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Abstract: Not every visual media production is equally retained in memory. Recent studies have
shown that the elements of an image, as well as their mutual semantic dependencies, provide a
strong clue as to whether a video clip will be recalled on a second viewing or not. We believe that
short textual descriptions encapsulate most of these relationships among the elements of a video,
and thus they represent a rich yet concise source of information to tackle the problem of media
memorability prediction. In this paper, we deepen the study of short captions as a means to convey
in natural language the visual semantics of a video. We propose to use vector embeddings from a
pretrained SBERT topic detection model with no adaptation as input features to a linear regression
model, showing that, from such a representation, simpler algorithms can outperform deep visual
models. Our results suggest that text descriptions expressed in natural language might be effective
in embodying the visual semantics required to model video memorability.

Keywords: BERT; sentence-BERT; transformer; topic detection; video memorability; linear regression;
DenseNet-121; PCA

1. Introduction

The human brain has evolved to potentially hold an incredibly large amount of
detailed visual memories for long periods of time, even a lifetime. It is thanks to this
ability that the vast majority of people can quickly identify other people, places and objects
that have been previously seen with little to no effort. Interestingly, and opposed to the
traditional belief, human memory is not completely subjective, but rather an intrinsic
property of an image [1]. In this way, the existing literature seems to suggest that not all
input stimuli are equally well remembered.

The fast pace at which digital media production is growing allows us to enjoy hun-
dreds of hours of video clips from almost anywhere. Although TV was previously the
most common multimedia source of information, it is customary nowadays to browse the
internet, read the news and consume video streaming services from a variety of different
electronic devices. Consequently, we are now exposed to huge amounts of video clips, and
companies and institutions alike struggle to catch our attention and make their messages
persist in our memory. It is in this context that a system able to automatically predict what
videos will remain memorable and which ones will be quickly forgotten would have huge
applicability, as well as an obvious scientific interest.

Even though our understanding on the computational modeling of media memorabil-
ity is still in its early stages, there is a large record of previous work on this topic. From the
fields of psychology and cognitive sciences, the interest dates back to the seminal studies
of R.N. Shepard (1967) and Standing (1973) [2,3]. Nonetheless, the advent of computational
tools and pattern recognition models has opened the gates for further investigation on the
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properties that make something particularly memorable, starting from the seminal work of
Isola et al. [1,4,5].

Even though there is a general agreement now in recognizing semantic features as
high-quality predictors of an image or video memorability [6], the way these semantics
may be implemented into a computational model are still largely unknown. We reckon
natural language as a human-friendly mechanism to describe with any desired degree of
detail most of the scenes and experiences in our lives and, therefore, a short description
should be able to convey most of the implicit semantics within a video. In this paper, we
focus on the potential of such textual captions alone as predictors of media memorability.

The rest of the paper is organized as follows: Section 2 outlines previous studies on
the computational modeling of media memorability and its relationship with high-level
semantic features. Afterwards, although they have not been developed by us, for the
sake of clearness Section 3 introduces the reader to the data sets used in our experiments.
The intrinsic semantics of each dataset are studied from an unsupervised point of view in
Section 4. Our media memorability predictive models are described in full in Section 5, after
which Section 6 delves into the experimentation process carried out. Finally, we include
some conclusions and hints on future paths to extend this investigation in Section 7.

2. Related Work

Long thought to be completely subjective, the combination of cognitive sciences and
computer science is throwing light upon our knowledge on perceptual appraisals such
as the asthetic experience, the interest raised by an image or the memorability of a media
clip. In fact, the work of Jaegle et al. [7] shows that there are specific brain regions (such
as the inferotemporal cortex) that play a fundamental role in encoding and filtering what
information is worth keeping in memory. A fundamental discovery made by them is
that these brain areas specialize in different topics over time. Hence, for instance, natural
landscapes tend to be rather forgotten, as opposed to faces, which are generally well
remembered even in monkeys. Contrary to intuition, emotional traits do not seem to
contribute positively to memorability [8,9].

