
applied  
sciences

Article

Reinforcement Learning with Self-Attention Networks for
Cryptocurrency Trading

Carlos Betancourt and Wen-Hui Chen *

����������
�������

Citation: Betancourt, C.; Chen,

W.-H. Reinforcement Learning with

Self-Attention Networks for

Cryptocurrency Trading. Appl. Sci.

2021, 11, 7377. https://doi.org/

10.3390/app11167377

Academic Editors: Alfonso Monaco

and Nicola Amoroso

Received: 10 July 2021

Accepted: 10 August 2021

Published: 11 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Graduate Institute of Automation Technology, National Taipei University of Technology, Taipei 10608, Taiwan;
t104669004@ntut.edu.tw
* Correspondence: whchen@ntut.edu.tw

Abstract: This work presents an application of self-attention networks for cryptocurrency trad-
ing. Cryptocurrencies are extremely volatile and unpredictable. Thus, cryptocurrency trading is
challenging and involves higher risks than trading traditional financial assets such as stocks. To
overcome the aforementioned problems, we propose a deep reinforcement learning (DRL) approach
for cryptocurrency trading. The proposed trading system contains a self-attention network trained
using an actor-critic DRL algorithm. Cryptocurrency markets contain hundreds of assets, allowing
greater investment diversification, which can be accomplished if all the assets are analyzed against
one another. Self-attention networks are suitable for dealing with the problem because the attention
mechanism can process long sequences of data and focus on the most relevant parts of the inputs.
Transaction fees are also considered in formulating the studied problem. Systems that perform trades
in high frequencies cannot overlook this issue, since, after many trades, small fees can add up to
significant expenses. To validate the proposed approach, a DRL environment is built using data from
an important cryptocurrency market. We test our method against a state-of-the-art baseline in two
different experiments. The experimental results show the proposed approach can obtain higher daily
profits and has several advantages over existing methods.

Keywords: deep reinforcement learning; self-attention networks; cryptocurrency trading; fee
minimization

1. Introduction

Asset exchange can be very profitable if it is done properly. The values of typically
traded assets, such as cryptocurrencies, fluctuate constantly due to the interactions of the
participants in markets. Therefore, if it can be predicted which assets have high chances
of gaining value, they can be acquired and sold off in the future, generating profits to the
investor. Profits can also be generated when the value of assets decreases; short selling and
margin trading services work under this premise. Predicting which assets have the potential
to increase their value is difficult. This is because trading is linked to human sentiment,
which changes rapidly when important global events occur, for instance, political elections,
international agreements, or natural disasters, and also it is easily manipulated using
branding or marketing campaigns [1]. Nonetheless, asset trading is commonly practiced
by both humans and algorithms throughout the world, where the most commonly traded
assets are stocks, fiat money, and cryptocurrencies.

In the last decade, cryptocurrencies have gained worldwide relevance despite the
initial skepticism of the people towards these assets. More and more countries are allowing
the use of cryptocurrencies as a payment method, and in addition, in June of the present
year (2021), the republic of El Salvador became the first country to adopt Bitcoin as legal
tender. https://www.nytimes.com/2021/06/09/world/americas/salvador-bitcoin.html
(accessed on 6 August 2021). However, the price of Bitcoin has been extremely volatile
throughout its history, and widely different compared to traditional assets. Therefore,
to overcome the shortcomings of this cryptocurrency, hundreds of alternative tokens,
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known as ‘altcoins’, have sprung up around the world [1], which in turn has made the
number of platforms offering cryptocurrency services, such as trading, grow. These plat-
forms have significant advantages against those for other types of assets, with the most
important being access to the common public and a minimal amount of cash required to
start trading.

We propose a DRL approach for cryptocurrency trading, where a self-attention (SA)
network is the backbone of the system. Cryptocurrency markets contain hundreds of assets
that can be exchanged. Therefore, being able to process massive amounts of data allows the
system to gain a better understanding of the market state and the individual state of the
assets, which in turn produces better diversification of investments and reduces risk [2].

This work also explores the problem of inter-asset transactions (IAT). Most markets
require a fee for each transaction made on their platforms, and cryptocurrency markets
are no exception. Therefore, a tool to compute the transactions that leads to the minimum
possible fee expenditure is important. This issue is even more significant if the trading
frequency is high, for example, if an investor trades every six hs a cryptocurrency volume
worth 10,000 USD with a fixed transaction fee of 0.1%. Then, after only one month the
total expenditure would be 1200 USD due to transaction costs, which is a non-trivial
amount compared to the traded volume. We study this problem in-depth and propose
three algorithms to perform optimal IAT for different applications.

The main contributions of this work are summarized below.

• A self-attention NN architecture for cryptocurrency trading is proposed. The NN is
trained using DRL and is independent of the number of assets in the market.

• An analysis of the information flow inside the NN is given, explaining how and why
the architecture works.

• The problem of IAT is studied in depth. This includes the description and theoretical
justification of three algorithms, and the evaluation of the speed and accuracy of the
algorithms.

The rest of the paper is organized as follows. Section 2 discusses the relevant points
of related literature. Section 3 presents the mathematical formulation of the problem.
Section 4 describes various algorithms that allow the computation of optimal transaction
fees. Section 5 describes the deep neural network (NN) architecture used for cryptocurrency
trading as well as the training method. Section 6 contains the setup of the experiments
implemented to evaluate the performance of our method. Section 7 presents the results of
the experiments along with a discussion of the most relevant findings. Finally, conclusions
are drawn in Section 8.

2. Literature Review

One of the earliest studies on reinforcement learning applied to asset trading can
be found in [3]. In that work, the authors proposed an algorithm named recurrent rein-
forcement learning (RRL) applied to stock market trading. The authors explored the use
of well-known financial measures, such as the Sharpe ratio, as reward functions in the
process. Those ideas were expanded in [4], where they compared their approach to other
methods. Later on, Gold [5] used a similar approach for currency trading in the foreign
exchange (FX) market and focused on comparing different neural networks (NNs) to obtain
an optimal architecture for the problem. Dempster and Leemans [6] proposed adaptive
reinforcement learning to the FX market. The method is a complex system, in which
decisions are based on performance, risk measures, and a dynamic optimization process.
Maringer and Ramtohul [7] proposed a threshold RRL method, which uses two networks
trained in tandem to deal with two different market states, one for a volatile market and
the other for a non-volatile one. They argued their approach outperforms the original RRL
because it is difficult to model the entire behavior of a market with a single network. Zhang
and Maringer [8] also based their approach on RRL and showed the results of technical
and fundamental analysis can be used as inputs for the neural network along with price
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data. However, the approach requires human expertise to handcraft the indicators to be
fed into the network.

More recently, due to the advancement of NN techniques, training deeper and more
powerful NNs using reinforcement learning has become feasible [9], making architec-
tures such as convolutional and recurrent networks popular in asset trading research.
Deng et al. [10] proposed recurrent neural networks (RNNs) to trade stocks and used
fuzzy logic to determine the trending state of the market. Jiang and Liang [11] used a
policy gradient method to train a convolutional neural network (CNN) for cryptocurrency
trading. Bu and Cho [12] proposed a two-step approach for cryptocurrency trading with a
pre-trained deep RNN using a Boltzmann machine, and they trained it using the Double
Q-learning algorithm, reporting positive returns even when the market state did not have
an increasing tendency. Pendharkar and Cusatis [13] compared the performance of mul-
tiple DRL techniques for stock market training. Liang et al. [14] compared multiple DRL
methods for asset trading as well, but they proposed adversarial training to all the studied
methods to improve model performance. Jeong and Kim [15] used Q-learning to train a
deep NN to trade stocks. In addition, they applied transfer learning to the case where a
low amount of data is available. Wu et al. [2] studied the effects of gated recurrent units
(GRUs) [16] as time series feature extractors for trading a single asset in a stock market.
They compared two different approaches: deep Q-learning and policy gradient [17]. They
found both methods are appropriate for asset trading and concluded trading a single
asset is risky and diversifying investments should be preferred. Aboussalah and Lee [18]
proposed a method named stacked deep dynamic reinforcement learning (SDDRL) for
real-time stock trading, and argued the selection of the appropriate hyper-parameters is
especially important in this type of problem. To deal with this issue, they proposed a
Bayesian approach for hyper-parameter tuning. Park et al. [19] proposed an LSTM [20]
network trained with deep Q-learning for stock market trading. Lei et al. [21] proposed a
similar approach using a GRU network trained with Policy Gradient.

