detection rate and false-positive detection rate of the objects of interest is to extract diverse
hard-negative data that may occur in a road driving environment and have the model
re-learn the data [40]. Hard-positive and hard-negative data are extracted from the hard
example mining phase, Step-2 in Figure 3. The proposed process in this study extracts
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data from the training datasets that are judged to be hard positive and negative and
then reused for occluded crosswalks detection model training through appropriate pre-
processing. Accordingly, in this study, in the YOLO-based model learning process for
crosswalk detection, the hard-example data were extracted based on the confidence score
threshold values and each boundary information of the detected classes. Then, the fine-
tuning, to which transfer learning is applied, of the pre-trained model was performed. The
convolution base of the pre-existing model serving as the part that extracts the features
for detection from the input images was utilized to have just the classifier perform the re-
learning process. In the road driving data for crosswalk detection, a hard-positive example
is an example where the crosswalk object is not detected or is incorrectly detected as
another object due to the occlusion phenomenon. A hard-negative example is an example
where speed bumps and signs such as ‘no speeding’ and ‘kids zone’ for provision of
traffic information other than crosswalks on roads are likely to be incorrectly detected
as crosswalks. In the YOLO-based model learning process, the confidence score value
is determined based on the IoU according to the pre-determined IoU(Intersection over
Union) threshold value and on the object of interest existence probability, and the detection
results are calculated according to the involved score value. In this study, the actual ground
truth objects and hard-positive and hard-negative objects were classified through the
involved confidence score information and bounding box information. Then, the extracted
examples were added to the pre-existing learning data, the transfer learning was conducted,
and the pre-trained model was renewed. As far as the model renewal is concerned, the
feature vectors acquired from the locations predicted by the bounding box were set and
learned as positive examples when they were included in the crosswalk objects, and the
feature vectors acquired from the images not including crosswalk vectors were all set
and learned as negative examples. In the model learning for occluded object detection,
since the hard-negative feature vectors extracted from images not including objects of
interest were all negative examples, they were included in the dataset for re-learning. The
hard-negative feature vectors extracted from images including objects of interest were
classified through the vector comparative calculation with the ground truth objects, and
the filtered negative examples were included into the re-learned dataset. At this point, the
bounding box information of the classes defined based on the extracted vectors were taken
into consideration, the classifier was re-designed to classify the hard-negative examples
as a separate class from the ground truth, and the involved examples were included into
the new learning category. This induces the hard-negative objects likely to be detected
as positive classes in the actual crosswalk detection process to be classified as classes of
another category. Accordingly, this decreased the false-positive detection rate and enhanced
the overall object detection performance. Lastly, since the hard-positive feature vectors
that can be extracted from images including objects of interest were vectors included in or
adjacent to the ground truth feature vectors, the bounding boxes of the involved images
were reset by taking this into consideration, and then were included in the dataset for
transfer learning. At this point, the IoU threshold value for hard-example estimation was
set as a value below 0.5, and the feature vectors of the objects of interest were extracted.
Algorithm 1 is an occluded object detection algorithm using hard-example mining.

As shown in Algorithm 1, the input value represents the learning images to which the
CutMix, Mosaic and GrayScale policies acquired through augmentation policy optimization
are applied. In the case where the objects of interest were included in the input image,
when the IoU(Intersection over Union) threshold value of the predicted bounding box
regression value and actual bounding box regression value was above 0.5, it was set as a
positive example. Then, a hard-negative example was extracted through the predicted bbox
regression value and confidence score within the positive example. In the case where the
IoU threshold value of the predicted bounding box regression value and actual bounding
box regression value was below 0.5, it was set as a negative example. Likewise, a hard-
positive example was extracted through the predicted bbox regression value and confidence
score within the negative example. Lastly, in the case where the objects of interest were
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not included in the input image, since it meant that all the detected objects of interest were
negative examples, they were deemed hard-negative examples and were extracted. The
output value calculated through the hard-example mining algorithm represents the hard-
negative examples and hard-positive examples extracted from the pre-existing positive
examples and negative examples. Since this serves as a factor that increases the false-
positive and false-negative detection rates in the process of detecting the objects of interest,
the class bounding box of the involved data was reset and added to the pre-existing transfer
learning model, and the data were re-learned.