Experiments suggest that memory depends more on the conceptual structure of the
input than its perceptual distinctiveness [10]. Moreover, it seems that a major principle in
creating new memories comes from brain dealing with scene and object representations at
the same level of abstraction [11]. That alone highlights the need for global descriptors of
the media content if the goal is to predict its likelihood to be remembered.

As it has been already commented, although details of images and videos are well
remembered, most of the process of recalling a previous experience comes from the overall
perception (i.e., the global representation) that we make of them. Natural language provides
an efficient and robust way to describe most of the world around us. As a matter of fact,
language can be used to encapsulate the semantics of a video in a concise, relatively
cheap and comprehensible way. Furthermore, recent advances such as the BERT model
have greatly contributed to enhance natural language processing [12]. The BERT family
of algorithms is based on the Transformer architecture [13], a particular type of neural
processing unit that outperforms traditional LSTM cells in many problems dealing with
data structured in sequences [14].

Sentence-BERT (or SBERT) is a novel framework that allows computing sentence,
paragraph and even image-level embeddings [15]. As similar word and sentence-level
encoders, SBERT keeps similar samples close to each other in the embeddings’ space. In
particular, the SBERT models we use throughout this study are previously trained on topic
detection in text documents. Therefore, with this model we are able to compute a numerical
representation of the topics depicted in a video, given that a short text describes the video
as objectively as possible. We hypothesize that, given that the dataset contains a range large
enough of different topics, even pretrained topic detection models can perform comparably
to dedicated visual models in terms of video memorability prediction.
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3. Datasets

When choosing a set of data to validate our hypothesis, two aspects are of the utmost
importance. Firstly, we are interested in video memorability, and therefore we exclude
any image-only or audio-only corpora [16–18]. Secondly, we require that every video
sample is accompanied by at least one textual description. Each of these captions must
be a single sentence, no longer than a few words. Furthermore, every video must also
have a memorability score attached indicating its degree of memorability. Amidst the
corpora accessible by the research community that meet our criteria, two in particular stand
out: VideoMem and Memento10K [19,20]. Although it is true that data are extracted from
different sources and their annotation procedures are not exactly equal, in this study we
shall consider that both sets of labels represent the same concept closely enough to model
them following the very same principles. The next paragraphs discuss the particularities of
each dataset in depth.

3.1. VideoMem

Introduced in 2018 by R. Cohendet et al., VideoMem is composed of 10,000 videos,
with memorability scores attached as ground-truth labels. It represents the first attempt to
build a large-scale corpus regarding video visual memory, which were typically limited
to a few hundred of samples in previous works. Added to this, videos were not collected
from TRECVID or Hollywood-like films [21,22], but extracted from raw footage originally
designed to serve as generic material for professional editing of films or advertisements.
Clips are of high quality (HD) and are provided as short soundless videos of 7 s in .webm
format, with a bitrate of 3000 kps for 24 fps. The rationale behind this is to have a diverse
dataset in terms of topics while minimizing side-effects derived from having more than
one semantic unit within the same video. All of them are briefly described by a caption
that sums up the visual semantics of the scene.

Its authors also adapted an annotation protocol previously developed to image mem-
orability to the task of video memorability [1,4]. They gathered human participants in
sessions during which they were presented a series of videos, and researchers asked them
to hit a button every time they remembered having watched any video previously projected
within the same session. Participants carried out this procedure twice. Whereas in the first
one they had to respond to videos within the same session, therefore providing a label for
the short-term memory (understood as memorability after a few minutes), in the second
session the task referred to the videos projected during the first session. This second phase
was carried out between 24 and 72 h after the first one, and it can be thought of as a long-
term memorability score. Not all participants went through this second phase. This caused
an inconsistency in the number of annotations per video between the short-term and the
long-term cases. On average, every video was seen as a repeated target by 38 people to
estimate the short-term labels whereas only 13 did this for the long-term ones. In both
cases the final memorability score of a video is computed as the average percentage of
people that successfully recognised having seen a video. Videos are never presented in the
same fixed order, but randomly. Because it has been observed that video memorability
depends in a linear way on the number of videos between two occurrences [19,20], in order
to homogenize memorability labels among videos a linear correction (firstly introduced
in [16]) is applied to the raw hit scores, thus obtaining the final set of labels.