In a previous work [22], we proposed a DRL method for cryptocurrency trading,
which can adapt to new assets introduced suddenly to the market. This work follows that
line of study and tackles some important issues that were not covered in the mentioned
study. One of the differences between this study and [22] is the architecture of the NN.
In [22], the combination between the extracted features from the assets is a softmax layer.
That layer simply normalizes the values proposed by the feature extractor to generate the
final output. To allow a real exchange of information between the features of the assets,
we integrate a series of self-attention layers into the new architecture. These layers take
the information from each asset one by one, and once all the data is received, it generates
the output corresponding to each asset. Therefore, the new blending mechanism has a
general overview of the market as well as the individual information of the assets, allowing
it to generate more reliable outputs. Another difference between this work and [22] is the
inclusion of IAT in the asset exchange process. This allows the new method to spent the
optimal amount of capital during the transactions, which is an important issue when assets
are exchanged constantly. The proposed methods for IAT are covered in detail in Section 4.
Table 1 summarizes the main contributions of the discussed works.
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Table 1. Literature review summary.

Work Year Main Contributions

Moody et al. [3] 1998 Proposed the RRL method.

Moody and Saffel [4] 2001 Expanded RRL and compared to other
approaches.

Gold [5] 2003 Applied RRL to the FX market.

Dempster and Leemans [6] 2006 Proposed an adaptive reinforcement
method for trading in the FX market.

Maringer and Ramtohul [7] 2010 Proposed a threshold RRL method.

Zhang and Maringer [8] 2013 Combined RRL with a technical and
fundamental analysis for stock trading.

Deng et al. [10] 2016 Combined fuzzy logic and RNNs for
stock trading.

Jiang and Liang [11] 2017 Trained CNNs using Policy Gradient
for cryptocurrency trading.

Bu and Cho [12] 2018 Used RNNs and Boltzmann machines
for cryptocurrency trading.

Pendharkar and Cusatis [13] 2018
Compared the performance of
multiple DRL techniques for stock
market trading.

Liang et al. [14] 2018 Proposed an adversarial training
method to enhance DRL methods.

Jeong and Kim [15] 2019 Used Q-learning and transfer learning
for stock trading.

Wu et al. [2] 2020 Used GRUs for stock market trading.

Aboussalah and Lee [18] 2020 Proposed the method SDDRL for
stock market trading.

Park et al. [19] 2020 Trained an LSTM network using
Q-learning for stock market trading.

Lei et al. [21] 2020 Trained a GRU network using Policy
Gradient for stock market trading.

Betancourt and Chen [22] 2021 Proposed a NN architecture for markets
with a dynamic number of assets.

3. Problem Formulation

A trading session is the total amount of time in which an agent is allowed to conduct
transactions to generate profits. The session is divided into equal-length steps, where at
each of them, the following steps take place: selection, exchange, and waiting. The selection
step is carried out by a neural network, which computes a non-negative scalar for each
asset, representing the weight or percentage of that asset with respect to the entire set of
investments to be held in the coming period. The design of the NN used in the selection
step and its training procedure is described in detail in Section 5. After the selection process,
some of the assets held by the agent have to be exchanged to obtain the assets chosen by the
selection procedure. The transaction fees pre-established by the trading service provider
are considered in computing the quantities to be exchanged. The algorithms developed for
computing the transactions that lead to the lowest possible transaction fees are described
in Section 4. After computing the transactions, these are executed in the market and a
waiting period begins. This period allows the investments to mature and generate profits
or losses to the agent. Once the waiting period finishes, the process moves to a new step,
beginning with the selection of new assets for the new period. The process is repeated until
the trading session is complete.

Let an asset in the market and a step in the trading session be i and k, respectively.
The shares corresponding to each asset i held by the agent at the beginning of step k are
denoted by sk

i . If there are N assets in the market, then i ∈ {0, 1, ..., N − 1}. The index 0 is
reserved for the cash asset, whose value is assumed to be constant throughout the trading
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process. Therefore, the asset is used as a reference, i.e., the shares of all the assets (sk+1
i ) are

measured in units of this asset. In stock markets, the USD is used for this purpose, but in
cryptocurrency markets, the most popular choice is the USDT. The sum of sk+1

i for all i,
denoted sk+1, is the total capital of the investor at the beginning of step k. The variables
corresponding to the shares held by the agent at the end of period k are denoted similarly;
s̃k

i represents the individual asset shares and s̃k is their sum. The trading process can be
summarized as follows. The investor begins the trading session with a capital s0 distributed
among some assets s̃0

i . Then, the neural network suggests some suitable assets for period
k = 1, and some assets are exchanged. The result of those transactions is the s1

i . Then,
a waiting period follows, allowing the values of the assets to evolve into s̃1

i , reaching the
end of the step, where a new set of assets is chosen by the NN for period k = 2. This process
is repeated until reaching the final step K, where the performance of the agent is computed
using the formula: s̃K − s̃0, which is the difference between the final and initial capital.

The transition between period k and k + 1 consists of a set of transactions summarized
in Equation (1), where both i and j represent each integer from 0 to N− 1. Thus, Equation (1)
is in fact a system of N equations, one for each asset. Note, for simplicity, the upper limit
in the summation symbols has been dropped; the upper limit in all expressions is n− 1
unless otherwise specified. The amount transferred from asset i to asset j and the fee for a
transaction is written as tk

ij and fij, respectively. Equation (1) can be interpreted as follows.

The shares of asset i after executing the transactions (sk+1
i ) are equal to the shares before

the transactions (s̃k
i ), minus the shares transferred from that specific asset to each of the

other asset (tk
ij), minus the fees spent for transactions ( fijtk

ij), plus the shares received from

the rest of assets (tk
ji). Note, all the variables in Equation (1) are non-negative numbers.

sk+1
i = s̃k

i −∑
j

tk
ij −∑

j
fijtk

ij + ∑
j

tk
ji, i, j ∈ {0, 1, ..., N − 1} (1)

Then, since the output of the NN is the relative weights of the assets with respect to
the total capital, Equation (1) has to be modified to contain the asset weights instead of
the shares. This is accomplished by dividing Equation (1) by s̃k, as in [22], resulting in
Equation (2), where the old and new weights are denoted by w̃k

i and wk+1
i , respectively, τk

ij

are the transfers with respect to the weights, and ρk+1 is a rate representing the capital lost
due to the transactions. The definition of these variables is shown in Equation (3).