Algorithm 1. Occluded Object Detection Algorithm using Hard-example Mining.

Input: training input images[n] applied cutmix, mosaic, and grayscale policies
Output: Hard-negative_example[n], Hard-positive_example[n], Positive_example[n],

Negative_example[n] Groups

confidence_score[n]←NULL
Positive_example[n]←NULL
Negative_example[n]←NULL
Hard-negative_example[n]←NULL
Hard-positive_example[n]←NULL

for n is 1 to number of training Input Images do
if Ground Truth interest object is involved in Input Images[n]

// IoU( Intersection over Union) = Overlapping Region/Combined Region
if IoU of pred_bbox_reg(n) and GT_bbox_reg(n) >= 0.5

confidence_score[n]←Pr(object(n)) * IoU
if confidence_score[n] >= 0.5
// Positive example mining with confidence score threshold
Pos_feature_vector[n]←pred_bbox_reg(n)
Positive_example[n]←GT_class_labeling(Pos_feature_vector[n])

else
// Hard-negative mining with bbox comparison and reclassification
Hard-Neg_feature_vector[n]←pred_bbox_reg(n)
bbox_tmp←Comp(Hard-Neg_feature_vector[n], GT_bbox_reg(n))
filtering_tmp←Filtering(bbox_tmp)
Hard-negative_example[n]←Class_redefine(filtering_tmp)

else if IoU of pred_bbox_reg(n) and GT_bbox_reg(n) < 0.5
confidence_score[n]←Pr(object(n)) * IoU
if confidence_score[n] < 0.5 or confidence_score[n] >= 0.25

// Hard-positive mining with class reclassification
Hard-Pos_feature_vector[n]←pred_bbox_reg(n)
bbox_tmp←Class_redefine(Hard-Pos_feature_vector[n])
Hard-positive_example[n]←bbox_tmp

else // confidence_score[n] < 0.25
// Negative example mining with confidence score threshold
Neg_feature_vector[n]←pred_bbox_reg(n)
Negative_example[n]←GT_class_labeling(Neg_feature_vector[n])

else // Ground Truth interest object is not involved in Input Image
if pred_bbox_reg(n) exists

Hard-Neg_feature_vector[n]←pred_bbox_reg(n)
bbox_tmp←Hard-Neg_feature_vectors[n]
Hard-negative_example[n]←Class_bbox_redefine(bbox_tmp)

endfor
return

4. Result and Performance Evaluation

As far as the test environment for implementing the proposed occluded object detec-
tion model is concerned, the hardware and operating system consisting of Windows10
Pro, AMD Ryzen 5 1600 Six-Core Processor, NVIDIA GeForce RTX 2080 and RAM 16GB
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were used. In this study, a detection model of occluded object based on YOLO using hard-
example mining and augmentation policy optimization was proposed. Figure 6 shows the
crosswalk occlusion object detection results through the proposed hard-example mining.
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Figure 6a,b shows the detection model results acquired by using Seoul road driving
images as the test data, and Figure 6c,d shows the detection model results acquired by
utilizing the IARA data not used as learning data as the test data. Figure 6a shows the
YOLO-based crosswalk detection results of a hard-negative example before the application
of hard-negative mining. Based on the detection results, it was confirmed that the traffic
information on a road that is not a crosswalk was incorrectly detected as a crosswalk,
and that the confidence score value was 0.64 at that point. Figure 6b shows the detection
results of a hard-negative example after the application of hard-negative mining, and it
was confirmed that the confidence score value of the crosswalk was 0.25, and that the
false-positive detection rate was greatly decreased. Figure 6c shows the crosswalk detection
results of a hard-positive example before the application of hard-positive mining. The
involved example was a representative occlusion phenomenon, and the confidence score
values were 0.09 and 0.10, and it was unable to detect the crosswalk due to the block
objects in front. However, as Figure 6d shows, based on the detection results acquired
after the application of hard-positive mining, the confidence score values were enhanced
to 0.90 and 0.89, and it was able to stably detect the objects that occluded the crosswalk
in a road driving environment. The false-positive (64%) and false-negative(10%) objects
generated in the pre-existing base model showed a false-positive detection rate of 25%
and a true positive detection rate of 90%, respectively, meaning that the crosswalk object
detection performance was greatly enhanced. As far as the real-life object detection is
concerned, since the threshold value of the confidence score was 0.5, it was determined
that the proposed model more stably detects crosswalk objects.