However, as can be noticed from Figure 1, there is not a clear relationship between
short and long term memorability scores. A video that is on average well remembered
in the short-run does not necessarily remain in memory a couple of days after with the
same intensity. Likewise, clips that may go unnoticed in a first stage can instead trigger
a quick and clear memory during the long-term session. Because of this apparent lack of
correlation between them, in this study we tackle them as two distinct problems.
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Figure 1. VideoMem’s short-term scores against long-term ones. There does not seem to exist any
correlation between them.

3.2. Memento10K

Memento10K is a corpus of 10,000 short videos released in 2020, centered around video
visual memory. The authors collected a database aimed at modeling video memory decay
as a function of the interval between the repetitions of a video during a visual memory
game. Footage was collected scrapping from the Internet, keeping exclusively those videos
that could be considered “home videos” by human workers. Hence, as a rule, the quality
of the clips is considerably worse than VideoMem’s. Interestingly, Memento10K’s content
places more attention on human actions and motion. This is particularly relevant given
that only one semantic unit is intended to be depicted in each video (which are around
3 s long on average), and therefore the clips present more sudden changes in image and a
higher degree of optical flow.

Because the goal of their study included predicting the memorability decay of a video
(and not only its raw memorability score), the visual memory game previously explained
was modified accordingly. In their experiment, crowdworkers from Amazon’s Mechanical
Turk (AMT) were presented a series of three-second video clips, asking them to press the
space bar every time they saw a repeated video. The key difference is that they only carried
out a single session, changing the lag between repetitions of the target clips. They found
that annotations at different lag times are not comparable in a straightforward manner, but
that the participants’ success rate recognizing a video decays linearly as a function of the
number of projected videos between two repetitions. Thus, in order to build a consistent set
of labels, they performed a post-processing of the scores. As a result, target labels represent
the likelihood a human will remember a video after a lag of 80 videos of similar length.
Analogously to VideoMem, visual semantics is described by a set of captions written by
human annotators. However, instead of a single one, Memento10K’s clips attach five
such texts each. These descriptions do not present emotional content and are limited to
objective summaries.

The distributions of labels in VideoMem (both short and long-term) and Memento10K
are displayed in Figure 2. In general, memorability tends to be fairly high in all cases,
with barely any videos being completely forgotten. Although it is true that Memento10K
presents a smoother range of scores, more homogeneously distributed despite having
approximately the same number of samples, distributions display a comparable trend, and
that motivates us to consider them three separate and independent problems focused on
the same phenomenon, the visual memorability of videos.
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(a) (b)
Figure 2. Memorability ground-truth label distribution for the three datasets used in our study.
All of them are skewed towards high-memorability scores. (a) VideoMem’s distribution of scores;
(b) Memento10K’s distribution of scores.

4. Unsupervised Topic Discovery from Video Captions

There is a general agreement that semantics play a fundamental role in understanding
and remembering a video. In particular, there seems to be specific topics that greatly
determine whether a video or image will be memorable or not [1,16]. Our work focuses
on this idea; we aim at extracting embeddings from the captions and use them as efficient
descriptors of the video’s visual semantics. For this to work, however, two requisites
must be fulfilled: on the one hand, our pretrained model must be able to capture the
semantics of our set of sentences and embody it in a numerical embedding. Otherwise the
automatically extracted embeddings would barely make sense from the point of view of
language processing. On the other hand, the semantic units we are able to extract must
show some degree of alignment with the memorability scores.

4.1. Out-of-Vocabulary Words

The vocabulary observed at training time by the model in charge of encoding text
features must coincide as much as possible with the vocabulary available in our captions. In
order to encode texts into a numerical form, we compute their sentence embeddings using
a pretrained transformer-based network Sentence-BERT [15]. This model is a variation
over the widely popular BERT language model [12]. In particular, we make use of the
nli-bert-base pretrained version, which is trained on a combination of the SNLI and the
Multi-Genre NLI datasets [23,24]. These text corpora account for a million of sentence pairs
labeled as contradiction, entailment or neutral. The sources these sentences were extracted
from are rich in topics, coming from fiction novels, travel guides or photo captions, to
name a few. By means of this model, we are able to compute a single 768-dimensional
embedding for every sentence.