ρk+1wk+1
i = w̃k

i −∑
j
(1 + fij)τ

k
ij + ∑

j
τk

ji (2)

wk+1
i

def
=

sk+1
i

sk+1 , w̃k
i

def
=

s̃k
i

s̃k , τk
ij

def
=

tk
ij

s̃k and ρk+1 def
=

sk+1

s̃k (3)

Note, the sum of all the weights wk+1
i equals one, and the same is true for the weights

w̃k
i . Therefore, by adding the N expressions represented by Equation (2), i.e., from i equals

0 to N − 1, and simplifying the result, we arrive at Equation (4), providing an easy way to
evaluate the discount rate ρk+1 that becomes one minus the fees due to all the transactions.
Therefore, it can be used as the objective function of an optimization process to compute
the optimal exchange amounts. Note, since it is not possible to transfer any amount from
an asset to itself, both τk

ii and fii are assumed to be zero, leading to Equation (4).

ρk+1 = 1−∑
i

∑
j

fijτ
k
ij (4)

The optimal solution for the exchange fee minimization problem must satisfy Equation (2)
for all i ∈ {0, 1, ..., N − 1} and maximize ρk+1 in Equation (4). In addition, the solution
has to satisfy Equation (5) for all i as well. The set of inequalities in Equation (5) simply
states the sum of the transferred amounts from one asset to the rest cannot exceed the
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amount held of that specific asset at that moment. The process described in this section is
summarized in Figure 1.

∑
j
(1 + fij)τ

k
ij ≤ w̃k

i (5)

Weights at the end 
of the process step

Proposed weights

Transaction 
optimization

Asset data

Transactions

Fees

Waiting
period 

Period 
transition

Neural
network

Transaction 
execution

Market

Initial
weights

Initial weights for the 
next process step

Figure 1. Block diagram of the trading process.

4. Exchange Fee Minimization

This section describes the process for computing the quantities that need to be ex-
changed to satisfy the asset weights suggested by the NN leading to the least amount of
spent cash in transaction fees.

4.1. Approximate Solution for IAT

Given a certain value of ρk, the transfer direction of any asset (buy or sell) is determined
by the difference between w̃k

i and ρkwk+1
i (i.e. w̃k

i − ρkwk+1
i ), denoted by ri. If this residual

is positive, then the asset has an excess in value that has to be sold to balance Equation (2);
on the contrary, if ri is negative, shares of that asset need to be bought to balance the
equation. To reduce expenses, the transfer fees ( fij) are sorted; by doing this, the transfer
values are determined one by one from the pairs of assets (ij) corresponding to the lowest
fees. First, the smallest fee is selected and the corresponding asset indices are retrieved.
With them, two conditions are checked: ri > 0 and rj < 0. If both of the constraints are
satisfied, τk

ij is non-negative, and its value is determined by Equation (6). Then, ri and rj are

updated using Equation (7). In this way, the value of τk
ij becomes uniquely determined by

ρk. This procedure is repeated for all pairs of assets corresponding to the sorted transaction
fees from lowest to highest. When the routine is finished, a new value for ρk is computed
using Equation (4), which is used to start a new iteration of the process. The procedure is
repeated until ρk converges. The values of the variables corresponding to the final value of
ρk are the solution to the problem. This procedure is summarized in Algorithm 1.

τk
ij = min(ri/(1 + fij),−rj) (6)

ri ← ri − (1 + fij)τ
k
ij

rj ← rj + τk
ij

(7)

The solutions of Algorithm 1 are generally better than those of Algorithm 2 because
Algorithm 1 uses IAT. Plus, it is much faster than Algorithm 3 because it does not use
convex optimization to compute the solution. Therefore, Algorithm 1 is adopted and
integrated into the cryptocurrency trading environment because it best balances the tradeoff
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between speed and optimality. A comparison of performances of these methods is shown
in Section 6.

Algorithm 1 Approximate solution for the general fee minimization problem

Inputs: fij, wk+1
i and w̃k

i for i, j ∈ {0, 1, ..., N − 1} . Fees and weights
Outputs: ρk and τk

ij for i, j ∈ {0, 1, ..., N − 1} . Discount rate and transactions

1: ρk ← 1−max( fij)/2 . Initialize ρk

2: repeat
3: for i = 0 to N − 1 do
4: ri ← w̃k

i − ρwk+1
i . Compute residuals

5: for i, j in argsort( fij) do . Sort in increasing order of f
6: if ri > 0 and rj < 0 then
7: τk

ij ← Equation (6) . Assign value to τk
ij

8: ri, rj ← Equation (7) . Update residuals

9: ρk ← Equation (4) . Update ρk

10: until ρk converges
11: return ρk and τk

ij for i, j ∈ {0, 1, ..., N − 1}

Algorithm 2 Solution for the constrained case of the fee minimization problem

Inputs: ρ0, fi0, f0i, wk+1
i and w̃k

i for i ∈ {0, 1, ..., N − 1} . Fees and weights
Outputs: ρk, τk

i0 and τk
0i for i ∈ {0, 1, ..., N − 1} . Discount rate and transactions

1: ρk ← ρ0 . Initialize ρk

2: repeat ρk ← Equation (A7) . Update ρk

3: until ρk converges
4: for i = 0 to N − 1 do
5: τk

i0 ← (w̃k
i − ρwk+1

i )+/(1 + fi0) . Compute τi0 and τk
0i

6: τk
0i ← (ρwk+1

i − w̃k
i )

+

7: return ρk, τk
i0 and τk

0i for i ∈ {0, 1, ..., N − 1}

Algorithm 3 Exact solution for the general fee minimization problem

Inputs: fij, wk+1
i and w̃k

i for i, j ∈ {0, 1, ..., N − 1} . Fees and weights
Outputs: ρk and τk

ij for i, j ∈ {0, 1, ..., N − 1} . Discount rate and transactions

1: ρk and τk
ij ← Solve the Linear Program of Equation (A9) . i, j ∈ {0, 1, ..., N − 1}

2: return ρk and τk
ij for i, j ∈ {0, 1, ..., N − 1}

In the following subsections, we evaluate the efficiency of Algorithm 1 by comparing
its performance against the exact general solution for the IAT problem, and the solution for
the case where IAT is not allowed. These algorithms are described in Appendix A.

4.2. Evaluation of the Fee Minimization Algorithms

The properties of the fee minimization algorithms are compared in these experiments
to determine the real applicability of each algorithm. Algorithms 1–3 are tested along the
method introduced in [22], which is used as a baseline and abbreviated as BCH-21 in the
rest of the paper. These algorithms are compared in two aspects: computation time and
error with respect to the optimal value. Note, the computation times of these algorithms
change depending on the number of assets in the market; the larger the number of assets,
the greater the number of mathematical operations needed to solve the problem, which in
turn implies a longer computation time. This is important because the fee minimization
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algorithm needs to be executed constantly during the training process. The function
describing the growth in computing time for an algorithm given the size of the input
is known as the complexity of the algorithm. Computing this function exactly can be
difficult [23]. Therefore, instead, we follow an empirical approach. For each integer value
from one to 200, 1000 pairs of vectors are randomly generated and fed to all the studied
algorithms. In each generated pair, one of the vectors represents the asset quantities held
by the agent at a certain time, and the other vector represents the quantities proposed by
the NN to be held in the next step of the process. Thus, by tabulating the computation
times obtained by each algorithm, we can construct graphs showing how the computation
time increases with respect to the number of available assets in the market.

The same experiments allow us to measure how close the values computed by the
studied algorithms are with respect to the optimal value. Algorithm 3 always computes
the optimal solution for the problem, as proven in Appendix B. Thus, the error is simply
the difference between the value computed by an algorithm and the value computed by
Algorithm 3. The computation times of these algorithms grow with respect to the number
of inputs, but for Algorithm 3, the growth is too fast to be practical for markets with a large
number of assets. For this reason, the best algorithm for this application is not necessarily
the one that always retrieves the optimal values or the one with the smallest computation
time, but it is the one with the best tradeoff between these two measures.