To evaluate the performance of the occluded object detection model proposed in this
study, the performance evaluation for optimal augmentation policy configuration and the
performance evaluation of the YOLO-based model to which the optimized augmentation
policy and hard-example mining were applied were performed. To enhance the crosswalk
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occlusion object detection performance during road driving, the performance changes in
diverse augmentation policies were observed. The mAP@0.5 (mean Average Precision)
was used as the performance index for evaluation, and the gradient value was used
as the mAP@0.5–based quantitative index. mAP is a value that expresses the precision
values calculated based on the actual object-detected recall changes as one index, and is
a representative performance evaluation index of an object detection algorithm [41,42].
Equation (1) represents the gradient index.

Gradient={
mAP after involving present policy

mAP before involving present policy
×100}−100 (1)

Equation (1) shows the relative changes in the mAP of the detection model before
including the current augmentation policies and in the mAP of the detection model after
including the current augmentation policies. At this point, the value is multiplied by
100 and 100 is subtracted from the value for the convenience of calculation through the
normalization of performance changes. This allows each gradient index to be applied
as a same-level scale, and has a positive effect on understanding the model performance
changes. If the involved index value is a positive number, this means that the mAP
increases, and, if the involved index value is a negative number, this means that the mAP
decreases. Accordingly, the detection performance changes were objectively evaluated
through the involved gradient index values. Table 2 shows the detection performance
results for various augmentation policies [29,42].

Table 2. Detection performance results for various Augmentation policies. MU: MixUp. CO: CutOut.
CM: CutMix. MO: Mosaic. BL: Blurring. BR: Brightness. CT: Contrast. HU: Hue. GS: Grayscale.
Inv.mAP: mAP after involving present policy. Pre.mAP: mAP before involving present policy.

MU CO CM MO

Inv.mAP 0.7281 0.7355 0.7871 0.8360
Pre.mAP 0.7147 0.7281 0.7355 0.7871
Gradient 1.87 1.01 7.01 6.21

BL BR CT HU GS

0.8223 0.8380 0.8442 0.8392 0.8735
0.8360 0.8223 0.8380 0.8442 0.8392
−1.64 1.90 0.73 −0.6 4.08

As shown in Table 2, the CutMix policy showed the highest gradient value of 7.01. This
showed better detection performance changes in comparison to the previously included
MixUp and CutOut policies. CutMix is a policy created by mixing the strengths of the pre-
existing MixUp and CutOut methodologies, and the objective performance difference was
confirmed through the involved test results. The Mosaic policy showed the second highest
gradient value of 6.21. Four random learning images were mixed into one image and were
used for model learning, and it was confirmed that this policy had a positive influence on
the learning efficiency and accuracy. Lastly, the Grayscale policy showed a high increase
in terms of detection performance changes, and showed a gradient value of 4.08. The
involved policy is a method that simply applies the black-and-white processing to the
previously learned images. However, by examining the universal features of the learned
images used in this study to detect crosswalk objects, it was possible to reason the grounds
for high performance results. It was assumed that the difference between the black color
of the asphalt-paved road and the white color displaying the crosswalk emphasized the
features of the crosswalk through black-and-white processing and had a positive influence
on the performance. Based on the test results, it was confirmed that the policies other than
CutMix, Mosaic and Grayscale showed a mAP change that was either a negative number or
low, so they were excluded from the optimal augmentation policy group. After completing
the augmentation policy performance valuation, the optimal polices were selected and
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applied to the YOLO model for detection together with hard-example mining. Then, the
performance evaluation involving the following models was conducted: the BASE+BASE
model serving as the pre-existing base model, the HEM+BASE model to which hard-
example mining was applied without augmentation policy optimization, the APO+BASE
model to which augmentation policy optimization was applied without hard-example
mining, and this study’s HEM+APO model to which augmentation policy optimization
and hard-example mining were applied. Table 3 shows the detection performance results
for the occluded object detection model proposed in this study and for the pre-existing
model [8,18].

Table 3. Detection performance results for suggested model and existing base model.