Still, there is a gap between the vocabulary observed by the pretrained model and
that of our datasets. This is a fundamental issue to investigate, given that memorability
datasets span several different topics and our SBERT model should be able to extract
meaningful features for any of them. In fact, although SBERT successfully builds sentence-
level embeddings from the sequence of words in a sentence, it tags out-of-vocabulary
(OOV) words as unkown. Whereas in VideoMem, 21% of the words are labeled so, in
Memento10K, this rate rises to 30%. Amidst these OOV words we mostly observe terms
used in casual conversations such as xmas, veggie or piggy. These words contribute with a
fixed value to the sentence embedding. It is fundamental to highlight that no adaptation
at all is performed over these embeddings or the Sentence-BERT model used to compute
them, thus these words remain as unknown to the model, introducing some degree of noise
to the set of embeddings.

4.2. Relationship between Topics and Memorability

The second of the conditions required in a topic-oriented modeling of memorability
is that there is an effective relationship between those topics and their overall degree of
memorability. We thus aim at finding the set of topics available in our corpora, trying at the
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same time to understand the way in which they relate with memorability scores. However,
we have no direct access to the semantic content of the videos, which need to be derived
from the video captions in an unsupervised way.

To that aim, we carry out two consecutive transformations over the data. First, the
768-dimensional SBERT embeddings’ dimensionality is reduced to 5 dimensions through
UMAP [25] using the cosine distance over the input data. This technique is commonly
used since it performs a non-linear dimensionality reduction while preserving most of the
spatial distribution of the embeddings in the original space. Afterwards, a HDBSCAN
clustering method on the euclidean distance is applied [26]. One of the main advantages
of the DBSCAN family of algorithms is that it is not a requisite to know the number of
classes a priori. Additionally, it allows samples to be considered noise when they are not
sufficiently close to a densely-connected set of points, thus leaving us with a set of topics
whose data are close enough to be sure they share a great amount of semantic information.

This way, Figure 3a displays the UMAP projection of VideoMem’s SBERT embeddings
over the plane, colored according by the topics found in the clustering phase. Samples
labeled as noise are displayed in gray color. Notice that we do not have a fixed set of tags
to represent each topic but, instead, we define a topic by its top three most representative
words according to a TF-iDF word scoring method [27]. In this technique, all the captions
from a cluster are grouped together as sentences of a unique document. The trade-off
between the occurrence of a word within a cluster, altogether with the distinctiveness
it provides against other clusters, yields the TF-iDF word scoring for every document
observed. Comparing Figure 3a,b, we can see that there seems to be some sort of link
between particularly memorable topics and others that are overall easily forgotten in the
short-term. Figure 3c offers further information regarding this fact. In spite of not finding
topics particularly forgettable or memorable, topics do have on average different degrees
of memorability each, encouraging us to use this knowledge to build our models. The
exact same phenomena are observed in Figure 4 but for the long-term memorability. In this
case, however, the difference between topics is not that evident, something we attribute
to the relative lack of annotations per sample of this problem, which may be preventing
topics to clearly show the properties seen in the short-term, something that may be only
hinted at here.

Contrarily to clips in VideoMem, Memento10K’s videos are described by not one, but
five different captions. As alternatives to exploit the semantic information within them, we
evaluate two strategies: a single average BERT embedding computed at an early stage from
the sentence-level initial embeddings (early AVG), and taking each sentence independently
and averaging over their posteriors at prediction time (late AVG). Figure 5 shows the
relationship between topics and memorability found in the early AVG scenario. From
this figure it seems clear that this dataset is centered around people and human actions,
whereas the distribution of scores per topic shows great variability among different subjects
found. Nonetheless, videos related to {people, water, man} seem to stand out as particularly
memorable. Still, averaging over embeddings leaves us with less information available
about the clusters, given people is the main topic in the corpus and words such as man,
person or people appear in almost all of them. Figure 6 presents the same results but for the
late AVG method. In this case, it is indeed reasonable to say that there are specific topics
that show an overall higher memorability rate than others. In particular, the clusters found
to relate to {woman, girl, camera}, {food, spoon, baby} and {gun, man, shooting}. Subjects that are
the closest related to nature and landscapes generally exhibit worse average memorability
ratios, in line with the existing literature.
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(a)