4.3. Performance of the Fee Minimization Algorithms

The computation time obtained in our experiments is shown in Figure 2. As expected,
Algorithm 3 needs the longest time to produce the solutions. Further, for 125 assets or
more, it requires more than a second to find the solution. This disproportionate growth
in computation time, compared to the other methods, is due to the elements added to the
formulation of the problem for each new asset, including two new variables: one equality
and one inequality. The results of the other analyzed algorithms are significantly better.
Algorithm 1 and BCH-21 are faster than Algorithm 3 by 10 to 100 times, respectively. As can
be seen in Figure 2, the graphs of the algorithms are highly correlated, and the highest
registered time for both of them is around 0.1 s. Nonetheless, since Algorithm 1 allows
IAT, the transactions computed by Algorithm 1 are in general better than those computed
by BCH-21. Yet, the fastest method by a significant margin is Algorithm 2. The speed
of Algorithm 2 is orders of magnitude faster than any other tested algorithm. Further,
the increments in computation time are barely noticeable along with the tested range.

The results of the optimality tests are shown in Figures 3 and 4. The first figure
shows the error of the solutions computed by both Algorithm 2 and BCH-21. Note, given
the same inputs, both of the algorithms always compute the same solution. According
to Figure 3, the error oscillates around 5× 10−4 and is consistent throughout the tested
range. However, Algorithm 1 obtained much better results in this experiment, as shown in
Figure 4. The solutions computed by this method are a million times closer to the optimal
value than those computed by Algorithm 2 and BCH-21.

Using the two measures, computation time and optimality, we can clearly see the
advantages and disadvantages of the tested algorithms. Algorithm 3 produces the optimal
solution for any input. Therefore, if IAT is available in the market, Algorithm 3 should be
preferred over any other studied algorithm. However, it is only practical if the number
of assets is sufficiently small or the waiting periods are sufficiently large. Otherwise,
Algorithm 1 should be used instead. However, if the market does not have the option for
IAT, Algorithm 2 is the best choice because its solutions are optimal in that specific case.
Algorithm 2 is also appropriate for long iterative routines such as a DRL process because the
extra time it adds to the process is minimal. However, we opted to use Algorithm 1 because
it has the best tradeoff between speed and optimality. Among all the studied algorithms,
BCH-21 is the least advantageous one. However, it is important from a theoretical view
because the feasibility of BCH-21 is used to prove the optimality of Algorithm 3.
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Figure 2. Computation time vs. number of assets for the fee minimization algorithms. The center
lines represent averages on 1000 tests for each algorithm. The borders of the shaded areas represent
the maximum and minimum values. The computation time in the y-axis is in logarithmic scale.
NO-IAT stands for ‘without IAT’.
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Figure 3. Graph of the error of Algorithm 2 and BCH-21 with respect to the number of assets in
the market. The center lines represent the average on 1000 thousand tests. The inner shaded area
represents the standard deviation around the average. The borders of the outer shaded area represent
the maximum and minimum values.
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Figure 4. Graph of the error of Algorithm 1 with respect to the number of assets in the market.
The center lines represent the average on 1000 thousand tests. The inner shaded area represents the
standard deviation around the average. The borders of the outer shaded area represent the maximum
and minimum values.

5. DRL for Asset Trading

DRL is a type of machine learning combining deep learning with a DRL design to
enable agents in a given state to take actions that maximize their rewards in a virtual world.
State, action, and reward are three key concepts of reinforcement learning. At each state,
the agent observes its surroundings and takes an action based on the observation. Then,
the state of the environment changes to a new state and the agent receives a numerical
reward based on its actions. The changes between states are driven by both the environment
dynamics and the agent’s actions. Thus, good actions are those producing high rewards
or driving the environment into states where the expected reward can be maximized.
The process is complete when a maximum number of states has been visited or a stop
condition is met. The period from the initial state to the terminal state is called an episode.
The sum of all the rewards collected by the agent during an entire episode is the total reward.
Therefore, the purpose of reinforcement learning is to train agents to learn a policy that can
make decisions to produce the maximum possible total reward in a specific environment.

In our case, the environment is the cryptocurrency market, the agent is the investor
and the rewards are the profits generated in the process. An action in our environment
is the execution of the transactions needed to acquire the assets suggested by the NN.
The NN observes the environment state, i.e., market prices and volumes, and outputs
a set of suggested initial asset weights for the subsequent period of the process. Then,
the fee minimization algorithm computes the necessary transactions to acquire the assets
suggested by the NN with the minimal possible transaction fees. Next, the transactions
are executed, allowing the market to evolve into a new state. This process is depicted in
Figure 1. The rewards received by the agents are the earnings or losses received at the end
of each step due to the chosen transactions.

Our NN is not limited by the number of assets in the market. The initial layers of
the NN process the data of each asset individually. Then, the generated feature vectors
are fed one by one to a series of self-attention layers which produce the initial asset
weights for the subsequent step of the process. Self-attention networks receive and output



Appl. Sci. 2021, 11, 7377 11 of 26

sequences of data. This characteristic allows our NN to process a large number of assets
and continue working even if new assets are added to the market, which happens often in
cryptocurrency markets.

Our agent is allowed to perform daily transactions. Thus, an episode in the environ-
ment consists of a specific number of days, in which the agent is allowed to buy and sell
assets at every 24-h time interval. The state of the environment consists of the current
prices, capitalizations, and volumes of the assets in the market. Of which, the agent is
allowed to observe the data corresponding to the latest 20 days. The action consists of the
set of transactions made by the agent before a 24-h waiting period, and it is executed in
two steps: asset selection (done by the NN) and transaction fee minimization (done using
Algorithm 1). The reward of the step is the capital gained or lost by the agent after the
waiting period.

5.1. Implementation Details

The environment was built using data from the cryptocurrency market: Binance
www.binance.com (accessed on 3 November 2020), and it corresponds to the period:
August 2017 to November 2020. The features of the dataset are summarized in Table 2.
The dataset was divided into two parts: training and test, where the test dataset is the last
year in the dataset. Note, the total number of financial indicators in the dataset is nine,
but only six of them were used: open, close, high, and low prices, plus volume, and the
number of transactions per sampling period.

Table 2. Dataset properties.

Feature Value

Initial date 17 August 2017
Final date 3 November 2020

# of days (training) 809
# of days (test) 365

# of assets 3 to 227
# of indicators 9
Sampling time 30 min

# of entries (training) 38,832
# of entries (test) 17,520

Fees (except BNB) 0.1%
Fees BNB 0.05%

5.2. The Deep NN for Asset Trading

An NN processes numeric data of the market’s assets, such as prices and volumes,
and outputs the distribution of assets to be held in the subsequent periods of the pro-
cess. The initial layers of the network extract independent high-level features for each
asset, and a set of self-attention layers [24] blend that information to produce the output.
The components of our NN are shown in Figure 5. The data fed to the NN is an arrange-
ment of financial indicators with dimensions F× N× K, where F is the number of financial
indicators, N is the number of assets, and K is the number of past steps the agent is allowed
to observe. The number of financial indicators equals six, as mentioned in Section 5.1.
F is considered to be the number of channels of the input data. The number of assets in
the dataset increases over time from 3 to 227 (see Table 2); therefore, N is not a constant.
The number of past steps (K) depends on two factors: the number of days and sampling
time. The data used in our experiments has a sampling time of 30 min, and the number of
days our agent is allowed to observe is 20; therefore, K equals 960.

www.binance.com
www.binance.com
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Figure 5. Self-attention network diagram for cryptocurrency trading. The activation function of all
FC layers is the ReLU function. The output size of the final FC layers is one.