BASE+BASE HEM+BASE APO+BASE HEM+APO (Ours)

mAP@0.5 75.14% 88.61% 87.95% 90.49%
F1-score 0.7502 0.8784 0.8568 0.9027

As shown in Table 3, a comparison was made between the BASE+BASE model and the
HEM+BASE model, and it was confirmed that HEM+APO model showed the highest mAP
value of 90.49%. In addition, as shown in the F1-score performance index, the proposed
model showed an F1-score value of 0.9027 and showed higher performance than the
other three models that showed F1-score values of 0.7502, 0.8784 and 0.8568, respectively.
The HEM+BASE model showed an mAP value that was 13.47%p higher than that of the
pre-existing base model. It seemed that the model to which hard-negative mining and hard-
positive mining were applied showed better performance in detecting crosswalk occlusion
objects compared to the pre-existing model, and the model demonstrated the effective
true-positive detection of hard-example objects serving as causes that degrade detection
performance. The APO+BASE model showed an mAP value that was 12.81%p higher than
that of the pre-existing base model. It seemed that the model to which augmentation policy
optimization were applied showed better performance compared to the pre-existing model.
Thus, it demonstrated that more precise detection of occlusion objects can be achieved
by applying CutMix, Mosaic, and Grayscale policies. In addition, the HEM+APO model
showed an mAP value that was 1.88%p higher than that of the HEM+BASE mode. This
model effectively overcame the data imbalance problem that is likely to occur in the object
detection process for road driving through augmentation policy optimization.

In this study, we proposed a detection model of occluded objects based on YOLO
using hard-example mining and augmentation policy optimization. In comparison to
the pre-existing model, the proposed model more precisely detected the occluded objects
during road driving, and the accuracy performance was enhanced as well. However, this
study is limited in that the occlusion objects relating to multiple classes were not taken
into consideration, because the proposed model was designed to detect occlusion objects
relating to a single class known as a crosswalk. In addition, since the size of the IARA and
GOPRO data sets for model training was not big enough, there is a possibility that the
performance may be improved. In the future study, continuous tests must be conducted
to take into consideration the occlusion phenomenon involving diverse objects of interest
other than crosswalk objects that may occur in a road driving environment. In addition,
diverse types of training data sets should be additionally collected and used for neural
network learning and the pre-existing limitations should be supplemented to improve the
performance of the occluded object detection model developed.

5. Conclusions

As limitations on the means of transportation are significantly decreased due to
progress in road traffic technology, the number of modern people who own a vehicle
continues to increase, and this leads to diverse traffic problems. As one of the plans to
reduce the number of car accidents, self-driving technology development is attracting
greater attention. The core of self-driving technology is object detection technology, and
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studies on object detection during road driving are being actively conducted. However,
since the several pre-existing studies did not carefully take into consideration the occlusion
phenomenon that may occur in a road driving environment, they were limited in that
they experienced an increase in the false-negative detection rate. Other previous surveys
have used a variety of traditional and modern object detection algorithms to consider
occlusion objects. However, the number of training data and the limitations for data
pre-processing require further improvement. In addition, an increase in the false-positive
detection rate that may occur due to objects or noises similar to the objects of interest
has a negative influence on detection performance. In this study, a detection model of
occluded object based on YOLO using hard-example mining and augmentation policy
optimization was proposed. This model extracted the hard-positive objects resulting from
the occlusion phenomenon in a road driving environment and the hard-negative objects
likely to be incorrectly determined as objects of interest based on the confidence score and
the boundary information of the detected classes. Then, fine-tuning that applies transfer
learning to the pre-trained weights was conducted, and a robust detection model suitable
for hard examples was developed. In addition, the model pre-processing process for
occlusion detection and the augmentation policies were optimized through a gradient-
based performance comparison, and the optimized policies suitable for learning data were
strategically selected. Based on the evaluation results, the YOLO-based occluded object
detection model proposed in this study showed an mAP value of 90.49% and an F1-score
value of 90%. This showed the highest performance compared to the base model and the
model to which no policy optimization was applied. Accordingly, as this model effectively
overcame the data imbalance problem that degrades the performance of an object detection
model in a self-driving environment and more precisely and more accurately detected the
occluded objects that were difficult to detect in the past, it enabled object detection for
self-driving in diverse environments.
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