(b)

(c)

Figure 3. Automatic topic discovery from Sentence-BERT vector embeddings in the short-term
memorability problem. From an unsupervised point of view, there seems to be some topics that tend
to produce stronger memories. In particular, those related to people. (a) VideoMem’s topics. Each
one is defined by each cluster’s top 3 most representative words. Gray samples cannot be assigned
to any topic. (b) Samples shown in color according to their memorability score. Low memorability
regions can be spotted. (c) Distribution of memorability scores within each detected topic.
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(a)

(b)

(c)

Figure 4. Automatic topic discovery from Sentence-BERT vector embeddings in the long-term
memorability problem. Here the separability by topic is not particularly evident, perhaps due to the
relatively low amount of annotations. (a) VideoMem’s topics. Each one is defined by each cluster’s
top 3 most representative words. (b) Samples shown in color according to their memorability score.
Again, low memorability regions can be spotted. (c) Distribution of memorability scores within each
detected topic.
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(a)

(b)

(c)

Figure 5. Automatic topic discovery from Sentence-BERT vector embeddings in the Memento10K
dataset under an early AVG strategy. Topics found appear mainly targeted at human actions.
(a) Memento10K’s topics detected from the early AVG scheme. (b) Samples shown in color according
to their memorability score. (c) Distribution of memorability scores within each detected topic.
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(a)

(b)

(c)

Figure 6. Automatic topic discovery from Sentence-BERT vector embeddings in the Memento10K
dataset under a late AVG strategy. A finer degree of detail can be found here about the content
of the topics. (a) Memento10K’s topics detected from a late AVG scheme. (b) Samples shown in
color according to their memorability score. (c) Distribution of memorability scores within each
detected topic.
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5. Predictive Models of Video Memorability

The aim of our study is to evaluate whether simple features extracted from short
descriptive texts of the visual semantics of a video can be competitive against purely visual
features fed to deep neural models. Consequently, predictive models are deliberately kept
as simple as possible, leaving most of the weight of the prediction on the shoulders of the
text features.

5.1. Textual Branch: SBERT-Based Models

Although UMAP provides us with features that apparently capture the semantics of
our captions, this method applies non-linear transformations to the input data, potentially
causing undesirable side-effects. In fact, after reducing the dimensionality of the original
SBERT embeddings under a Principal Components Analysis (PCA), the relationship between
said vector representation and their memorability labels seems to emerge in a direct way
(Figure 7). This approach applies only linear operations over the input space, thus keeping
a representation space closer to the original one. It can be seen that the least memorable
samples tend to cluster together in all the cases, whereas highly memorable ones display
a more diverse spatial distribution. Because even in a very low dimensionality space,
samples display such alignment with the task of predicting video memorability, we use a
PCA-projected version of the SBERT embeddings as input features to our models.

(a) (b)

(c) (d)
Figure 7. 2-dimensional PCA projection of SBERT embeddings by their memorability score.
(a) VideoMem (short-term). (b) VideoMem (long-term). (c) Memento10K (early AVG). (d) Me-
mento10K (late AVG).

The lower branch of the diagram in Figure 8 shows that linear regression models
are used when modeling memorability from text encodings. The input to these models
is an embedding from a pretrained Sentence-BERT, one vector at a time. We also explore
the effect of reducing the size of the original embeddings (768-dimensional) via a PCA
decomposition. We reckon there is some degree of redundancy in the original captions
describing the visual semantics, partially manageable by extracting the most relevant
features within data. We do not carry out any data augmentation procedure or text
processing over the original sentences or their representation.
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Figure 8. Predictive models used in this study. Visual and text-based branches are combined in a late
fusion scheme.