Since the channels of the data have a very different range of values, normalization was
applied before feeding to the NN. The normalization consists of subtracting the mean from
each channel and dividing the results by the standard deviation of the channel, resulting in
a normal distribution with zero mean and unit standard deviation. Then, for each asset,
the normalized inputs are independently passed through a sequence of two convolutional
layers, which are the primal feature extraction mechanism of the NN. The extracted features
are flattened and passed through a fully connected (FC) layer to produce a set of feature
vectors. The feature vectors are directed one by one to the blending mechanism of the
network, consisting of a set of three self-attention encoders [24].

The design of the self-attention encoders used in our NN is shown in Figure 6a.
The self-attention encoders consist of two different sub-layers. The first sub-layer is a
multi-head self-attention block, meaning it contains parallel feature extractors (heads),
which generate independent feature vectors from the inputs. The number of heads in
our self-attention blocks is eight. The distinct feature vectors generated by the heads are
combined into a single feature vector using a linear layer, as shown in Figure 6b. Then,
these results are fed to a normalization layer [25], which has a residual connection [25] to
generate the output of the first sub-layer.
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Figure 6. Self-attention architecture and multi-head attention architecture.

Each head in a self-attention encoder has three matrices: query (WQ), key (WK),
and value (WV), which are the parameters to be trained. When a self-attention encoder
receives the feature vectors corresponding to the assets, the feature vectors are concatenated
and multiplied by the matrices WQ, WK, and WV to obtain the matrices Q, K and V,
which are used to compute the output of the self-attention head using the Equation (1)
of [24], which computes the amounts of attention having to be given to all the assets when
generating the output of each asset.

The second sub-layer of the self-attention encoder also has two blocks. The first
block is a feed-forward NN with two layers. The number of nodes in each layer is 400.
The second block is a normalization layer with a residual connection, which produces the
final output of the self-attention encoder. We use three identical self-attention encoders
placed in sequential order as the blending mechanism of our design. The output of the
blending mechanism is a high-level feature vector for each asset, containing information
about every asset in the market. The generated feature vectors individually go through an
FC layer to output a single scalar for each asset. These scalar values are normalized by a
softmax layer to obtain the asset weights to be held in the next period.

We use an actor-critic design for the agent to learn an optimal policy that maximizes
cumulative rewards. Therefore, the NN has two outputs: actor and critic. The actor
determines which action to take and the critic evaluates how good the action was. The value
function consists of another FC layer that takes the output of the self-attention layers and
produces a scalar for each asset. Then, the output of the value function is simply the
average of the scalar values.



Appl. Sci. 2021, 11, 7377 14 of 26

5.3. Training

Our agent was trained using the ‘synchronous’ version of the Asynchronous Advan-
tage Actor-Critic method (A3C) [26], introduced by Open AI, known as A2C.
https://openai.com/blog/baselines-acktr-a2c/ (accessed on 2 August 2021). Therefore,
the NN has two parts: actor and critic. The actor, also known as the policy, receives
environment states and outputs actions. The critic, on the other hand, predicts the total
reward the agent will receive at the end of the process by following the actions given by
that specific policy. The policy is represented by πθ and the value function is represented
by vθ . In our implementation, both the actor and critic are combined into a single NN with
two independent output layers. Hence, they are trained simultaneously applying Adam
optimizer [27] to the cost function shown in Equation (8), where st is the state, at is the
action taken in that state, rt is the reward received, A is a variable named the advantage,
and R is the total discounted reward (see [26]). The values of the parameters used in
the optimization process are listed in Table 3. The values were chosen by comparing the
performance of training sessions, which used hyperparameter values in the ranges shown
in Table A1. We used 16 workers for data collection. Thus, in each iteration, we randomly
draw 16 days from the training dataset to be the initial days of each trading session, and the
workers execute trades for four days. Then, this data is used to compute the cost function,
which in turn is used to improve both the policy and value function together.

LA2C(θ) = Lπ(θ) + ηLv(θ)

Lπ(θ) = E
[

T−1

∑
t=0

logπθ(at|st)A(st, at)

]
Lv(θ) = E

[
(vπ(st)− Rt)

2
] (8)

Table 3. List of training parameters.

Parameter Value

# of workers 16
# of step per episode 4
# of step per rollout 4

# of optimization steps 150,000
Learning rate (α) 7 × 10−7

Adam opt. param. (β1) 0.9
Adam opt. param. (β2) 0.999

Decay factor (γ) 0.99
A2C parameter (η) 0.5

Advantage parameter (λ) 0.95

5.4. Layer Analysis

In this subsection, we show how the information flows through the NN layers and
give an interpretation of the meaning of the features computed by some of the layers of
the NN. Recently, Makridakis et al. [28] made a critic about the performance of machine
learning approaches on time-series forecasting tasks, which are closely related to our
application. They state that ML researchers tend to over-utilize resources on tasks where
simpler statistical methods can produce better results. Therefore, to show the relevance
of each of the components of our NN, we fed our NN with the data of four popular
cryptocurrencies drawn randomly from the dataset and analyzed the results computed by
different layers.

https://openai.com/blog/baselines-acktr-a2c/
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The input layer of the NN is a normalization layer. The result of the normalization op-
eration is shown in Figure 7. Both graphs are practically the same. However, an important
difference is that, in the normalized data, most of the values corresponding to LINK are
negative. This is useful as those values can be ruled out by the ReLU operation that takes
place after the convolutional layers. Additionally, it has been shown that normalizing the
inputs makes the training process faster and more stable [29].
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Figure 7. Raw data vs. normalized data.

The next group of layers is a series of convolutional layers. These layers have two
functions: feature extraction and data size reduction. Figure 8 shows the features extracted
by one of the convolutional masks of the first convolutional layer. As shown in the figure,
this layer highlights assets that have significant positive changes in value, which is a typical
convolution operation. We can see, as expected, that the features of the asset in green have
been flattened out almost completely. These simple features are combined in deeper layers
into abstract complex features which are given to the self-attention layers.
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Figure 8. Values extracted by a convolutional layer.
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The final part is a sequence of self-attention layers, which choose the assets to be
acquired in the subsequent step of the process. The results of the heads of the last self-
attention layer are shown in Figure 9. The figure shows that most of the heads in the last
layer focused their attention on Bitcoin, Ethereum, and Litecoin, which are the cryptocur-
rencies that increased the most their value in the tested sample. This shows that the layer
can process the features extracted by the convolutional layers and determine the assets
with higher chances to continue being in an increasing tendency.
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Figure 9. Attention values of a self-attention layer.

6. Experiments

The experiments presented in this section evaluate the performance of the proposed
NN architecture. These experiments are performed in an environment built using real
data from a well-known cryptocurrency trading platform, allowing us to point out issues
and make predictions about the performance of this system when implemented in a real
market. The effects of including transactions fees in the training process are evaluated as
well. We trained our model in an environment with transaction fees, and then we trained a
clone of the model without fees. Next, both models were tested in the environment with
transaction fees to observe the need of including the subprocess during the training stage.
If a significant difference in performance cannot be observed during that experiment, this
subprocess could be omitted in future training runs and only be used during deployment to
save an important amount of time. We also validated the use of self-attention networks by
comparing the performance of our design against a similar approach [22]. This architecture
was also designed for markets with a large and non-constant number of assets, but it does
not include self-attention networks in its design.