5.2. Visual Branch: Baseline

We seek a model able to provide features strongly aligned to the problem of video mem-
orability estimation, and most importantly, coming exclusively from the visual perspective.
Inspired by [20], we mimic their visual baseline, depicted schematically in the upper branch
in Figure 8. Basically, an ImageNet-pretrained DenseNet-121 architecture [28,29] is further
finetuned on the LaMem dataset, an image memorability corpus [16]. Finally, the model is
retrained on our memorability datasets. This model goes in order through the frames of a
video, computing a memorability score independently for every frame and then averaging
over these predictions to compute a video-level final estimation. When training the model,
we assign all the frames from a video the same memorability score.

Nonetheless, in order to alleviate some computational burden, video frames are
extracted at 3 fps, and resized to 224× 224 pixels, in RGB color format. Given the strong de-
pendency between the perception of scenes and its visual properties, no data augmentation
is applied at any stage at training time.

5.3. Mixture of Modalities

It is natural to wonder whether visual and textual representations can help each other
at modeling video memorability and, if so, to what degree. Hence, we also experiment
with a basic multimodal approach in which input data to a linear regressor come as the
late fusion of the posterior probabilities emitted by both the visual system and the best
text-based model.

6. Experimentation and Discussion

Memorability scores are defined here as probability rates, thus the task of predicting
them corresponds to a regression one. To measure the closeness between the ground truth
labels and the estimated ones, we report on the Peason’s correlation and the Spearman’s
rank correlation indices. Whereas the Pearson’s coefficient measures the degree to which
two variables are linearly correlated, the Spearman’s correlation gives insights into how
well a more general monotonic function can describe the relationship between those
variables, allowing a bit more flexibility.

The whole pipeline and experiments were implemented in Pytorch [30]. Optimization
of the models at training time is performed using an Adam optimizer [31], with the initial
learning rate fixed at 0.001. We use the mean squared error as our loss function. In
spite of having at our disposal official training, validation and test data partitions, the
labels of the latter have not been released to the public to this date for neither of the
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datasets, making it impossible to compare our works in a straightforward way. As a
consequence, all our results are obtained following a five-fold cross-validation strategy
over the development sets, using at each step three folds to train, one to validate and the
last one to test. When building the folds, the integrity of the videos is maintained. This is
trivial in the case of VideoMem since there is only a single caption per video, but it is of
the utmost importance in the case of Memento10K, given that each clip is characterized by
five sentences. We evaluate our systems’ performance every epoch, and training is stopped
after five consecutive epochs with no improvement on the Spearman’s coefficient over the
validation set.

6.1. VideoMem

Table 1 shows the results obtained when exploring different input representations
in the VideoMem’s data, both for the short-term and long-term labels. In the short-term
case, the most noticeable aspect is that the visual baseline is outperformed by the textual
models. Interestingly, PCA dimensionality reduction seems to enhance the performance
of the original embeddings, confirming that there is some redundancy in the original
representation. From Figure 9 it is noticeable that although input lengths smaller than
128 begin to worsen, it is not until a drastic dimensionality reduction is carried out that
these embeddings fall behind the visual model. The multimodal approach seems to be
capturing the best of both modalities, improving upon the best single-modality option in a
statistically significant way.

(a) (b)

Figure 9. The performance of linear regression models is enhanced when the original SBERT input
representation is reduced via PCA, although low dimensionality spaces seem to progressively worsen.
(a) Pearson’s coefficient. (b) Spearman’s coefficient.

Table 1. Memorability prediction on the VideoMem dataset. Reduced versions of the SBERT text
embeddings easily improve upon the visual baseline.

Model Input Dims.
Pearson’s Coeff. Spearman’s Coeff.