The agents are tested in multiple setups. In the first setup, each day in the test dataset
was selected as an initial point, and each of the models performs a four-day trading session.
The profits obtained by the models during the short experiments are recorded, and their
average is taken as the overall performance. In the second setup, we run the agents
throughout the test dataset in a single session (for 365 days), and the total profit is recorded
as the overall performance. This allows us to analyze the robustness of the models to
changes in the setup. Additionally, the algorithms were tested in the same setups of [22]
and their performances were analyzed and compared. This includes a two-day trading
period with transactions every 30 min, and a two-week trading period with transactions
every six hours.
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7. Results and Discussion
7.1. Performance of the Models

The performance of the tested models in the four-day experiment is listed in Table 4.
Both networks using self-attention networks (SA-NET) introduced in this study outperform
the baseline, showing the benefits of using self-attention networks to process data from a
large pool of assets and extract high-level features. SA-NET must incur transaction fees
during training, and it obtained average daily profits of 4.3%, while the model without fees
(SA-NET-NF) obtained 3.4%. Therefore, the model trained in an environment with fees can
make better decisions. However, the difference is not significant, meaning the most impor-
tant factor to determine the performance of the two models is the self-attention networks.

Table 4. Comparison of the performance of the algorithms in a short and long trading episode.

Model
Four-Day Episode One-Year Episode

Mean Standard Total ProfitDeviation

SA-NET 0.043 0.11 4.66
SA-NET-NF 0.034 0.10 3.80

Betancourt and Chen [22] 0.030 0.07 2.24

In the setup with an episode length of two days, the results are similar among the
competing algorithms. The algorithm that performed best is [22]. However, the difference
with the respect to the rest of the tested algorithms is 0.1%. Additionally, the standard
deviation of the experiments is large compare to the average performance. Therefore, we
can conclude that the algorithms have similar performances when implemented in short
trading episodes. These results are shown in Table 5. In the two-week setup, the results
have a bigger spread. The algorithm that performed best in that setup is SA-NET. Again,
the standard deviation of the performance is large. This is a characteristic of an extremely
volatile market. However, the difference between the proposed approach and that of [22] is
around 5%, showing that in longer episodes, the proposed NN outperforms the NN of our
previous work. Figure 10a,b show examples of the performance of the tested algorithms in
the two-day and two-week setup.

Table 5. Comparison of the performance of the algorithms in the two-day and two-week trading
episode.

Model
Two-Day Episode Two-Week Episode

Mean Standard Mean Standard
Deviation Deviation

SA-NET 0.028 0.07 0.33 0.30
SA-NET-NF 0.027 0.06 0.31 0.26

Betancourt and Chen [22] 0.029 0.06 0.28 0.33

The results of the one-year setup, shown in Figure 10c, also demonstrate the self-
attention design as the best alternative. However, despite obtaining a 5-fold return in
one year, SA-NET is also the model suffering the worst losses during the run, which is
evidence of taking riskier actions than the competing models. Nonetheless, the order of
performance of the tested methods is consistent with both experiments. Therefore, the range
of applicability of our system is flexible, showing the robustness of the presented approach.
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Figure 10. Performance of three competing algorithms in trading episodes with different lenghts.
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8. Conclusions

We introduced a DRL system for cryptocurrency trading. Our system uses self-
attention networks to simultaneously process data of a market with a large number of
assets. Our deep NN has been trained using data from a real cryptocurrency market to
execute daily trades. The experimental results show the methodology presented in this
work outperforms the baseline, obtaining higher profits in two different setups, illustrating
self-attention networks can extract meaningful relations from chaotic cryptocurrency data.
We also studied the impact of transaction fees in cryptocurrency trading and presented
three optimization solutions to deal with this important issue. The best solution has been
integrating into the system to create a robust tool for cryptocurrency trading. Future work
includes the optimization of the layers of the NN architecture to boost the performance
and the application of the proposed system in stock markets and the FX market.
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Appendix A. Exchange Fee Minimization Algorithms

Note, Equation (2) contains a term τk
ij for all i and j, implying transactions among

all assets are allowed. However, this is not always the case, and if extra constraints are
imposed on the problem, it can be solved extremely efficiently. We impose extra constraints
on the problem and build solutions for that case. Then, we remove those constraints and
give the solution for the most general case.

Appendix A.1. No Inter-Asset Transactions

In some markets, exchanging shares between assets is not allowed. Instead, an investor
needs to sell some shares to obtain cash, and use that cash to purchase shares of other
assets. This is equivalent to the condition, τk

ij is zero if neither i nor j is zero. Applying this
condition to Equations (2) and (4) results in Equations (A1) and (A2), respectively. We refer
to this simplification of the fee minimization problem as ‘the constrained case’.

ρkwk+1
i = w̃i

k − (1 + fi0)τ
k
i0 + τk

0i, for i 6= 0 (A1)

ρk = 1−∑
i=1

fi0τk
i0 −∑

i=1
f0iτ

k
0i (A2)
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Note, an agent cannot buy and sell shares of the same asset at the same time. In other
words, if τk

i0 > 0, then τk
0i = 0, and if τk

0i > 0, then τk
i0 = 0. These conditions can be explicitly

written in terms of the ReLU function from Equation (A1), as shown in Equation (A3),
where the ReLU function is denoted by (.)+.

(w̃k
i − ρwk+1

i )+ = (1 + fi0)τ
k
i0

(ρwk+1
i − w̃k

i )
+ = τk

0i

(A3)

Next, Equation (A3) is substituted in Equation (A2) to obtain Equation (A4), where gi0
represents the expression shown in Equation (A5).

ρk = 1−∑
i>0

gi0(w̃k
i − ρkwk+1

i )+ −∑
i>0

f0i(ρ
kwk+1

i − w̃k
i )

+ (A4)

gi0
def
=

fi0
1 + fi0

(A5)

Then, the well-known identity of the ReLU function, shown in Equation (A6), is
substituted into Equation (A4), and the terms in the resulting expression are rearranged,
obtaining Equation (A7).

(a− b)+ = (b− a)+ + (a− b) (A6)

ρk =

1−∑
i>0

[(
gi0 + f0i

)(
w̃k

i − ρkwk+1
i

)+
− f0iw̃k

i

]
1 + ∑

i>0
f0iwk+1

i

(A7)

Equation (A7) is used to iteratively search for the best possible ρk, leading to the best
possible values τk

i0 and τk
0i for all i. The procedure is summarized in Algorithm 2. This

algorithm is similar to the one given in Equation (2.6) of [30]. However, in their formulation,
fi0 and f0i are assumed to be constant for all i. Thus, the procedure in [30] is a special case
of the proposed method. The proof of convergence of Algorithm 2 is given in Appendix B,
where it is shown Algorithm 2 always converges to the optimal solution of the constrained
case for the fee minimization problem when ρ0 ∈ [0, 1].

Appendix A.2. The Solution for the General Case

The general solution for the fee minimization problem is computed using a linear
program (LP). The solution is a generalization of the method presented in [22], which
can solve the constrained case. The linear program is formulated using Equation (4) as
the objective function and Equations (2) and (5) as constraints. However, Equation (A8)
has to be modified because the objective variable (ρk) appears explicitly in the expression.
Therefore, substituting ρk from Equation (4) and rearranging terms results in Equation (A8).

(1−∑
k

∑
j

fkjτ
k
kj)w

k+1
i + ∑

j
(1 + fij)τ

k
ij −∑

j
τk

ji = w̃k
i

for i ∈ {0, 1, ..., N − 1}
(A8)

This expression allows us to formulate the search for the solution of the general case of
the fee minimization problem as an LP, as shown in Equation (A9). The LP in Equation (A9)
is always feasible because the LP presented in [22] for the constrained case always has
a feasible solution, and is a specific case of Equation (A9). Algorithm 3 summarizes the
method to find the optimal solution for the fee minimization problem using Equation (A9).
However, if the number of equality constraints, inequality constraints, or variables in an
LP is large, the process to solve the LP can become impractically long, which is precisely
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the case for markets with a large number of assets. For this reason, we recommend using
Equation (1) for IAT if the number of assets is large.

Maximize: ρ from Equation (4)

Subject to: Equation (5) and Equation (A8)
(A9)

Appendix B. Proof of the Absolute Convergence of Algorithm 2

In this section we prove Algorithm 2 always converges to the optimal solution for the
constrained case of the fee minimization problem, i.e., no IAT are allowed or equivalently
τk

ij = 0 if both i, j > 0. Lemmas A1 to A6 are used to prove this fact. Lemma A1 justifies
the use of Equation (A3) in Algorithm 2 and the other lemmas are used to prove the actual
convergence of the algorithm. Theorem A1 combines the most important results of these
lemmas. During the rest of the proof, the terms ‘problem’ and ‘optimal solution’ refer to
those of this particular case. This proof is similar to the one given by Jiang et al. [31] for the
constrained case in which τk

0i and τk
i0 are fixed values for i ∈ {1, 2, ..., N − 1}. However, our

proof is more general since no fixed values are assumed for τk
i0 and τk

0i, and it is also less
restrictive since we do not require the values of fees to be less than 0.38.

Lemma A1. An optimal solution cannot have both, τk
i0 > 0 and τk

0i > 0 for any i ∈ {1, 2, ..., N− 1}.

Proof. This fact is proven by contradiction, showing there is always a solution with a
larger ρk that can be constructed from another solution that has both τk

i0 and τk
i0 larger

than 0 for some index i = κ. Let us denote the optimal values for the problem as
ρ∗k, τ∗k0i and τ∗ki0 for i ∈ {1, 2, ..., N − 1}. Assume the optimal solution has at least one
asset κ such that τ∗κ0 and τ∗0κ are both larger than 0. Assume also without loss of generality
(WLOG) wk+1

κ > 0 since otherwise τ∗0κ would be exactly zero, as is implied by Equation (5).
Then, we can rewrite Equation (2) for the optimal solution as shown in Equation (A10),
where also the fact τk

ij = 0 if both i, j > 0 was used.

ρ∗kwk+1
i = w̃i

k − (1 + fi0)τ
∗k
i0 + τ∗k0i

for i ∈ {1, 2, ..., N − 1}
(A10)

Since the solution is optimal, it has to satisfy Equation (A11).

ρ∗k ≥ ρk, for all ρk (A11)

Then, for the asset k we can define the variables τ′kκ0 and τ′k0κ as follows. If −(1 +

fk0)τ
∗k
κ0 + τ∗k0κ ≤ 0, τ′kκ0

def
= τ∗kκ0 − τ∗k0κ /(1 + fκ0) and τ′k0κ

def
= 0, otherwise τ′kκ0

def
= 0 and τ′k0κ

def
=

−(1 + fκ0)τ
∗k
κ0 + τ∗k0κ . Substituting τ∗kκ0 and τ∗k0κ by these new variables into Equation (A10)

gives Equation (A12).
ρ∗kwk+1

κ = w̃k
κ − (1 + fκ0)τ

′k
κ0 + τ′k0κ (A12)

Note, both τ′kk0 and τ′k0k are smaller than τ∗kk0 and τ∗k0k , respectively; in fact, one of them
has to be zero. The difference between the loss due to the ‘stared’ variables and the ‘primed’
variables is given in Equation (A13).

D def
= fκ0τ∗kκ0 + f0κτ∗k0κ − fκ0τ′kκ0 − f0κτ′k0κ (A13)

By substituting the primed variables by the stared variables, the value corresponding
the the asset 0 increases an amount corresponding to the value of D (see Equation (A13)).
Therefore, the desired weights after the transactions are no longer satisfied since wk+1

0
becomes larger while the rest wk+1

i remain the same. To fix this problem, the value of D is
distributed among all assets. For this purpose the variables τ∗k0i for all i 6= κ are substituted
by τ̂k

0i using Equation (A14); similarly, τ′k0κ is substituted by τ̂k
0κ using Equation (A15).
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The new variables ∆τk
0i used in Equations (A14) and (A15) are defined in Equation (A16).

This definition for the variables ∆τk
0i ensures all ∆τk

0i are proportional to their corresponding
wk+1

i and also ensures the relation ∑i(1 + f0i)∆τk
0i = D is satisfied. Therefore, the variables

τ̂k
0i correspond to a feasible solution to the problem since all desired weights are satisfied

again. The next step is to prove the discount rate corresponding to this solution, named ρ̂ k,
is larger than ρ∗k.

τ̂k
0i

def
= τ∗k0i + ∆τk

0i, i 6= κ (A14)

τ̂k
0κ

def
= τ′k0κ + ∆τ0κ (A15)

∆τk
0i

def
=

Dwk+1
i

∑
j
(1 + f0j)wk+1

j

(A16)

Replacing τ̂k
0k from Equation (A15) for τ′k0k in Equation (A12) results in Equation (A17),

which corresponds to the equation for the asset κ for the constructed solution. By simplify-
ing this expression, we arrive to a relation between ρ̂ k and ρ∗k.

ρ̂ kwk+1
k = w̃k

κ − (1 + fκ0)τ
′k
κ0 + τ̂k

0κ

= w̃k
κ − (1 + fκ0)τ

′k
κ0 + τ′k0κ + ∆τk

0κ

= ρ∗kwk+1
k +

Dwk+1
κ

∑
j
(1 + f0j)wk+1

j

= ρ∗k

1 +
D

∑
j
(1 + f0j)wk+1

j

wk+1
κ

⇒ ρ̂ k = ρ∗k

1 +
D

∑
j
(1 + f0j)wk+1

j



(A17)

The fact wk
κ > 0 was used to simplify that variable from both sides of Equation (A17).

Note, Equation (A17) implies ρ̂ k > ρ∗k, which contradicts Equation (A11). Therefore,
the assumption that exists an optimal solution such that both τk

i0 and τk
0i are positive for

some index i = κ is false. This concludes the proof of Lemma A1.

Let us define the function f (ρ) using the right-hand side (RHS) of Equation (A7) as
shown in Equation (A18). Note, Equation (2) consist of computing f (ρ), assign that value
to ρ and repeat the process over and over until ρ converges. The following lemmas are
properties of the function f (ρ) and the consequences of this iterative process.

f (ρ) def
=

1−∑
i>0

[(
gi0 + f0i

)(
w̃k

i − ρwk+1
i

)+
− f0iw̃k

i

]
1 + ∑

i>0
f0iwk+1

i

(A18)

Lemma A2. The function f (ρ) (see Equation (A18)) increases monotonically, i.e., ρ1 > ρ1 ⇒
f (ρ1) ≥ f (ρ2). Furthermore, f (ρ) is a concave function.

Proof. Note, the expression
(

w̃k
i − ρwk+1

i

)+
on the RHS of Equation (A18) is a convex,

monotonically decreasing function of ρ for all i. Then, the expression

∑i>0
(

gi0 + f0i
)(

w̃k
i − ρwk+1

i

)+
is also convex and monotonically decreasing since it is just

a weighted summation of convex, monotonically decreasing functions with positive scaling
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weights
(

gi0 + f0i
)
. However, the summation has a negative sign at the front, changing the

expression into a concave, monotonically increasing function instead. The rest of elements
on the RHS of Equation (A18) are simply constants that translate the expression on the
plane formed by ρ and f (ρ), but do not change its concave and monotonically increasing
nature.