(±0.01) (±0.01)
Short-Term Long-Term Short-Term Long-Term

Visual Baseline 224 × 224 × 3 0.38 0.11 0.39 0.12

SBERT (LR) 256 0.45 0.2 0.42 0.18
128 0.45 0.22 0.41 0.21

Multimodal 2 0.48 0.2 0.45 0.19

We can observe similar results for the problem of predicting long-term memorability.
Analogously to the previous case, BERT embeddings display robustness to PCA transforms,
indeed reaching a peak performance when input is reduced to 128 or 64 dimensions. Except
in the case of a radical diminution of the vector dimensionality, it is also the case that text-
based models outperform the visual baseline by a significant margin. Another interesting
issue is that the late fusion of posteriors does not benefit from the different predictions with
respect to the textual model, whose posteriors conform the input to a multimodal system,
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and which predicts memorability at a comparable level. We reckon that labels from this
case are noisier due to the smaller number of annotations per sample, hence posing an
additional challenge when a linear regression tries to learn a pattern exclusively from the
visual and textual posteriors.

6.2. Memento10K

It can be seen from Table 2 that our approach based on PCA-projections of SBERT
embeddings successfully improves upon the visual baseline, too. Analogously to the case
of VideoMem, Figure 9 shows how the embeddings are robust to dimensionality reduction,
and only at very low dimensionalities the proposed system fails to deliver over the visual
model. Likewise to the previous case, the multimodal pipeline seems to further improve
the rates achieved at predicting media memorability, yet we cannot speak of statistical
significance against text-based approaches. It is worth mentioning that averaging over
the raw SBERT embeddings at an early stage apparently yields an overall slightly better
result than averaging over posteriors, yet that difference is not statistically significant in
the 256-dimensional vector space.

Table 2. Memorability prediction on Memento10K dataset using as input the average of the captions’
BERT embeddings against the visual baseline.

Model Input Dims.
Pearson’s Coeff. Spearman’s Coeff.

(±0.01) (±0.01)
Early AVG Late AVG Early AVG Late AVG

Visual Baseline 224 × 224 × 3 0.43 0.43 0.42 0.43
SBERT (LR) 256 0.58 0.55 0.58 0.56
Multimodal 2 0.59 0.57 0.60 0.58

7. Conclusions and Future Work

The problem of the computational modeling of video memorability has attracted
a lot of attention from the research community in recent years due to the growth in
computational power and data resources. Even though it seems clear now that high-level
semantic information plays a major role in the way our brain stores memories, it remains
unclear how we can encapsulate such information in an efficient way that may be later
used to automatically predict the memorability of a video. In this work, we propose to use
natural language text captions to encode the richness of both elements of a video and their
mutual interactions. Humans naturally communicate with each other in this way, hence it
stands as a strong alternative to pure visual approaches.

In particular, we study the relationship between the topic depicted in a short video,
purposely containing a single semantic unit, and the probability that a person will remem-
ber it at different intervals of time. To model topics, we convert the text captions that
accompany every video into precomputed sentence-level, BERT-based embeddings. These
vectors, which are not adapted to our tasks, were originally trained to perform topic com-
parison between pairs of sentences. From this representation we extracted a set of topics
for each dataset in an unsupervised fashion. We observed that, in tight agreement with
previous studies, as a rule subjects related to people and actions are better kept in memory
than scenes of nature. However, our current setup leaves more than 20% of the words in
our captions as OOV words, therefore worsening their corresponding embedding represen-
tation. Further work should study the effect of fine-tuning to video memorability corpora
so the sentence embeddings may capture the finest details of the descriptions provided.

Despite this lack of adaptation, simple linear regression models based on these naïve
embeddings outperform a deep neural visual model specifically trained to the task. Fur-
thermore, PCA proved to be an appropriate technique to decrease redundancy in the
original vector space while keeping apart samples with significantly different memorability
scores. In fact, PCA-reduced versions of these embeddings further improved the quality of
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our estimations over the original ones. Only extremely small dimensionality spaces seem
to distort the embeddings space as much as to see their performance below that of the
visual alternative.

Inspired by the success of our multimodal approaches, based on a late fusion of
the predictions made by two fully independent models, we reckon as another promis-
ing line of research the development of novel strategies to merge the features extracted
from different sources. Although memorability is eminently a visual aspect of human
cognition, models would likely benefit from combining visual descriptors with textual or
acoustic information.
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