Lemma A3. f (0) > 0.

Proof. Substituting 0 for ρ in Equation (A18) results in Equation (A19).

f (0) =

1−∑
i>0

[
(gi0 + f0i)w̃k

i − f0iw̃k
i

]
1 + ∑

i>0
f0iwk+1

i

=

1−∑
i>0

gi0w̃k
i

1 + ∑
i>0

f0iwk+1
i

(A19)

Note, Equation (A19) implies f (0) cannot be negative or zero because both numerator
and denominator are always positive. It is obvious that the denominator is positive since
each part of the expression is positive. The numerator, on the other hand has negative
expressions; therefore, it has to be analyzed carefully. Note, The definition of gi0 (see
Equation (A5)) implies gi0 < 1 for all i and ∑i w̃k

i = 1; thus, ∑i gi0w̃k
i < 1, which implies

the numerator is positive.

Lemma A4. f (1) ≤ 1.

Proof. This fact is proven by contradiction as follows. Assume f (1) > 1. Then, substituting
1 for ρ in Equation (A18) gives Equation (A20).

f (1) =

1−∑
i>0

[(
gi0 + f0i

)(
w̃k

i − wk+1
i

)+
− f0iw̃k

i

]
1 + ∑

i>0
f0iwk+1

i

> 1

⇒ −∑
i>0

[(
gi0 + f0i

)(
w̃k

i − wk+1
i

)+
− f0iw̃k

i

]
> ∑

i>0
f0iwk+1

i

(A20)

Then, using Equation (A6) in Equation (A20) gives Equation (A21).

−∑
i>0

[
(gi0 + f0i)

[(
wk+1

i − w̃k
i

)+
+
(

w̃k
i − wk+1

i

)]
− f0iw̃k

i

]
> ∑

i>0
f0iwk+1

i

⇒ −∑
i>0

[
(gi0 + f0i)

(
wk+1

i − w̃k
i

)+
+ gi0

(
w̃k

i − wk+1
i

)]
> 0

⇒ ∑
i>0

gi0

(
wk+1

i − w̃k
i

)
> ∑

i>0
(gi0 + f0i)

(
wk+1

i − w̃k
i

)+
⇒ ∑

i>0
gi0

(
wk+1

i − w̃k
i

)
> ∑

i>0
gi0

(
wk+1

i − w̃k
i

)+
(A21)

And Equation (A21) is clearly a contradiction since
(

wk+1
i − w̃k

i

)
≤
(

wk+1
i − w̃k

i

)+
for any

asset i.

Lemma A5. The function f (ρ) defined in Equation (A18) cannot have more than one fixed-point
( f (ρ) = ρ) in the interval [0, 1].
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Proof. This fact is proven by contradiction as follows. Assume f (ρ) has at least two
different fixed-points in the interval [0, 1], namely ρ1 and ρ2. Assume WLOG ρ1 < ρ2. Then,
using the definition of fixed-point, we can write Equation (A22). And using the fact that
f (ρ) is concave and the definition of concave function, which can be found in the work
of Boyd and Vandenberghe [32], we can write Equation (A23), where x1 and x2 are any
elements in the domain of the function and θ is any value in the interval [0, 1].

f (ρ1) = ρ1, f (ρ2) = ρ2 (A22)

f (θx1 + (1− θ)x2) ≥ θ f (x1) + (1− θ) f (x2), 0 ≤ θ ≤ 1 (A23)

Next, substituting x1 and x2 by 0 and ρ2, respectively in Equation (A23) results in
Equation (A24).

f (θ0 + (1− θ)ρ2) ≥ θ f (0) + (1− θ) f (ρ2) (A24)

Note, since ρ1 < ρ2, we can define θ̂ as the solution of equation ρ1 = θ̂0 + (1− θ̂)ρ2,
which always gives a value in the interval [0, 1). Then, substituting this expression in
Equation (A22) for ρ1 gives Equation (A25).

f (θ̂0 + (1− θ̂)ρ2) = θ̂0 + (1− θ̂)ρ2 (A25)

And substituting Equation (A22) for ρ2 in Equation (A25) gives Equation (A26).

f (θ̂0 + (1− θ̂)ρ2) = θ̂0 + (1− θ̂) f (ρ2) (A26)

Finally, substituting zero for f (0) in Equation (A26) by Equation (A3) results in the
inequality shown in Equation (A27).

f (θ̂0 + (1− θ̂)ρ2) < θ̂ f (0) + (1− θ̂) f (ρ2) (A27)

But, Equation (A27) contradicts Equation (A24). Therefore, the assumption that f (ρ)
has more than one fixed-point is false.

Note, we have not proved that there exists a fixed-point for f in the interval [0, 1],
but only proved there cannot be more than one. In fact, there is always a single fixed-point
for f in that interval as proven in Lemma A6.

Lemma A6. The sequences {ρk}∞
0 , where ρ0 ∈ [0, 1] and ρk = f (ρk−1) for k > 0, with f (ρ)

defined by Equation (A18), monotonically converge to the only fixed-point of f in the interval [0, 1].

Proof. If the first element of the sequence ρ0 is chosen to be in the interval [0, 1], then by
Lemmas A2 to A4, the next element of the sequence x1 falls in the interval (0, 1]. These
lemmas impose hard limits for f in the interval [0, 1], namely 0 < f (0) ≤ f (ρ) ≤ f (1) ≤ 1.
Using this fact we prove the monotonicity of the sequence by induction. Assume that
ρk ≥ ρk−1. Then by Lemma A2 we obtain Equation (A28).

ρk ≥ ρk−1

⇒ f (ρk) ≥ f (ρk−1)
(A28)

And applying the definition of the sequence to Equation (A28) results in Equation (A29).

ρk+1 = f (ρk) ≥ f (ρk−1) = ρk

⇒ ρk+1 ≥ ρk
(A29)

Therefore, if ρ1 ≥ ρ0, the whole sequence is monotonically increasing. Following
a similar argument, we can also show if ρ1 ≤ ρ0, the sequence decreases monotonically.
Then, the base step of the induction is determined by the outcome of f (ρ0). Therefore, since
the sequence is monotonic and bounded above and below, the Monotone Convergence
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Theorem [33] implies all sequences defined in Lemma A6 must converge. This fact is
summarized in Equation (A30) for any ρ0 in the interval [0, 1].

lim
k→∞

ρk+1 = ρk

⇒ f (ρk) = ρk as k→ ∞
(A30)

Finally, using Lemma A5 we conclude that all sequences defined in Lemma A6 can
only converge to a unique value.

Theorem A1. The solution returned by Algorithm 2 is optimal.

Proof. Lemma A1 gives a necessary (but not sufficient) condition for any optimal solution,
namely the solution has to satisfy the constraints given in Equation (A3). Additionally,
if there is an optimal solution, it has to be a fixed-point of Equation (A18). Lemma A6 shows
the output of Algorithm 2 is the unique fixed-point of f in the interval (0, 1]. And since
any optimal solution has to be a fixed-point of f , we conclude that the solution given by
Algorithm 2 is the optimal solution.

Appendix C. Fine Tuning Parameters

Table A1. Fine tuning parameters.

Parameter Range Increment

# of optimization steps 100,000–200,000 10,000
Learning rate (α) 1 × 10−7–1 × 10−6 1 × 10−7

A2C parameter (η) 0.1–0.7 0.1
# of masks in CNN layers 8–32 8

# of SA layers 1–8 1
# of heads SA layers 8–32 8
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